中位修饰卟啉化合物的合成及其电致发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型红色有机电致发光材料的研究和开发对有机发光器件的全彩色平板显示具有重要意义。卟啉化合物由于其独特的发光性能是一种理想的红色掺杂染料,目前虽然卟啉掺杂的红色发光器件在发光色纯度方面具有很好的应用前景,但还存在其制备的器件发光效率和发光亮度都较低等问题。
     本文通过增大卟啉分子的共轭结构或将具有高荧光量子产率的基团(苯并唑或香豆素)连接到卟吩环的中位得到了四类共20个新型的卟啉化合物,并选取其中10个化合物制备有机发光器件来考察材料的电致发光性能,具体内容包括以下几个部分:
     设计合成了3个中位直接被三芳胺取代的卟啉化合物4a-c和3个通过苯乙烯连接的卟吩-三芳胺共轭体10a-c,通过核磁氢谱、质谱、紫外吸收光谱和荧光发射光谱表征了新化合物的结构。经紫外吸收光谱和荧光发射光谱研究表明在化合物4a-c和10a-c分子中三芳胺基团与卟吩母体之间有很好的能量传递,使得三芳胺基团吸收的能量通过卟啉发色团发射出去。
     采用具有强烈荧光的反式二苯乙烯及其衍生物修饰卟吩的中位,合成了6个卟啉化合物26a-f,并通过核磁氢谱、质谱、紫外吸收光谱和荧光发射光谱表征了它们的结构。由于共轭程度的增加,化合物的紫外吸收光谱和荧光发射波长较四苯基卟啉(TPP)有10 nm左右的红移。
     将苯并唑类基团(苯并咪唑、苯并噁唑和苯并噻唑)引入到卟吩中位,得到5个新型卟啉36a-e衍生物,并经核磁氢谱、质谱、紫外吸收光谱和荧光发射光谱表征了化合物的结构。由于N、O和S杂原子的引入降低了卟啉衍生物的摩尔消光系数,因而紫外吸收较弱,但化合物36a-e荧光发射能力增强。
     将强荧光母体香豆素引入到卟吩的中位得到3个荧光染料44、45和46,并通过核磁氢谱、质谱、紫外吸收光谱和荧光发射光谱表征了新化合物的结构。由于香豆素取代卟啉分子中较大的空间位阻和环内C=O的存在,导致化合物44、45和46的最大荧光发射峰出现在710 nm附近,而在650 nm左右有一个弱的肩带,这与一般卟啉化合物的荧光发射光谱刚好相反。
     以卟啉26f为例详细研究了分别掺杂在电子传输材料8-羟基喹啉铝(Alq_3)和空穴传输材料N,N′-二苯基-N,N′-二(3-甲基苯基)-1,1′-联苯-4,4′-二胺(TPD)中以及不同掺杂浓度下的电致发光性能。Alq3用作主体材料制备的器件在发光亮度和发光效率方面比掺杂在TPD中制备的器件性能好,但TPD用作主体材料制备的器件具有很高的色纯度。当26f在TPD中以摩尔分数1.5%掺杂时制备的器件发射出红光,最大亮度和外量子效率分别为73 cd/m2和0.0365。在相同条件下制备了其余9个化合物在TPD中的掺杂器件,并比较了在相同器件制备条件下不同系列卟啉化合物的电致发光性能。其中由化合物46掺杂制备的器件有最好的发光性能,其最大发光亮度和外量子效率分别为102 cd/m2和0.0408,此时发射光的色坐标为x=0.5703,y=0.3217。
It is vitally important to research the red emitting materials for developing full-color display of OLEDs. Porphyrins compounds are ideal red doping materials due to their unique luminescence properties, presently, the saturated red emission of red OLEDs doped by porphyrins is satisfactory for practical use, but there exist some problems, such as quantum efficiency and luminance of OLEDs are both low.
     In this paper, twenty novel meso-substituted porphyrins of four series were designed and synthesized by increasing the conjugation of porphyrins or introducing substituents (such as benzoazole, coumarin) with high fluorescence quantum yield into the meso-position of porphine, and then red OLEDs were fabricated by doping porphyrins into a suitable host using ten porphyrins compounds and their electrolumin -escence properties were tested. The main contents and results were generalized as follows:
     Three meso-tetrakis(triarylamine substituents)porphyrins 4a-c and three conjugations of porphine-triarylamine linked by styrene 10a-c were synthesized and characterized by 1H NMR, MS, UV-vis spectra and fluorescence emission spectra. The electronic interaction between the triarylamine units and porphines macrocycle in 4a-c and 10a-c were investigated by UV-vis absorption spectroscopy and fluorescence emission spectroscopy, and the results showed that there was a good energy transfer between triarylamine units and porphines. Thus, the absorbed energy by triarylamine units was reemitted by the porphyrins chromophore.
