紫外激发荧光光纤温度计的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文研究了一种通过检测荧光强度来实现温度测量的双光路荧光光纤温度计,该系统可以嵌入被测物体中实现温度检测。这种测温方法运用改进的双光路补偿技术提高了荧光光纤温度计的测量精度和重复性。能可靠地应用于微波、高压、大电流等具有强电磁场干扰的环境。
     论文在大量查阅相关文献的基础上,首先从理论上对荧光光纤温度传感器的测温原理进行了较详细的阐述,对系统所选用紫外光源及荧光材料的温度特性进行了系统的研究。通过比较论证为系统选出了最佳的紫外光源及荧光材料,建立了双光路传感器的数学模型。针对目前荧光光纤温度传感器在实用化过程中遇到的重复性差的问题,分析了造成光纤测温系统重复性差的扰动因素,在比较了几种具有代表性的解决光路扰动的补偿方法的基础上,提出了一种改进的双光路补偿方法——恒温差分方法来克服系统中可能存在的光路和其它原因引起的扰动。文中详细描述了系统光路和电路的组成,围绕提高测温系统的重复性和测温精度这一目的分析了光路中各器件的特性,设计了高速、宽带、低噪声的微弱信号检测电路,针对电路干扰提出了相应的解决办法。利用虚拟仪器开发平台——LabVIEW开发了系统虚拟仪器界面,并在该虚拟仪器界面下实现了数据文件的自动存储与删除,提高了系统处理大量数据的能力和测量精度,完成了温度测量的双光路荧光光纤温度计的原型机研制。
A fluorescence-based optical fiber thermometer with double optic paths is introduced in this thesis. The principle of the sensor is based on fluorescence intensity of materials that monotonously depends on temperature. In the sensor system, an improved double optic paths compensating method is applied to improve accuracy and repeatability. The sensing system not only can be embedded in objects to detect temperature, but also applied reliably to conditions with strong electromagnetic disturbance such as microwave, high voltage and high current.
    Based on the investigation of relevant literatures, the principle of fluorescence-based optical fiber thermometer is discussed in charter 2. Then the temperature properties of ultraviolet LED and fluorescent materials are characterized and the most suitable ultraviolet LED and fluorescent material are picked out for the sensing system, and a mathematic model of the sensor is proposed. Facts that exist in the practice sensing system and result in poor repeatability of sensing system are analyzed in details. To solve these problems, several representative compensating methods are compared and a constant temperature difference compensating method is developed. The optical path structure and electric circuit are presented in charter 4 and charter 5. The characteristics of each parts of the system are discussed in detail and a faint current detecting circuit with high speed, wide gap and low noise is developed. In order to reduce the disturbance of electric, relevant resolution is proposed. To enhance the substantive data dealing ability and further improve the measurement accuracy, a virtual instrument developing software is adopted. By using of this tool, the acquired data files automatically saving and deleting is realized in LabVIEW environment. Finally, a prototype setup of fluorescence-based optical fiber thermometer is finished.
引文
[1] 张志鹏,W.A.Gambling.光纤传感器原理.北京:中国计量出版社,1991:7-9
    [2] Dakin, J.P.and Kahn, D.A. A novel Fiber Optic Temperature Probe. Opt. Quant. Electron., 1977, 9(1): 540-541.
