有机光折变材料中二波耦合与耗散光孤子的实验观测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从上世纪60年代激光出现以后,带来了一系列由于光学非线性效应所产生的光学现象。其中光学孤子就是其中的一个重要组成部分。光学孤子由于光束在材料中由于产生聚焦效应,并与衍射效应相平衡,使光束能够不发散的传播。其中一种很重要的光学孤子是光折变空间孤子,这种孤子是由于光折变效应而产生的,形成光折变效应后,产生折射率光栅,形成了聚焦效应,可以与衍射效应相平衡。由于光折变效应在很小的光功率下就可以产生,所以光折变空间孤子的应用价值很广。
     光折变空间孤子中有一种孤子叫做全息光孤子。通常我们将由于全息聚焦机制形成的空间孤子称为全息孤子。依据两个光束之间的能量转移是否是不对称的,我们将全息孤子分为哈密顿系统下的孤子(HHS )和耗散系统下的全息孤子(DHS)。对于后者,我们把提供能量的光束称为泵浦光,得到能量转移的光束称为信号光。通过光折变双光束耦合过程,由较强的泵浦光与较弱的信号光作用,使能量从泵浦光向信号光转移,形成不对称的能量转移,信号光的能量增益可以抵消系统的吸收损耗,全息聚焦效应可以抵消衍射效应,这两种平衡同时产生时,就产生了耗散全息光孤子。
     目前关于光折变空间孤子的实验研究主要集中在无机晶体上,关于有机光折变材料中的空间孤子的报导更是少之又少。由于无机晶体价格昂贵,制备困难,而有机光折变材料具有优良的非线性光学性能和电光效应,而且价格低廉,合成过程简单,种类灵活多变,用有机材料代替无机材料是个很好的选择。
     本论文合成了一种二阶非线性分子咔唑衍生物3-甲酰基-9-乙烯基咔唑,它与光敏剂三硝基芴酮(TNF)以一定配比混合,得到了一种有效的有机光折变材料。这种材料只由两个组分组成,制备过程简单,为其应用奠定了基础。
     论文对制备的咔唑薄膜进行了相关的光折变效应实验研究。以He-Ne激光器为光源,我们搭建了双光束耦合实验平台,在不加电场条件下,观察到了明显的能量转移现象,验证了光折变效应的存在。同时测量得到了样品的二波耦合增益系数、衍射效率等参量。
     结合CCD图像采集技术与计算机软件处理技术,采用顶面观测法,对薄膜样品的全息聚焦效应进行了研究。结果表明,在无需外加电场的条件下,有机薄膜对632.8nm处光波具有全息聚焦效应。
     本论文还对该光折变薄膜进行了光孤子的实验研究,观测到了耗散全息光孤子。实验表明,在适当条件下,耗散全息光孤子可以存在于不加外电场的以3-甲酰基-9-乙烯基咔唑为基础的有机光折变材料中。
Since laser came forth from 1960's, a series of optical phenomena arised from nonlinear optical effects have appeared. Optical soliton is one of the most important phenomena. When sel-focusing effect induced by the nonlinear effect of the media balances the diffraction, the beam becomes optical soliton. One of the most important solitons is photorefractive soliton. This kind of soliton arises from photorefractive effect in the material. When refractive index grating forms, the focusing effect arises. The focusing effect can banlance the diffractive effect. Because photorefractive effect can be produced even when the optical power is very small, photorefractive soliton can be used in a wide range of applications.
     One kind of the photorefractive soliton is holographic soliton. Normally, we call the spatial solitons arising from the holographic focusing mechanism as holographic solitons. According to whether the asymmetric energy exchange between two beams takes place or not during the forming of the holographic solitons, the holographic solitons can be divided into hamitonian holographic solitons (HHS) and dissipative holographic solitons (DHS). For DHS model, one beam can act as pump beam to supply energy for the other beam, which behaves as the signal beam. Through the photorefractive two-beam coupling process, a strong pump beam can give energy transfer to a weak signal beam and form asymmetric energy transfer. The gain of the signal beam can offset the absorption loss of the system. Holographic focusing effect can offset the diffractive effect. At this time, dissipative holographic soliton is produced.