     Six porphyrins compounds 26a-f were obtained by introducing intensely fluorescence chromophore trans-stilbene, and characterized by 1H NMR, MS, UV-vis spectra and fluorescence emission spectra. Their UV-vis absorption spectra and fluorescence emission spectra were red shifted about 10 nm compared to tetraphenylporphyrin(TPP) as a consequence of expandedπ-conjugation.
     We firstly introduced benzoazole (including benzimidazole, benzoxazole and benzothiazole) into the meso-positions of porphines and obtained five new porphyrins 36a-e. Their structures were characterized by 1H NMR, MS, UV-vis spectra and fluorescence emission spectra. The molar extinction coefficient was lowered because of the presence of heteroatom (nitrogen, oxygen or sulphur) in above-mentioned molecules, so the UV-vis absorption was weakened, but the brightness of 36a-e fluorescence was increased.
     Due to their significant fluorescence chromophores, coumarins were introduced into the meso-positions of porphines and compounds 44, 45 and 46 were synthesized. Then their structures were characterized by 1H NMR, MS, UV-vis spectra and fluorescence emission spectra. The fluorescence spectra of 44, 45, 46 had a maximal peak at about 710 nm and a weak shoulder at about 650 nm because of steric hindrance and presence of C=O, and this was on the contrary of others porphyrins fluorescence spectra.
     To study the electroluminescence performance of 26f, the OLEDs devices were prepared with 26f as dopant and tris(8-hydroxyl quinoline)aluminum (Alq3) or N,N′-diphenyl-N,N′-di(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine (TPD) as host, and we studied the electroluminescence properties at different doping concentration. The luminance and efficiency of OLEDs were better than TPD when Alq3 was used as host, but the luminescence color was more pure when TPD was used as host. When the doping concentration of 26f in TPD was 1.5%, the luminescence color of OLED was red, and the maximal luminance and external quantum efficiency were 73 cd/m2 and 0.0365, respectively. The other nine OLEDs devices were fabricated with porphyrins as dopants and TPD as host, and we evaluated the electroluminescence performances of different series porphyrins at the same fabrication conditions of OLEDs. The best electroluminescence properties were obtained when 46 was used as dopant, and the maximal luminance and external quantum efficiency were 102 cd/m2 and 0.0408, respectively. The CIE coordinates were x=0.5703, y=0.3217.
引文
[1]夏春兰,卢卫兵,邓立志等,卟啉化合物的合成及其物理化学性质,大学化学,2004,19(1):45~47
    [2] Karl M.K., Kevin M.S., Roger G., The porphyrin handbook, academic press, San Diego, 2000, vol 6, 44~47
    [3] Harry L.A., Building molecular wires from the colours of life: conjugated porphyrin oligomers, Chem. Comm., 1999, 2323~2330
    [4] Rothemund P., J. Am. Chem. Soc., A new porphyrin synthesis, 1935, 58(4): 625~627
    [5] Adler A.D., Longo F.R., Finarelli J., et al., A simplified synthesis for meso-tetra phenylporphine, J. Org. Chem., 1967, 32(2): 476
    [6] Lindsey J.S., Schreiman I.C., Synthesis of tetraphenylporphyrins under very mild conditions, Tetrahedron Lett, 1986, 27(41): 4969~4970
    [7] Lindsey J.S., Schreiman I.C., Hsu H.C., et al., Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions, J. Org. Chem., 1987, 52(5): 827~836
    [8] Li F., Yang K., Tyhonas J.S., et al., Beneficial effects of salts on an acid-catalyzed condensation leading to porphyrin formation, Tetrahedron, 1997, 53(37): 12339~12360
    [9] Onaka M., Shinodo T., Izumi Y., et al., Porphyrin synthesis in clay nanospaces, Chem. Lett., 1993, 22, 117~120