    [3] 陈生尧.双波长光纤温度传感器,1989,12(30):57-60
    [4] 周炳琨,陈家骅,王志海.光纤黑体腔温度传感器,1989,1(12):24-27
    [5] 刘志儒.一种光纤束双色温度传感器,1988,7(5):34-39
    [6] Kevin B, Hilgers, Kaufman I. A fiber Optic Differential Temperature Probe. Fiber Optic and Laser V, SPIE., 1987, 838(1):223-230
    [7] Christensen D A, Vaguine. A fiber Optic Temperature Sensor Using Wavelength-dependent Detection. Fiber Optical and Laser Sensor V, SPIE 1987, 838(1):252-256
    [8] Michel F Sultan, Michael J O Rourke. Temperature Sensoring by Band Gap Optical Absorption in Semiconductors. SPIEE, 1996, 2839(1): 191-202
    [9] Donald G M. Toward Increased Reliability in the Electric Power Industy: Direct Temperature Mea-surement in Transformers Using Fiber Optical Sensors. SPIEE, 1998, 3414(1): 107-111
    [10] 曹康敏,施明恒.半导体吸收式光纤温度传感器的研制.传感器技术学报,1999,1(2):33-36
    [11] 王维民,王钰.光吸收式光纤温度传感器的建模与实验研究.燕山大学学报,2001,3(7):27-30
    [12] 张先鹏,高庆吉,郝铭.高速旋转体的光纤温度传感器的实验研究.东北电力学院学报,1998,1(4):51-54
    [13] 肖绍荣.半导体光强反射式光纤温度传感器.光学精密工程,1996,11(4):63-65
    [14] Alberto Alvarez-Herrero, H.Guerrero, T. Belenguer, et al. High-Sensitivity Temperature Sensor Based on Overlay on Side-Polished Fiber. IEEE Photonics Technology Letters, 2000, 12 (8): 1131-1136
    [15] Xuyinnkai. Fabrication, Modeling, and Direct Evanescent Field Measurement of Taped Optical Fiber Sensors. Journal of Applied Physics, 1999, 85(7):3361-3365
    [16] J.P.Conzen, J.burck, H.J.Ache, Rare Earth Doped Fiber Laser and Amplifiers. Appl.Spectrosc., 1993, 47(6): 753-756
    [17] G.L.Klunder, J.Burck, H.J.Ache, R.J.Silva, et al. Chemical and Biochemical Sensing with Optical Fibers and Waveguides. Appl.Spectroc., 1994, 48(3): 387-389
    
    
    [18] K.T.V.Grattan, T.Sun. Fiber optical sensor technology:Introduction and overview. London :Chapman & Hall, 1999:205-209
    [19] 王勇,廖延彪,辛军.实用化双折射式光纤温度传感器系统最佳设计.光学学报,1995,1(4):51-54
    [20] A.N.Starodumov, L.A.Zenteno, D.Monzon, et al. Fiber Sagnac Interferometer Temperature Sensor. Appl.Phys., 1997, 70(1):6-10
    [21] J S Leng, A Asundi. Real-time Cure Montitoring of Smart Composite Materials Using Extrinsic Fabry-Perot Interferometer and Fiber Bragg grating Sensors. Smart Mater.Struct., 2002, 20(11):249-255
    [22] 曹满婷.Frbry-Perot干涉式光纤温度传感器的研究.传感器技术,2000,1(7):22-25
    [23] Hill K O, Fujii Y, Johnson D C, et al. Photorefrative Gratings in Singe-mode Optical Fibers. Electron.Lett., 1978, 32(7):647-649
    [24] Meltz G, Morey W W, Glenn W H. Fiber Bragg Grating Sensors. Proc.SPIE Fiber Optical & Laser Sensors., 1989, 14(11): 1169-1173
    [25] Bai-Ou Guan, Hwa-Yan Tam, Xiao-Ming Tao, et al. Simultaneous Strain and Temperature Measurement Using a Superstructure Fiber Bragg Grating. IEEE Photonies Technology Letters, 2000, 12(6 ): 1134-1137
    [26] Handerek, V.A. Grattan, K.T.V., et al. Fiber Grating: Principles, Fabrication and Properties. Optical Fiber Sensor Technology, 1998, 12(7): 329-334