     At present most of the materials on photorefractive solitons are inorganic electro-optical crystals. The experimental reports on photorefractive solitons in organic materials are few. The crystals are expensive and hard to prepare. But organic photorefractive material have good nonlinear effect and electro-optical effect, and easy to prepare. So people want to use organic photorefractive material to substitute crystals.
     We synthesized a second-nonlinear carbazole derivative 3-acyl-9-vinyl carbazole. Doping a few mass of sensitizer 2,4,7-trinitro-9-fluorenone (TNF) in this molecule. The photorefractive material was synthesized by only two components and the process was easy to take, which offers a good foundation for its application.
     We do experiment on the carbazole material to find if it has photorefractive effect. First, we using He-Ne laser to constructe a two-beam coupling(2BC) experimental system. Obvious energy transfer was observed without using a biased field in the sample, which proved that the PR effect exists in the material. At the same time, we calculated the 2BC net gain and the diffraction efficiency.
     Basing on CCD technology and software processing, we observed the holographic focusing effects of the material by use of the top-view method. The results showed that the material has holographic focusing effects at wavelenth of 632.8nm without using a biased field.
     At the end of the paper, we observed the solitons of this PR material and found the dissipative holographic solitons existed in the material. It showed that dissipative holographic solitons can exist in a two-beam dissipative system in a proper condition.
引文
[1]周凌云,吴光敏,段良和等.孤立子理论及物理学和生物学中的应用.(第一版). 云南:云南科技出版社,2001.1-5
    [2]李政道.场论与粒子物理学(上册).(第一版).北京:科学出版社,1980.83-100
    [3]Korteweg D J, Vries G3. On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary wave. Phil. Mag., 1895, 5: 422-443
    [4]Zabusky N J, Kruskal M D. Interaction of “Solitons” in collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 1965, 15(6): 240-243
    [5]Lonngren K E. Soliton experiments in plasmas. Plasma Phys., 1983, 25(4): 943-982
    [6]Polturak E, devegvar P G N, Zeise E K, et al. Solitonlike propagation of zero sound in superfluid 3He. Phys. Rev. Lett., 1981, 46(24): 1588-1591
    [7]Mohebi M, Aiello P F, Reali G., et al. Self-focusing in CS2 at 10.6mum. Opt. Lett., 1985, 10(8): 396-398
    [8]Aitchison J S, Weiner A M, Silberberg Y, et ai. Observation of spatial optical solitons in a nonlinear glass waveguide. Opt. Lett., 1990, 15(9): 471-473
    [9]Aitchison J S, Al-Hemyari K, Ironside C N, et al. Observation of spatial solitons in AlGaAs waveguides. Electron. Lett., 1992, 28(20): 1879-880
    [10]Wang Xiao-sheng, She Wei-long, Lee Win-Kee. Optical spatial solitons supported by photoisomerization nonlinearity in a polymer. Opt. Lett., 2004, 28(3): 277-279
    [1l]钱士雄,王恭明.非线性光学.(第一版).上海:复旦大学出版社,2001.158-164
    [12]Chiao R Y, Garmire E, Townes C H. Self-trapping of optical beams. Phys. Rev. Lett., 1964, 13:479-482
    [13]Hercher M. Laser-induced damage in transparent media. J. Opt. Soy. Amer., 1964, 54: 563-569
    [14]Agrawal G P Nonlinear Fiber Optics. (lst ed.). San Diego CA: Academic Press Inc., 1989.51-62