    [10] Gradillas A., Del Campo C., Sinisterra J. V., et al., Porphyrin synthesis using of transition metal salts, J. Chem. Soc., Perkin Trans. 1, 1995, 2611~2616
    [11]何明威,潘继刚,刘轻轻等,meso-四苯基卟啉类卟啉化合物的制备方法,CN1100093,1995
    [12] Yalman R.G., Preparation of porphine, substituted porphine and metal chelates thereof, US3579533, 1971
    [13] Ellis J.R., Aoyagi, K., Toi H., et al., Facile Syntheses of perfluoroalkylporphyrins. Electron deficient porphyrins, Chem. Lett., 1988, 17, 1891~1894
    [14] Ellis J.R., Langdale W.A., Preparation of porphyrins and their metal complexes, US5659029, 1997
    [15] Homma M., Aoyagi K., Ogoshi H., Electron deficient porphyrins. Tetrakis (trifluoromethyl)porphyrin and its metal complexes, Tetrahedron Lett., 1983, 24(40): 4343~4346
    [16] Wijesekera T.P., Wagner R.W., Synthetic route to meso-tetrahydrocarbyl or substituted hydrocarbyl porphyrins and derivatives, US5241062
    [17] Nickel E.G., Liebeskind L., A method for synthesizing porphyrin compound, WO00/52012, 2000
    [18] Arsenault G.P., Bullock E., MacDonald S.F., Pyrromethanes and porphyrins therefrom, J. Am. Chem. Soc., 1960, 82(16): 4384~4389
    [19] Wallace D.M., Leung S.H., Smith K.M., et al., Rational tetraarylporphyrin syntheses: tetraarylporphyrins from the MacDonald route, J. Org. Chem., 1993, 58(25): 7245~7257
    [20] Lindsey J.S., Lee C.H., Li F., et al., Synthetic approaches to regioisomerically pure porphyrins bearing four different meso-substituents, Tetrahedron, 1995, 51(43): 11645~11672
    [21] Hermann K.H., Gaby H., Christiane A., Selective synthesis of diaryl and monoaryl substituted porphyrins, Tetrahedron, 1992, 48(43): 9451~9460
    [22] Chambron J.C., Heitz V., Saubage J.P., et al., Bis~porphyrins containing diimine chelates of variable geometry as spacer, Tetrahedron Lett., 1995, 36(51): 9321~9324
    [23] Wang Q.M., Bruce D.W., Synthesis of calamitic liquid crystalline porphyrins with lateral aromatic branches, Tetrahedron Lett., 1996, 37(42): 7641~7644
    [24] Ravikanth M., Strachan J.P., Li F., et al., Trans-substituted porphyrin building blocks bearing iodo and ethynyl groups for applications in bioorganic and materials chemistry, Tetrahedron, 1998, 54(27): 7721~7734
    [25] Broadhurst M.J., Grigg R., Johnson A.W., Synthesis of porphin analogues containing furan and thiophen rings, J. Chem. Soc. C., 1971, 3681~3690
    [26] Boudif A., Momenteau M., Synthesis of a porphyrin-2,3-diacrylic acid using a new‘3+1’type procedure, J. Chem. Soc., Chem. Commun., 1994, 2069~2070
    [27] Lash T.D., Porphyrins with exocyclic rings. Part 9 synthesis of porphyrins by the‘3+1’approach, J. Porphyrins Phthalocyanines, 1997, 1(1): 29~44
    [28] Sessler J.L., Genge J.W., Urbach A., et al., A‘3+1’approach to monofunctionali- zed alkyl porphyrins, Synlett, 1996, 8(2): 187~188
    [29] Wijesekera T.P., Dolphin D., 1-Bromo-19-methylbiladienes-ac; Useful precursorsto porpyrins, 1990, 2(5): 235~244
    [30] Nalwa H.S., Watanabe T., Miyata S., In nonlinear optics in organic molecular molecular and polymeric materials, CRC press, Boca Ration, FL, 1997, 89~350
    [31] Karl M.K., Kevin M.S., Roger G., The porphyrin handbook, academic press, San Diego, 2000, vol 6, 53~60
    [32] Antohe s., Tugulea L., Electric and photovoltaic properties of a two-layer organic photovoltaic cell, Phys. Sta. Sol.(A), 1991, 128(1): 253~260
    [33] Tyler B.N., Neil R.B., Axially coordinated porphyrinic photochromes for non- destructive information processing, Adv. Mater., 2001, 15(3): 347~349
    [34] Chen C.T., Evolution of red organic light-emitting diodes: materials and devices, Chem. Mater., 2004, 16: 4389~400
    [35] Wasielewshi M.R., Photoinduced electron transfer in supramolecular systems for artificial photosynthesis, Chem. Review, 1992, 92(3): 435~461