    [27] V.Bhatia, A.M.Vengsarkar. Optical Fiber Long-period Grating Sensors. Opt.Lett, 1996, 21(9) : 692-694
    [28] H.J.Patrick, G.M.Williams, A.D.Kersey, et al. Hybrid Fiber Bragg Grating/Long Period Fiber Orating Sensor for Strain/Temperature Discrimination. IEEE Photon. Lett, 1996, 8(9): 1223-1225
    [29] Valery N.Filippov, Andrey N.Starodumov, Vladimir P.Minkovich, et al. Fiber Sensor for Simultaneous Measurement of Voltage and Temperature. IEEE Photonics Technology Letters, 2000, 12(11): 3365-3369
    [30] 金晓丹,廖延彪.一种高精度补偿式双折射型光纤温度传感器系统.中国激光,1996,6(5):465-469
    [31] 吕玲,黄胜龙.一种双折射平衡性光纤温度传感器的研究.激光与红外,1999,12(4):107-110
    [32] Gottlieb M, Brandt G B. Temperature Sensing in Optical Fibers Using Cladding and Jacket Loss Effects. Appl., 1981, 20(22): 3867-3873
    [33] Kung A, Budin J, Thevenaz L, et al. Rayliegh Fiber Optics Gyroscope. IEEE
    
    Photonics Technology Letters, 1997, 9(7): 973-975
    [34] Pinnow D A, Rich T C, Ostermayer F W, et al. Fundmental Optical Attenuation Limits in the Liquid and Glassy State with Application to Fiber Waveguide Materials. Appl.Phys.Lett., 1973, 22(1):527-529
    [35] Dakin J P, Pratt D J. Fiber-optic Distributed Temperature Measurement: A Comparative Study of Techniques. IEEE Digest., 1986, 74(10): 1-4
    [36] Hartog A H. A Distributed Temperature Sensor Based on Liquid Core Optical Fibers. IEEE J. Lightwave Technol., 1983, 1 (3):498-509
    [37] Payte, Pinchbeck.D, Kitchen.C.A. Proceedings Electronics in Oil and Gas, London, 1985, 2(23):30-37
    [38] 施伟,黄德修,刘德明等.分布式光纤温度传感器的研究与进展.半导体光电,1997,18(4):220-223
    [39] X.Bao, Dhliwayo J, Heron N, et al. Experimental and Theoretical Studies on A Distributed Temperature Sensor Based on Brillouin Scattering. Lightwave Tech., 1995, 13(7): 1340-1347
    [40] Ricard Feced, Mahmoud Farhadiroussan, Vincent A.Handerek, et al. A high Spatial Resolution Distributed Optical Fiber Sensor for High-temperature Measurements. Rev.Sci.Instrum, 1997, 68(10): 2521-2527
    [41] Arezki Yataghene, Marc Himbert, Andre Tardy. Distributed Temperature Sensor Using Holmium-doped Optical Fiber and Spread-spectrum Techniques. Rev.Sci.Instrum, 1995, 66, (7): 1113-1117
    [42] F.Sidiroglou, S.A.Wade, N.M.Dragomir, et al. Effects of High-temperature Heat Treatment on Nd~(3+)-doped Optical Fibers for Use in Fluorescence Intensity Ratio Based Temperature. Review of Scientific Instruments, 2003, 74(7):5341-5345
    [43] S.A.Wade, J.C..Muscat, S.F.Collins, et al. Nd~(3+)-doped Optical Fiber Temperature Sensor Using the Fluorescence Intensity Ratio Technique. Review of Scientific Instruments, 1999, 70(11): 2912-2917
    [44] S.A.Wade, S.F.Collins, G.W.Baxter. Effect of Strain on Temperature Measurements Using the Fluorescence Intensity Ratio Technique(with Nd~(3+)- and Yb~(3+)-doped silica fibers). Review of Scientific Instruments, 2001, 72(8): 9437-9439