    [15]Mollenauer L F, Stolen R H, Gordon J. P. Experimental observation of picosecond pulse narrowing and solitons in optical Fibers. Phys. Rev. Lett., 1980, 45:1095-1098
    [16] Hasegawa A. Solitons in Optical Fibers. (1st ed.). Berlin: Springer-Verlag, 1989.121-140
    [17] Nakazawa M, Yamada E, Kubota H, et al. 10 Gbit/s soliton data transmission over one million kilometers. Electron. Lett., 1991, 27(14): 1270-1272
    [18] Bjorkholm J E, Ashkin A. Self-focusing and self-trapping of light in sodium vapor.Phys. Rev. Lett., 1974, 32: 129-132
    [19] Stegeman G I A, Christodoulides D N, Segev M. Optical spatial solitons: historical perspectives. IEEE on selected Toptics in Quantum Electronics, 2000, 6(6): 1419-1427
    [20] Askaryan G A. Optical spatial solitons. Sov. Phys. JETP, 1962, 15: 1088-1093
    [21] Snyder A W, Mitchell D J, Polodian L, et al. Self-induced optical fibers: spatial solitary waves. Opt. Lett, 1991, 16: 21-23
    [22] Snyder W, Sheppard A P. Collisions, steering, and guidance with spatial solitons. Opt. Lett., 1993, 18:482-484
    [23] Snyder W, Hewlett S J, Mitchell D J. Dynamic spatial solitons. Phys. Rev. Lett., 1994,72: 1012-1015
    [24] Snyder W, Mitchell D J, Kivshar Y S. Mod. Phys. Lett. B, 1995, 9: 1479
    [25] Lan Song. Potorefractive spatial solitons, induced waveguides, and their application:[doctoral dissertation]. Princeton University: the Department of Electrical Engineering, 2002
    [26] Cohen A, Carmon T, Segev M, et al. Holographic solitons. Opt. Lett., 2002, 27: 2031-2033
    [27] Segev M., Valley G. C, Crosignani B, et al. Steady-state spatial screening solitons in photorefractive materials with external applied field. Phys. Rev. Lett., 1994, 73:3211-3214
    [28] Christodoulides N, Carvalho M I. Bright, dark, and gray spatial soliton states in phtorefractive media. J. Opt. Sov. Am. B, 1995, 12: 1628-1633
    [29] Segev M, Shih M, Valley G C. Photorefractive screening solitons of low and high intensity. J. Opt. Soc. Am. B, 1996, 13: 706-718
    [30] Segev M, Agranat A. Spatial solitons incentrosymmetric photorefractive media. Opt. Lett., 1997,22: 1299-1301
    [31]Iturbe-Castillo M D, Marquez-Aguilar P A, Sanchez-Mondragon J J, et al. Spatial solitons in photorefractive Bi_(12)TiO_(20) with drift mechanism of nonlinearity. Appl. Phys. Lett, 1994, 64:408-410
    [32]Shih M, Segev M, Valley G C, et al. Observation of two-dimensional steady-state photorefractive screening solitons. Electron. Lett., 1995, 31 : 826-827
    [33]Shih M, Segev M, Valley G C, et al. Two-dimensional steady-state photorefractive screening solitons. Opt. Lett., 1996, 21:324-326
    [34]Kos K, Ming H, Salamo G, et al. One-dimensional steady-state photorefractive screening solitons. Phys. Rev. E, 1996, 53:R4330-R4333
    [35]刘思敏,郭儒,许京军.光折变非线性光学及其应用.(第一版).北京:科学出版社,2004.17-28
    [36]Valley G C, Segev M, Crosignani B, et al. Dark and bright photovoltaic spatial solitons. Phys. Rev. A, 1994, 50:R4457-R4460
    [37]Taya M, Bashaw M, Fejer M M, et al. Observation of dark photovoltaic spatial solitons. Phys. Rev. A, 1995, 52:3095-3100
    [38]Taya M, Bashaw M, Fejer M M, et al, Y junctions arising from dark-soliton propagation in photovoltaic media. Opt. Lett., 1996, 21 : 943-945