    [36] Antohe S., Electrical and photovoltaic properties of tetrapyrydilporphyrin sandwich cells, Phys. Stat. Sol.(A), 1993, 136(2): 401~410
    [37] Antohe S., Tugulea L., Gheorghe V., et al., Electrical and photovoltaic properties of ITO/chlorophyll a/TPyP/Al/ p-n junction cells, Phys. Stat. Sol.(A), 1996, 153(2): 581~588
    [38] Fukuzumi S., Imahori H., Yamada H., et al., Light-harvesting and photocurrent generation by gold electrodes modified with mixed self-assembled monolayer of Boron-Dipyrrin and Ferrocene-porphyrin-fullerene triad, J. Am. Chem. Soc., 2001, 123(1): 100~110
    [39] Torre G., Vazquez P., Agullo L.F., et al., Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds, Chem. Rev., 2004, 104(9): 3723~3750
    [40] Taylor P.N., Wylie A.P., Huuskonen J., et al., Enhanced electronic conjugation in anthracene-linked porphyrins, Angew. Chem. Int. Ed., 1998, 37(7): 986~989
    [41] Anderson H.L., Screen T.E.O., Thorne J.R.G., et al., Amplified optical nonlinearity in a self-assembled double-strand conjugated porphyrin polymer ladder, J. Am. Chem. Soc., 2002, 124(33): 9712~9713
    [42] Zhang T.G., Zhao Y., Asselberghs I., et al., Design, synthesis, linear, and nonlinear optical properties of conjugated porphyrin, J. Am. Chem. Soc., 2005, 127(27): 9710~9720
    [43] Drobizhev M., Stepanenko Y., Rebane A., et al., Strong cooperative enhancementof two-photo absorption in double~strand conjugated porphyrin ladder arrays, J. Am. Chem. Soc., 2006, 128(38): 12432~12433
    [44]朱道元,王佛松,有机固体,上海科学技术出版社,1999,297~330
    [45]金志平,彭孝军,孙立成,卟啉超分子化合物在分子器件中的应用,化学通报,2003,66(7):464~473
    [46]李荣金,李洪祥,汤庆鑫等,分子器件的研究进展,物理,2006,35(12):1003~1009
    [47]杨新国,孙景志,汪茫等,卟啉类光电功能材料的研究进展,功能材料,2003,34(2):113~117
    [48] Balzani V., Credi A., Venturi M., Molecular devices and machines, Wiley-VCH, 2003
    [49] Oneil M.P., Niemczyk M.P., Svec W.A., at al., Picosecond optical switching based on biphotonic excitation of an electron donor-acceptor-donor molecule, Science, 1992, 257: 63~65
    [50] Debreczeny M.P., Svec W.A., Wasiewski M.R., et al., Optical control of photogenerated ion pair lifetimes: An approach to a molecular switch, Science, 1996, 274: 584~586
    [51] Crossley M.J., Burn P.L., An approach to porphyrin-based molecular wires: synthesis of a bis(porphyrin)tetraone and its conjugated tetrakisporphyrin system, J. Chem. Soc., Chem. Commun., 1991, 1569~1571
    [52] Wagner R.W., Lindsey J.S., A molecular photonic wire, J. Am. Chem. Soc., 1994, 116(21): 9759~9760
    [53] Yang S.I., Seth J., Balasubramanian T., Interplay of orbital tuning and linker location in controlling electronic communication in porphyrin arrays, J. Am. Chem. Soc., 1999, 121(16): 4008~4018
    [54] Li F., Yang S.I., Seth J., at al., Design, synthesis, and photodynamics of light-harvesting arrays comprised of a porphyrin and one, two, or eight boron-dipyrrin accessory pigments, J. Am. Chem. Soc., 1998, 120(39): 10001~10017
    [55]黄春辉,李富友,黄维等,有机电致发光材料与器件导论,上海:复旦大学出版社,2005
    [56] Tang C.W., Vanslyke S.A., Organic electroluminescent diodes, Appl. Phys. Lett., 1987, 51(12): 913~915
    [57] Burroughes J.H., Bradley D.D.C., Brown A.R., et al., Light-emitting diodesbased on conjugated polymers, Nature, 1990, 347(6293): 539~541
    [58] Chkoda L., Heske C., Sokolowski M., Improved band alignment for injection by an interfacial layer in organic light emitting devices, Appl. Phys. Lett., 2000, 77(8): 1093~1095
    [59] Khramtchenkov D.V., Arkhipov V.I., Bassler H., Charge carrier recombination in organic bilayer electroluminescence diodes, J. Appl. Phys., 1997, 81(10): 6954~6962