    [45] Zhiyi Zhang, Kenneth of T.V.Grattan, Andrew W.Palmer. Phase-locked Detection of Fluorescence Lifetime. Rev.Sci.Instrum, 1993, 6(9): 6541-6544
    [46] Z.Y.Zhang, K.T.V.Grattan, A.W.Palmer, et al. Characterization of Erbium-doped Intrinsic Optical Fiber Sensor Probes at High Temperature. Review of.Scientific Instruments, 1998, 69(8):4678-4681
    [47] Arnaud, D.I.Forsyth, T.Sun, Z.Y.Zhang, et al. Strain and Temperature Effects on
    
    Erbium-doped Fiber for Decay-time Based Sensing. Review of Scientific Instruments, 2000, 71(1): 2623-2625
    [48] Y.Zhang, K.T.V.Grattan, A.W.Palmer, et al. Fluorescence Decay-time Characteristics of Erbium-doped Optical Fiber at Elevated Temperature. Review of Scientific Instruments, 1998, 68(7): 3233-3237
    [49] R.Mitchell, P.M.Farrell, G.W.Baxter, et al. Analysis of Dopant Concentration Effects in Praseodymium-based Fluorescent Fiber Optical Temperature Sensors. Review of Scientific Instruments, 2000, 71 (1): 2322-2325
    [50] MeiSun. Fiber Optical Thermometer Based on Photoluminescent Decay Times. TEMPERATURE, 1995, 24(13): 1735-1742
    [51] V.Fernicola. Two Fluorescent Decay-time Thermometers. TEMPERATURE, 1995, 27(11): 725-730
    [52] K.T.V.Grattan. Development of A High Temperature Fibre-optic Thermometer Probe Using Fluorescent Dacay. Rev.Sci.Instrum, 1991, 62(7): 1210-1213
    [53] L.Mannik, S.K.Brown, S.R.Campbell. Phosphor-based Thermometry of Rotating Surfaces. Applied Optics, 1987, 26(18): 4014-4017
    [54] Stephen W.Allison. Monitoring Permanent-magnet Heating with Phosphor Thermometry. IEEE Transactions on Instrumentation and Measurement, 1988, 37( 4): 637-641
    [55] 张友俊.荧光光纤传感器的表面非接触测温.传感器技术,2001,12(6):49-50
    [56] 魏念荣,张旭东.用荧光光纤技术检测局部放电信号传感器的研究.清华大学学报,2002,6(3):329-332
    [57] 刘桂雄,钟先信.强度调制型光纤传感器信号补偿技术的现状与应用.压电与声光,1993,12(2):19-22
    [58] 金晓丹,廖延彪.强度调制型光纤传感器的补偿技术.光学学报,1996,24(7):1002-1005
    [59] Libo Yuan. Optical Path Automatic Compensation Low-coherence Interferometer Fiber-optical Temperature sensor. Optics & Laser Technology, 1998, 30(1): 33-38
    [60] 龚倩,徐荣,叶培火.双波长法光纤温度传感器原理及应用.光通信技术,1999,12(3):204—207
    [61] V.M.Donnelly, D.L.Flamm, G.Collins, et al. Polarization Fading in Fiber Interferometric Sensors. Sei.Technol, 1982, 21, (5): 817-822
    [62] T.A.Miller, Plasma Chem. Observed Dielectric Waveguide Modes in Visible Sprectrum. Plasma Process, 1981, 1(1): 3-7
    [63] 赵仲刚,杜伯林.光纤通信与光纤传感.上海:上海科技文献出版社,1993:205-207
    
    
    [64] 杨祥林.光纤通信系统.北京:国防工业出版社,2000:38-44
    [65] 刘德明,向清,黄德修.光纤光学.北京:国防工业出版社,1995:77-82
    [66] 吴重庆.光波导理论.北京:清华大学出版社,2000:34-38
    [67] 李玲,黄永清.光纤通信基础.北京:国防工业出版社,1999:121-143
    [68] 雷玉堂,王有庆.光电检测技术.北京:中国计量出版社,1997:78-85
    [69] 钱浚霞.光电检测技术.北京:机械工业出版社,1993:55-57
    [70] 孙培梓,刘正飞.光电技术.北京:机械工业出版社,1992:44-47
    [71] 高亚允,高岳.光电检测技术.北京:国防工业出版社,1995:154-159
    [72] 王福瑞.单片微机测控系统设计大全.北京:北京航空航天大学出版社,1999:202-227
    [73] 沈国华,黄志球.面向试飞工程数据仓库系统的设计与实现.计算机工程与设计,2002,12(10):37-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700