    [39]Liu Jinsong, Lu Keqing. Screening-photovoltaic spatial solitons in biased photovoltaic-photorefractive crystals and their self-deflection. J. Opt. Soc. Am. B, 1999, 16:550-555
    [40]Fazio, Renzi F, Rinaldi R, et al. Screening-photovoltaic bright solitons in lithium niobate and associatedsingle-mode waveguides. Appl. Phys. Lett, 2004, 85(12): 2193-2195
    [41]Zozulya A A, Anderson D Z. Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field. Phys. Rev. A, 1995, 51:1520-1531
    [42]Fressengeas N, Maufoy J, Kugel G Temporal behavior of bidimensional photorefractive bright spatial solitons. Phys. Rev. E, 1996, 54:6866-6875
    [43]Maufoy J, Fressengeas N, Wolfersberger D, et al. Simulation of the temporal behavior of soliton propagation in photorefractive media. Phys. Rev. E, 1999, 59: 6116-6121
    [44] Wolfersberger, Fressengeas N, Maufoy J, et al. Self-focusing of a single laser pulse in a photorefractive medium. Phys. Rev. E, 2000, 62: 8700-8704
    [45] Iturbe Castillo M D, Sanchez-Mondragon J J, Stepanov S I, et al. (1 + 1 )-Dimension dark spatial solitons in photorefractive Bi_(12)TiO_(20) crystal. Opt. Commun., 1995, 118:515-519
    [46] Duree, Morin M, Salamo G, et al. Dark photorefractive spatial solitons and photorefractive vortex solitons. Phys. Rev. Lett., 1995, 74: 1978-1981
    [47] Carvalho M I, Singh S R, Christodoulides D N. State bright spatial solitons in biased photorefractive crystals. Opt. Commun., 1995,120: 311-315
    [48] Krolikowski W, Akhmediev N, Luther-Davies B. Self-bending photorefractive solitons. Phys. Rev. E, 1996, 54: 5761-5765
    [49] Morin M, Duree G, Salamo G, et al. Waveguides formed by quasi-steady-state photorefractive spatial solitons. Opt. Lett., 1995, 20: 2066-2068
    [50] Shih M, Segev M, Salamo G. Circular waveguides induced by two-dimensonal bright steady-state photorefractive screening solitons. Opt. Lett., 1996, 21: 931-933
    [51] Iturbe-Castillo M D, Torres-Cisneros M, Sanchez-Mondragon J J, et al. Experimental evidence of modulational instability in a photorefractive Bi_(12)TiO_(20) crystal. Opt. Lett.,1995,20: 1853-1855
    [52] Mamaev A V, Saffman M, Anderson D Z, et al. Propagation of light beams in anisotropic nonlinear media: from symmetry breaking to spatial turbulence. Phys.Rev. A, 1996,54:870-879
    [53] Fressengeas N, Wolfersberger D, Maufoy J, et al. Experimental study of the self-focusing process temporal behavior in photorefractive Bi_(12)TiO_(20)J. Appl. Phys.,1999,85:2062-2067
    [54] Tsai J, Chiou A, Hseih T C, et al. One-dimensional self-focusing in photorefractive Bi_(12)TiO_(20) crystal: Theoretical modeling and experimental demonstration. Opt.Commun., 1999, 162: 237-240
    [55] Fazio E, Mariani F, Funto A, et al. Experimental demonstration of (1+1) D self-confinement and breathing soliton-like propagation in photorefractive crystals with strong optical activity. Journal of Optics A: Pure and Applied Optics, 2001, 3:466-469
    [56] Fazio E, Babin V, Bertolotti M, et al. Solitonlike propagation in photorefractive crystals with large optical activity and absorption. Phys. Rev. E, 2002, 66:016605-016616
    [57] Ryf R, Wiki M, Montemezzani G, et al. Launching one-transverse-dimensional photorefractive solitons in KnbO crystals Opt. Commun., 1999, 159: 339-348