    [60] Adachi C., Tokito S., Tsutsui T., et al., Electroluminescence in organic films with three-layer structure, Jpn. J. Appl. Phys., part 2, 1988, 27(2): L269~L271
    [61]李国强,下一代显示明星OLED产业现状与展望,新材料产业,2002,8(5):14~18
    [62] Burrows P.E., Forrest S.R., Sibly S.P., et al., Color-tunable organic light-emitting devices, Appl. Phys. Lett., 1996, 69(20): 2959~2961
    [63] Sakakibara Y., Okutsu S., Enokida T., et al., Red electroluminescence and photoluminescence properties of a reduced porphyrin compound, tetraphenylchlorin, Thin Solid Films, 2000, 363(1): 29~32
    [64] Hamada Y., The development of chelate metal complexes as an organic electroluminescent material, Trans. Electron Devices, 1997, 44(8): 1208~1217
    [65] Christine O., Paul R., Gerard S., Porphyrin with fluorenyl and fluorenone pendant arms, Tetrahedron Lett., 2006, 47(19): 3275~3278
    [66] Zhang X.H., Xie Z.Y., Wu F.P. et al., Red electroluminescence and photoluminescence properties of new porphyrin compounds, Chem. Phys. Lett., 2003, 382(5): 561~566
    [67] Li B.S., Xu X.J., Sun M.H. et al., Porphyrin~cored star polymers as efficient nondoped red light-emitting materials, Macromolecules, 2006, 39: 456~461
    [68] Raymond C.K., Scott S., Timer D., et al., Efficient, saturated red organic light emitting devices based on phosphorescent Platinum porphyrin, Chem. Mater., 1999, 11(12): 3709~3713
    [69] Guo J., Ye K.Q., Wu Y., et al., Red electroluminescent devices based on a porphyrin metal complex, Synthetic Metals, 2003, 137(2): 1075~1076
    [70] Baldo M.A., Brien D.F.O., You Y., et al., Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, 1998, 395(10): 151~154
    [71] Cleave V., Tessler N., Yahioglu G., et al., Long lived photo-and electrolumin-escence from a side–chain polymer porphyrin blend, Synthetic Metals, 1999, 102(2): 939~940
    [72] Cleave V., Yahioglu G., Pierre L.B., et al., Harvesting singlet and triplet energy in polymer LEDs, Advanced Materials, 1999, 11(4): 285~288
    [73] Brien O.D.F., Baldo M.A., Thompson M.E., Improved energy transfer in electro phosphorescent devices, Appl. Phys. Lett., 1999, 74(3): 442~444
    [74] Higgins R.W.T., Monkaman A.P., Nothofer H.G., Energy transfer to porphyrin derivative dopants in polymer light-emitting diodes, J. Appl. Phys., 2002, 91(1): 99~105
    [75]徐清,陈红征,汪茫,三芳胺类空穴传输材料研究新进展,功能材料,2005,36(11):1659~1663
    [76]刘则,王广,含有三唑和三芳胺基聚苯衍生物的合成及发光性质的研究,发光学报,2002,23(1):45~48
    [77] Liang F.S., Pu Y.J., Kurata T.S., et al., Synthesis and electroluminescent property of poly(p-phenylenevinylene)s bearing triarylamine pendants, Polymer, 2005, 46(11): 3767~3775
    [78] Jernej I., Stojan S., Marko Z., Nonmetal~catalyzed iodination of arenes with I odide and hydrogen peroxide, Synthesis, 2004, 35(11): 1869~1873
    [79]王世荣,徐国辉,薛金强等,甲基取代三苯胺类化合物的合成,精细化工,2005,22(10):721~723
    [80] Hager F.D., triphenylamine, Organic Syntheses, Vol. 8, p116
    [81] Goodbrand H.B., Hu N.X., Ligand-accelerated catalysis of the Ullmann condensation application to hole conducting triarylamines, J.Org. Chem., 1999, 64(2): 670~674
    [82]郭灿城,尹振明,张伟强,多芳胺选择性甲酰化合成多芳胺基苯甲醛,高等学校化学学报,2002,23(9):1719~1721
    [83] Loim N.M., Kelbyscheva E.S., Synthesis of dendrimers with terminal formyl groups, Russian Chemical Bulletin, 2004, 53(9): 2080~2085
    [84] Hermann B., Dieter K., Process for the preparation of 4-halomethylbenzaldehude , US4733012, 1988
    [85] Tasneem, Vilsmeier~Haack reagent, Synlett, 2003, 14(1): 138~139
    [86]荣国斌译,有机人命反应及机理,华东理工大学出版社,2003
    [87] Jiang K.J., Sun Y.L., Shao K.F., Synthesis and properties of amorphous hole transport materials of triphenylamine based trihydrazones, Chem. Lett., 2004,33(1): 50~51