    [58] Uzdin R, Segev M, Salamo G J. Theory of self-focusing in photorefractive InP. Opt.Lett., 2001, 26: 1547-1549
    [59] Ryf R, Montemezzani G, Wiki M, et al. Self focusing and spatial solitons in photorefractive KNbO_3 crystals in: Proc. Quantum Electronics and Laser Conference 12. Baltimore, MD: Optical Society of America, 1997, QThG22: 169
    [60] Lan S, Shih M, Segev M. Self-trapping of one-dimensional and two-dimensional optical beams and induced waveguides in photorefractive KBO3. Opt. Lett., 1997, 22:1467-1469
    [61] Chauvet M, Hawkins S, Salamo G, et al. Self-trapping of planar optical beams by use of the photorefractive effect in InP: Fe. Opt. Lett., 1996, 21: 1333-1335
    [62] Schwartz T, Ganor Y, Carmon T, et al. Photorefractive solitons and light-induced resonance control in semiconductor CdZnTe. Opt. Lett.; 2002, 27: 1229-1231
    [63] DelRe E, Crossignani B, Tamburrini M, et al. One-dimensional steady-state photorefractive spatial solitons in centrosymmetric paraelectric KLTN. Opt. Lett.,1998,23:421-423
    [64] Agrawal P. Nonlinear fiber optics. (2nd ed.). San Diego CA: Academic Press Inc.,1995. 135-146
    [65] Karamzin Y N, Sukhorukov A P. Mutual focusing of high-power light beams in media with quadratic nonlinearity. Sov. Phys. JETP, 1976, 41: 414-416
    [66] Torruellas W E, Wang Z, Hagan D J, et al. Observation of two-dimensional spatial solitary waves in a quadratic medium. Phys. Rev. Lett., 1995, 74: 5036-5039
    [67] Vaupel M, Seror C, Dykstra R. Self-focusing in photo refractive two-wave mixing. Opt. Lett, 1997, 22: 1470-1472
    [68] Vaupel M, Mandel O, Heckenberg N R. Two-wave-mixing induced self-focusing in an active photorefractive oscillator. Journal of Optics B: Quantum and Semiclassical Optics, 1999, 1:96-100
    [69] Shvets, Pukhov A. Electromagnetically induced guiding of counterpropagating lasers in plasmas. Phys. Rev. E., 1999, 59: 1033-1037
    [70] Liu Jinsong. Holographic solitons in photorefractive dissipative systems. Opt. Lett., 2003, 28: 2237-2239
    [71] Salgueiro R, Sukhorukov A A, Kivshar Yu S. Spatial optical solitons supported by mutual focusing. Opt. Lett., 2003, 28: 1457-1459
    [72] Cohen O, Freedman B, Fleischer J W, et al. Grating-Mediated Waveguiding. Phys. Rev. Lett., 2004, 93: 1039021-1039024
    [73] Freedman B, Cohen O, Manela O, et al. Grating-mediated wave guiding and holographic solitons. J. Opt. Soc. Am. B, 2005, 22: 1349-1355
    [74] Cohen O, Murnane M M, Kapteyn H C. Cross-phase-modulation nonlinearities and holographic solitons in periodically poled photovoltaic photorefracives. Opt. Lett.,2006,31:954-956
    [75] Chen Z, Segev M, Coskun T H, et al. Coupled photorefractive spatial-soliton pairs. J. Opt. Soc. Am. B, 1997, 14: 3066-3077
    [76] Liu Jinsong. Existence and property of spatial solitons in a photorefractive dissipative system. J. Opt. Soc. Am. B, 2003, 20: 1732-1738
    [77] Liu Jinsong. Existence and stability of rigid photovoltaic solitons in an open-circuit amplifying or absorbing photovoltaic medium. Phys. Rev. E, 2003, 68: 0266071-0266077
    [78] Liu Jinsong, Eichler H J. Holographic screening-photovoltaic solitons in biased photovoltaic-photorefractive crystals with two-wave mixing. Europhys. Lett., 2004,65:658-664