    [88] Bonhote P., Moser J.E., Humphry B., et al., Long-lived photoinduced charge separation and redox-type photochromism on mesoporous oxide films sensitized by molecular dyads, J. Am. Chem. Soc., 1999, 121(6): 1324~1336
    [89] Cao G.Y., Chen Y., Zhang X. P., General and efficient synthesis of arylamineo and alkylamino- substituted diphenylporphyrins and tetraphenylporphyrins via Palladium-catalyzed multiple amination reaction, J. Org. Chem., 2003, 68(16): 6215~6221
    [90] Gennari C., Ceccarelli S., Piarulli U., at al., Stereocontrolled synthesis of polyketide libraries: Boron-mediated aldol reactions with aldehydes on solid support, Tetrahedron, 1998, 54(49): 14999~15016
    [91] Endtner R., Rentschler E., Blaser D., et al., Magnetic interactions in hydroxymethyl substituted phenyl nitronyl nitroxides, Eur. J. Org. Chem., 2000, 19: 3347~3352
    [92] Durantini E.N., Synthesis of functional olefins the Witting-Horner reaction in different media, Synth. Commun., 1999, 29(23): 4201~4222
    [93] Gouterman M., Spectra of porphyrins, Journal of Molecular Spectroscopy, 1961, 6: 138~163
    [94] Gouterman M., Seybold P.G., Fluorescence spectra and quantum yields of porphyrin, Journal of Molecular Spectroscopy, 1969, 31: 1~13
    [95] Edwards L., Gouterman M., Rose C.B., Synthesis and vapor spectrum of zine tetrabenzoporphine, J. Am. Soc. Chem., 1976, 98(24): 7638~7641
    [96] Satoshi I., Naoyuki O., Takashi M., et al., A new synthesis of naphthoporphyins, Chem. Commun., 2000, 893~894
    [97] Harry L. A., Building molecular wires from the colours of lifes: conjugated porphyrin oligomers, Chem. Commun., 1999, 2323~2330
    [98] Pereira M., Muller G., Ordinas J.I., et al., Synthesis of vinylated 5,10,15,20-tetra phenylporphyrins via Heek-type coupling reaction and their photophysical properties, J. Chem. Soc. Perkin Trans. 2, 2002, 1583~1588
    [99] Yen W.N., Lo S.S., Kuo M.C., et al., Electrochemical properties of star-shape Porphyrin-triarylamine conjugates, Org. Lett., 2006, 8(19): 4239~4242
    [100] Augusto C.T., Paula S.S., Maria G.P., et al., Meso-arylporphyrins as dienophiles in Diesl-Alder reactions: a novel approach to the synthesis of chlorins, bacteriochlorins and naphthoporphyrins, Chem. Commun. 1997, 1199~1200
    [101] Lash T.D., Thompson M.L., Werner T.M., et al., Synthesis of novel pyrrolic compounds from nitroarenes and isocyanozcetates using a phosphazene superbase, Synlett, 2000, 11(2): 213~216
    [102] Lindner S.M., Thelakkat M., Nanostructures of n-type organic semiconductor in a p-type matrix via self-assembly of block copolymers, Macromolecules, 2004, 37(24): 8832~8835
    [103] Kim J.B., Leonard J.J., Longo F.R., Mechanistic study of the synthesis and spectral properties of meso-tetraarylporphyrins, J. Am. Chem. Soc., 1972, 94(11): 3986~3992
    [104] Lecours S.M., Dimagno S.G., Therien M.J., Exceptional electronic modulation of porphyrins through meso-arylethynyl groups. J. Am. Chem. Soc., 1996, 118(47): 11854~11864
    [105] Arnold D.P., Heath G.A., James D.A., Porphyrin dimers linked by conjugated butadiyne bridges: preparations, spectra, voltammetry and reductive spectroelectrochemistry of {[M(OEP)](μ-C4)[M(OEP)]}, J. Porphyrins Phthalocyanines, 1999, 3(1): 5~31
    [106] Susumu K., Maruyama H., Kobayashi H., et al., Theoretical approach to the design of supramolecular conjugated porphyrin polymers, J. Mater. Chem., 2001, 11, 2262~2270
    [107] Chang J.C., Ma C.J., Lee G.H., et al., Porphyrin-triarylamine conjugates: strong electronic communication between triarylamine redox centers via the porphyrin dication, Dalton Trans., 2005, 1504~1508
    [108] Liu X.G., Feng Y.Q., Zhao B., et al., Synthesis, characterization and spectroscopicinvestigation of azo-porphyrins, Dyes and Pigments, 2007, 75(2): 413~419