    [79] Chen Z, Segev M, Coskun T, et al. Observation of incoherently coupled photorefractive spatial soliton pairs. Opt. Lett., 1996, 21: 1436-1438
    [80] Chen Z, Segev M, Coskun T, et al. Incoherently coupled dark-bright photorefractive solitons. Opt. Lett., 1996,21: 1821-1823
    [81] Shalaby M, Barthelemy A J. Observation of the self-guided propagation of a dark and bright spatial soliton pair in a focusing nonlinear medium. IEEE J. Quantum Electron., 1992, 28: 2736-2741
    [82] Trillo S, Wabnitz S, Wright E M, et al. Optical solitary waves induced by cross-phase modulation. Opt. Lett., 1988, 13:871-873
    [83]Christodoulides N, Singh S R, Carvalho M I, et al. Incoherently coupled soliton pairs in biased photorefractive crystals. Appl. Phys. Lett., 1996, 68:1763-1765
    [84]Manakov S V. On the theory of two-dimensional stationary self-focusing of electronmagnetic wave. Sov. Phys. JETP, 1974, 38:248-253
    [85]Kang U, Stegeman G I, Aitchison J S, et al. Observation of Manakov Spatial Solitons in AIGaAs Planar Waveguides. Phys.Rev. Lett., 1996, 76:3699-3702
    [86]Ashkin A, Boyd G D, Dziedzic J M, et al. Optically-induced refractive index inhomogeneities in LiNbO_3 and LiTaO_3. Appl. Phys. Lett., 1966, 9(1): 72-74
    [87]Chen F S, Lamacchia J T, Fraser D B. Holographic storage in Lithium niobate. Appl. Phys. Lett., 1968, 13(7): 223-225
    [88]Steabler D L, Amodei J J. Coupled-wave analysis of holographic storage in LiNbO_3. J.Appl. Phys., 1972, 43(3): 1042-1049
    [89]Glass A M, Vonderlinde D, Negran T J. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO_3. Appl. Phys. Lett., 1974, 25(4): 233-235
    [90]Yeh P. Introduction to Photorefractive nonlinear Optics. Wiley and Sons, New York, 1993.12-98
    [91]Saleh B E A, Teich M C. Fundamentals ofphotonics. John Wiley Sons. Inc., New York, 1991.6-53
    [92]Ashkin A, Boyd G D, Ziedzic J M D, et al. Optically-induced refractive index inhomogeneities in LiNbO_3 and LiTaO_3. Appl. Phys. Lett., 1966, 9(1): 72-74
    [93]Dockers M C J M, Silence S M, Walsh C A. Net Two-beam-coupling Gain in a polymeric Photorefractive Material. Opt. Lett., 1993, 18(13): 1044-1046
    [94]Meerholz K, Volodin B L, Sandalphon. A Photorefractive Polymer High Net Gain and a Diffraction Efficiency Near 100%. Nature, 1994, 371 (108): 497-500
    [95]Volodin B L, Sandalphon, Meerholz K, et al. Highly efficient photorefractive for dynamic holography. Opt. Engin, 1995, 34(8): 2213-2223
    [96]Diaz-Garica M A, Wright D, Casperson J D, et al, Photorefractive Properties of Poly(N-vinyl carbazole)-Based Composites for High-Speed Applications. Chem. Mater., 1999, 11(7): 1784-1791
    [97]Savas Tay, Jayan Thomas, et al. Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm. Appl. Phys. Lett., 2004, 85(20): 4561-4563
    [98]Moerner W E, Silence S M. Polymeric photorefractive materials. Chem. Rev., 1994, 94:127-155
    [99]Moerner W E, Silence S M, Hache F, et al. Orientationally enhanced photorefractive effect in polymers. J. Opt. Soc. Am. B., 1994, 11:320-330
    [100]Shih M F, Sheu F W. Photorefractive polymer optical spatial solitons. Opt. Lett., 1999, 24(24): 1853-1855