    [109] Li C.L., Shieh S.J., Lin S.C., et al., Synthesis and spectroscopic properties of finite Ph2N-containing oligo(arylenevinylene)derivatives that emit blue to red fluorescence, Org. Lett., 2003, 5(7): 1131~1134
    [110] Meier H., The photochemistry of stilbenoid compounds and their role in materials technology, Angew Chem. Int. Ed. Engl., 1992, 31: 1399~1420
    [111]张彦英,新型香豆素荧光染料的合成及其结构与光谱性能关系的研究,大连理工大学博士论文,2003
    [112]黄枢,谢如刚,田宝芝等,有机合成试剂制备手册,科学出版社,2005
    [113] Clelia S.W., Frank B.M., Photochemistry of stilbenes. The preparation ofsubstituted phenanthrenens, J. Org. Chem., 1964, 29(11): 3373~3377
    [114] Grummitt O., Buck A., 1-Chloromethylnaphthalene, Organic Syntheses, Coll. Vol. 3, p195
    [115] Angyal S.J., Tetaz J.R., Wilson J.G., 1-Naphthaldehyde, Organic Syntheses, Coll. Vol. 4, p690
    [116] Wesley J.D., Leon S., Charles W.S., Substituted styrenes, syntheses of the isomeric formylstyrenes and o- and m-vinylbenzoic acid, J. Org. Chem., 1961, 26(7): 2225~2227
    [117] Durantini E.N., Synthesis of functional olefins using the Wittig-Horner reaction in different media, Synthetic Communications, 1999, 29(23): 4201~4222
    [118] Baker B.R., Gibson R.E., Irreversible enzyme inhibitors, inhibition of brain choline acetyltransferase by derivatives of 4~stilbazole, J. Med. Chem., 1971, 14(1): 315~322
    [119] Beletskaya I.P., Cheprakov A.V., The Heck reaction as a sharpening stone of Palladium catalysis, Chem. Rev., 2000, 100(8): 3009~3066
    [120] Nicolai S.H., Jorn B.C., Niels H., et al., Novel synthesis of protected thiol end-capped stilbenes and oligo(phenylenevinylene)s, J. Org. Chem., 2003, 68(4): 1275~1282
    [121]丁国华,田禾,含苯并杂环的分子扭曲型材料的合成及其发光性能,桂林工学院学报,2006,26(2):250~253
    [122] Janina K., Beata J., Piotr O., et al., The synhtesis and the solvent and substituent effent on the spectroscopic characteristic of 3-ethyl-2(p-substituted styryl)benzo- thiazolium iodides, Spectrochimica Acta Part A, 2005, 62: 115~125 [123 ]Park M.Y., Lee Y.K., Lim B.S., Influence of fluorescent whitening agent on the fluorescent emission of resin composites, Dental Materials, 2007, 23: 731~735
    [124]高成庄,李炎,苯并咪唑衍生物的特性及应用研究进展,郑州轻工业学院学报:自然科学版,2007,22(2):35~37
    [125]梁英红,具有双光子吸收的咔唑类分子的设计、合成及光谱特性,中山大学硕士论文,2004
    [126] Huang Z.L., Lei H., Li N., et al., Novel heterocycle based organic molecules with two-photon induced blue fluorescent emission, J. Mater. Chem., 2003, 13: 708~711
    [127] Lionel R.M., Philip J.F.D., Gokhan Y., 5,10,15,20-Tetrakis(N-protected-imidazo l-2-yl)porphyrins, Tetrahedron, 1996, 52(29): 9877~9890
    [128]何宏山,黄锦汪,计亮年,尾式金属卟啉配合物的研究:邻苯并唑类杂环基尾式铁卟啉的合成及催化性质,中山大学学报(自然科学版),1997,36(1): 40~44
    [129] Aviv G., Kevin Y., Andrea U., et al., Tricyclic quinoxalines as potent kinase inhibitors of PDGFR kinase, Bioorg. Med. Chem., 2003, 11(9): 2007~2018
    [130] Ramaiah K., Dubey P.K., Rao D.E., et al., Synthesis and spectral properties of a variety of 2-styrylbenzimidazoles, Indian J. Chem., 2000, 39: 904~914
    [131] Dubey P.K., Ramanatham J., Kumar R., A facile phase-transfer catalysed N-met hylation of 2-substituted benzimidazole, Indian J. Chem., 2000, 39: 867~871
    [132]徐嵩,徐世平,李兰敏,取代4~苯乙烯基香豆素的合成及其抗肿瘤活性,药学学报,2001,36(4):269~273
    [133]刘芳,兰支利,邓芳等,香豆素及其衍生物研究进展,精细化工中间体,2006,36(4):7~11 [134贾建洪,盛卫坚,高建荣,有机荧光染料的研究进展,化工时刊,2004, 18(1):18~22
    [135] Tang C.W., VanSlyke S.A., Chen C.H., Electroluminescence of doped organic thin films, J. Appl. Phys., 1989, 65(9): 3610~1616
    [136] Zhang R.F., Zheng H.P., Shen J.C., A new coumarin derivative used as emitting layer in organic light-emitting diodes, Synthetic Metals, 1999, 106: 157~160