    [101]Ducharme S, Scott J C, Twieg R J, et al. Observation of the Photorefractive Effect in a Polymer. Phys. Rev. Lett., 1991, 66:1846-1849
    [102]Dockers M C J M, Silence S M, Walsh C A. Net Two-beam-coupling Gain in a polymeric Photorefractive Material. Opt. Lett., 1993, 18(13): 1044-1046
    [103]Diaz-Garica M A, Wright D, Casperson J D, et al. Photorefractive Properties of Poly(N-vinyl carbazole)-Based Composites for High-Speed Applications. Chem. Mater., 1999, 11(7): 1784-1791
    [104]Savas Tay, Jayan Thomas. Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm(J). Appl. Phys. Lett., 2004, 85(20): 4561-4563
    [105]Gong Q, Wang F, Zhang B, et al. Index grating in low-glass transition temperature polymer composites based on poly(N-carbazole). Proc. SPIE, 2000, 3939:112-113
    [106]Wang Feng, Chen Zhijian, Huang Zhiwen, et al. High photorefractive performance of low glass transition temperature polymeric composite doped with bifunctional chromophore. Appl. Phys. B, 1998, 67:207-210
    [107]何国华,张俊祥,崔一平等.一种新型有机染料的宽带双光子吸收和光限幅特性的研究.物理学报,2003,52(8):1929-1 933
    [108]Luo D, She W L, Lu W, et al. Transient gratings in azo-dye-doped poly(menthyl methacrylate) polymeric films. Appl. Phys. B., 2004, 78:623
    [109]Hendrickx E, Herlocker J, Maldonado J L, et al. Thermally Stable High-gain Photorefractive Polymer Composites Based on a Tri-functional Chromophore. Appl. Phys. Lett., 1998, 72(14): 1679-1681
    [110]Donckers M C J M, Silence S M, Walsh C A, et al. Net Two-beam-coupling Qain in a Polymeric Photorefractive Material. Opt. Lett., 1993, 18(13): 1044-1046
    [111]丁莉芸,蒋德生.掺杂CdS纳米粒子的有机聚合物体系的光折变效应.光学学报, 2006,26(10):1526-1531
    [112]Silence S M, Scott J C. Poly(silane)-Based High-Mobility Photorefractive Polymers. J. Opt. Soc. Am. B., 1993, 10(12): 2306-2316
    [113]Hendrickx E, Herlocker J, Maldonado J L, et al. Thermally Stable High-Gain Photorefractive Polymer Composites Based on a Tri-functional Chromophore. Appl. Phys. Lett., 2001, 72(14): 1679-1681
    [114]Chen Y M, Peng Z H. New Photorefractive Polymer Based on Multifunctional Polyurethane. Appl. Phys. Lett., 1994, 64:1195-1197
    [115]Rudenko E V, Sukhov A V. Optically Induced Spatial Charge Separation in a Nematic and the Resultant Orientational Nonlinearity. J. Exp. Theor. Phys., 1994, 78: 875-880
    [116]Khoo I C. Holographic Grating Formation in Dye-and Fullerene C60-doped Nematic Liquid-Crystal Film. Opt. Lett., 1995, 20(20): 2137-2139
    [117]Ono H, Kawatsuki N J. High-performance Photorefractivity in High-and Low-molar Mass Liquid Crystal Mixtures. Appl. Phys., 1999, 85(5): 2482-2487
    [1 18]施磊,赵有源.掺杂有机给体与受体分子的列相液晶的光折变研究.光学学报, 2002,22:03
    [119]Poga C, Lundquist P M. Polysiloxane-based Photorefractive Polymers for Digital Holographic Data Storage. Appl. Phys. Lett., 1996, 69(8): 1047-1049
    [120]Volodin B L, Kippelen B. A Polymeric Optical Pattern-recognition System for Security Verification. Nature, 1996, 383(6595): 58-60
    [121]Joo.W.J, Choic.S. Applications of Photorefractive Polymer to Pattern Recognition. Opt Eng., 2002, 4802:122-129
    [122]Stankus J J, Silence S M, Moerner W E, et al. Electric-field Switchable Stratified Volume Holograms in Photorefractive Polymers. Opt. Lett., 1994, 19(18): 1480-1482