    [137] Kido J., Iizumi Y., Fabrication of highly efficient organic electroluminescence devices, Appl. Phys. Lett., 1998, 73(19): 2721~2723
    [138] Surya K.D., Richard A.G., An efficient and practical procedure for the synthesis of 4-substituted coumarins, Synthesis, 2005, 8: 1231~1233
    [139] Joshi S.D., Usgaonkar R.N., Synthesis of 4-substituted coumatins, Indian J. Chem., 1982, 21: 399~402
    [140] Perkin W.H., On the artificial production of coumarin and formation of its homologues, J. Chem. Soc., 1868, 21: 53 [141 Toshifumi H., Takayuki S., The structure of the Pechmann conduction production of p-orsellinic acid with ethyl acetoacetate, Bull. Chem. Soc. Jpn., 1974, 47(1): 244~245
    [142] Poonia N.S., Sen S., Porwal P.K., et al., Coordinative role of alkali cations in organic reactions, the Perkin reaction, Bull. Chem. Soc. Jpn., 1980, 53(11): 3338~3343
    [143] Jones G., Org. React., New York: Jone Wiley, 1967, 15: 204~228
    [144] Yavari I., Hekmat S.R., Zonouzi A., A new and efficient route to 4-carboxy methylcoumarins mediated by vinyltriphenylphosphonium salt, Tetrahedron Lett., 1998, 39(16): 2391~2392
    [145] Chavan S.P., Shivasankar K., Sivapa R., et al., Zinc mediated transesterifica tion ofβ-ketoesters and coumarin synthesis, Tetrahedron Lett., 2002, 43(47): 8583~8586
    [146] Woodruff E.H., 4-Methylcoumarin, Organic Syntheses, Coll. Vol. 3, p.581
    [147] Alfred R., John R.F., 2,6-Dihydroxyacetophenone, Organic Syntheses, Coll. Vol. 3, p.281
    [148] Bose D.S., Rudradas A.P., Babu M.H., The indium chloride catalyzed von Pechmann reaction: a simple and effective procedure for the synthesis of 4-substituted coumarins, Tetrahedron Lett., 2002, 43(50): 9195~9197
    [149] Sugino T., Tanaka K., Solvent-free coumarin synthesis, Chem. Lett., 2001, 30(2): 110~111
    [150] Li T.S., Zhang Z.H., Yang F., et al., Montmorillonite clay catalysis: An environmentally friendly procedure for the synthesis of coumarins via Pechmann condensation of phenols with ethyl, J. Chem. Research(S), 1998, 38~39 [151 ]Pankajkumar R.S., Devendrapratap U.S., Shriniwas D.S., Sulphamic acid an efficient and cost-effective solid acid catalyst for the Pechmann reaction, Synlett, 2004, 11: 1909~1912
    [152] Tkach I.I., Andronova N.A., Savvina L.P., Synthesis and spectral luminescence properties of 7-diethylamino-4-(2-arylethenyl)coumarins, Chem. Heterocycl. Compd. (Engl.Transl.), 1991, 27(3): 259~262
    [153]陶敏莉,萘基卟啉及其蒽醌衍生物的合成及性能研究,天津大学硕士论文,2004
    [154] Bulovic V., Shoustikov A., Baldo M.A., Bright, saturated, red-to-yellow organic light-emitting devices based on polarization induced spectral shifts, Chem. Phys. Lett., 1998, 287(2): 455~460
    [155] Xie Z.Y., Hung L.S., Lee S.T., High-efficiency red electroluminescence from a narrow recom bination zone confined by an organic double heterostructure, Appl. Phys. Lett., 2001, 79(7): 1048~1050
    [156]马昌期,分子型有机空穴传输材料和红色发光材料的设计合成、物化性质及在有机电致发光器件中的应用,中国科学院理化技术研究所博士学位论文,2003
    [157]孙晓波,刘云析,于贵等,红色有机电致发光材料研究进展,科学通报,2003,48(23):2402~2414
    [158] Holonyak H., Bevacqua S.F., Coherent visible light emission from Ga(As1~xPx) junctions, App. Phys. Lett., 1962, vol 1: 82~83
    [159] Sakakibara Y., Okutsu S., Enokida T., et al., Red organic electroluminescence devices with a reduced porphyrin compound, App. Phys. Lett., 1999, 74(18): 2587~2589
    [160] Sakakibara Y., Okutsu S., Enokida T., et al., Electroluminescence properties of three-layered organic light-emitting diodes with a layer of tetraphenylchlorin or tetraphenylporphyrin, Jpn. J. Appl. Phys., 1999, 38(12): 1472~1474
    [161]陈金鑫,郑荣安,有机电致发光材料之发展近状,化学,2002,60(2):135~152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700