    [123]Kim Won-Sun, Lee Jong-Woo, Park Jung-Ki. Enhancement of the Recording Stability of a Photorefractive Polymer Composite by the Introduction of a Trapping Layer. Appl. Phys. Lett., 2003, 83(15): 3045-3047
    [124]Dean P, Dickinson M R, Wear D P. Full-field coherence-gated holographic imaging through scattering media using a photorefractive polymer composite device. Appl.Phys. Lett., 2004, 85(3): 363-365
    [125]刘思敏,许京军,郭儒.相干光学原理及应用.天津:南开大学出版社,2001. 184-232
    [126]许煜寰.铁电与压电材料.北京:科学出版社,1974.102-198
    [127]钱士雄,王恭明.非线性光学.上海:复旦大学出版社,2001.158-164
    [128]Shih F, Shih M. Photorefractive polymeric solitons supported by orientationally enhanced birefringent and electro-optic effects. J.Opt.Soc.Am.B, 2001, 18:785-793
    [129]侯春风,阿不都热苏力,杜春光等.光折变有机聚合物中的空间孤子.物理学报, 2001,50(11):2159-2165
    [130]郝中华,刘劲松.主客体式光折变聚合物中空间明孤子的动态演化特性.物理学 报,2002,5l(4):818-822
    [131]Chen Z, Asaro M. Self-trapping of light in an organic photorefractive glass. Opt. Lett., 2003, 28(24): 2509-2511
    [132]Asaro M, Sheldon M, Chen Z, et al. Soliton-induced waveguides in an organic photorefractive glass. Opt. Lett., 2005, 30(5): 519-521
    [133]王晓生,佘卫龙.光折变有机聚合物中的双色光空间孤子.光学学报,2004, 24(4):507-51 1
    [134]Singh S R, Christidoulides D N. Evolution of spatial optical solitons in biased photorefractive media under steady state conditions. Opt. Commun., 1995, 118(5): 569-576
    [135]Singh S R, CarvalhoM I, Christodoulides D N. Higher-order space charge field effects on the evolution of spatial solitons in biased photorefractive crystals. Opt Commun., 1996, 130(4): 288-294
    [136]Moerner M E, Silence S M. Polymeric photorefractive materials. Chem. Rev, 1994, 94(1): 127-155
    [137]Silenee S M, Bjorklund G C, Moemer W E. Optical trap activation in a photorefractive polymer. Opt. Lett., 1994, 19:1822-1824
    [138]Bittner R, Brauehle C, Meetholz K. Influence of the glass-transition temperature and the chromophore content on the grating buildup dynamics of poly(N-vinylcarbazole) based photorefractive polymers. Appl. Opt., 1998, 37:2843-2851
    [139]Sassa T, Aoyama T, Zhang Y D, et al. Photorefractive effect from photo-induced orientation of a novel carbazole derivative. Proc. SPIE, 1998, 3471 : 81-87
    [140]Zhang Y D, Hokari H, Wada T, et al. Synthesis of N-Vinylcarbazole Derivatives with Acceptor Groups. Tetrahedron Lett., 1997, 38(50): 8721-8722
    [141]Woolfolk E O, Orchin M. 2,4,7-Trinitrofluorenone. Organic Syntheses, 1955, 3: 837-837
    [142]Liu J, Liu S, Zhang G, et al. Observation of two-dimensional holographic photovoltaic bright solitons in a photorefractive-photovoltaic crystal. Appl. Phys. Lett., 2007, 91(11):1111131-1111133
    [143]王程,刘劲松,张光勇等.光折变空间孤子的顶侧面观测法.物理学报,2007, 56(1):258-262
    [144]Jisha C P, .Kuriakose V C, Porsezian K. Modulational instability and beam propagation in photorefractive polymer. J. Opt. Soc.Am.B., 2008, 25(4): 674-679
    [145]Wang S, Yang S, Yang C, et al. Poly(N-vinylcarbazone) Photoconductivity Enhancement Induced by Doping with CdS Nanocrystals through Chemical Hybridization. J.Phys.Chem.B., 2000, 104:11853-11858
    [146]Duree G C, Shultz J L, Salamo G J, et al. Observation of Self-Trapping of an optical Beam Due to the Photorefractive Effect. Phys. Rev. Lett., 1993, 71(4): 533-536

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700