组合式光学电压/电流互感器的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组合式光学电压/电流互感器(COVCT)是一种光机电一体化的新型电力互感器,它克服了传统电压、电流互感器的许多缺点,并集电压、电流测量于一体,在电力系统中具有广阔的应用前景。本文在全面分析和总结COVCT发展历史和现有技术水平的基础上,针对实用化要求,确定以无电容分压器型COVCT、反射式横向调制光学电压传感器及正交双全反射光学电流传感器为研究重点,研制出国内首台220kV COVCT,试验表明其性能达到国外同类产品的水平。
     本文在分析Pockels电光效应传感机理的基础上,首次利用矩阵光学的方法对光学电压传感器的工作原理进行了系统地阐述,提出了构成光学电压传感器的三条基本准则。利用电磁波理论分析了电光晶体中双折射对测量的影响并阐述了双光路补偿原理。
     本文首次对反射式横向调制光学电压传感器进行了详细分析,指出了原有结构的不足,并提出一种具有双光路互补效果的新型传感器结构。实验表明,作者提出的新型传感器结构具有较好的双光路温度互补性,使光学电压传感器的稳定性提高了一个数量级。
     从光学器件、光路结构及信号处理电路等方面首次对影响光学电压传感器稳定性的因素进行了详细分析,为研制实用化光学电压传感器提供了理论指导。提出了进一步改进光学电压传感器稳定性的措施。对光学电压传感器的温度稳定性和时间稳定性进行了大量的实验研究,实验表明,我们研制的光学电压传感器已接近实用化水平。
     在分析Faraday磁光效应传感机理的基础上,对光学电流传感器的工作原理进行了系统地阐述。建立了反射相移及双折射对光学电流传感器性能影响的数学模型,并对其进行了计算机仿真。对影响光学电流传感器稳定性的因素进行了详细分析,为研制实用化光学电流传感器提供了理论指导。对光学电流传感器的温度特性及线性度进行了实验研究,实验表明,我们研制的光学电流传感器已接近实用化水平。
     针对无电容分压器型COVCT的结构特点,在分析SF_6气体绝缘特性的基础上,设计了COVCT的绝缘结构,并用有限元法对其电场分布进行了分析计算。理论分析及试验结果表明,COVCT绝缘结构设计合理、可靠。对COVCT系统进行了全面试验,试验表明,COVCT的各项性能指标达到了预期的设计要求。
Compared with conventional voltage transformers and current transformers, combined optical voltage & current transformers (COVCT) have many advantages, such as simple insulation structure, immunity to electromagnetic interference, no saturation effect, no flammable materials such as oil, and light weight etc. A COVCT can measure high voltage and large current simultaneously. The emphasis of this dissertation is put onto the study of the COVCT without capacitor divider, the reflection-type transverse modulation optical voltage sensor and the orthogonal dual-total-reflection optical current sensor by summarizing and analyzing the results obtained in literature. A novel 220kV COVCT has been developed.
     The principle of an optical voltage sensor based on the Pockels electro-optic effect is described in detail. The basic norms of constructing an optical voltage sensor are proposed. The effect of birefringence on optical voltage sensor is analyzed, and the principle of dual-light-channel compensation is described.
     The reflection-type transverse modulation optical voltage sensor is analyzed in detail for the first time in this dissertation, and a novel optical voltage sensor with dual-light-channel temperature compensation is proposed. Experiments showed that the stability of the novel optical voltage sensor was improved distinctly.
     The reasons of affecting the stability of the optical voltage sensor are analyzed in detail by analyzing the devices, structure and electronics. The methods of improving the stability of optical voltage sensor are proposed. Some experiments about the stability of the optical voltage sensor have been done. These experiments showed that the stability of the optical voltage sensor is excellent.
     The principle of an optical current sensor based on the Faraday magneto-optic effect is described in detail. The mathematics model of the effect of reflection and birefringence on the optical current sensor is constructed and simulated. The reasons of affecting the stability of the optical current sensor are analyzed in detail. Some experiments about the temperature characteristics and linearity of the optical current sensor have been done. These experiments showed that the characteristics of the optical current sensor are excellent.
     The insulation structure of the COVCT is designed by analyzing the insulation characteristics of SF6 gas. The electric field distribution of the COVCT is calculated using the Finite Element Method (FEM). A series of tests including ratio error, stability, and insulation characteristics have been done to test the COVCT system.
引文
1. Emerging Technologies Working Group, Optical Current Transducers for Power Systems: Review, IEEE Transactions on Power Delivery, Vol.9, No.4, 1994, pp.1778-1788
    2. Chris D. Reinbold, Applications of Optical Current and Voltage Sensing, Electric Utility Conference, Subject VII-4, 1997
    3. M. Kanoi, et al, Optical Voltage and Current Measureing System for Electric Power Systems, IEEE Transactions on Power Delivery, Vol.PWRD-1, No.1, 1986, pp.91-97
    4. GB17201-1997: 组合互感器
    5. ABB Power T&D Company, Type OMU-Optical Metering Unit, Product Bulletin 38-454, 1997, pp.1-2
    6. Optical H.V. Sensors 123 to 765kV, Balteau Series CTO-VTO-CCO, Production Demonstration Documents of GEC ALSTHOM, 1997
    7. D. C. Erickson, A Primer on Optical Current and Voltage Sensors and an update on activity, Northcon/92. Conference Record, 1992, pp.273-278
    8. 朱英浩, 展望 21 世纪?开发变压器类产品前沿技术, 适应能源工业的发展, 变压器, Vol.37, No.1, 2000, pp.2-3
    9. 张志鹏, 《光纤传感器原理》, 中国计量出版社, 1991
    10. 阎永志, 光纤电压传感器基本特性的研究与应用, 压电与声光, Vol.11, No.1, 1989, pp.15-22
    11. ABB Switchgear Product Instruction, DOIT-Digital Optical Instrument Transformers, Publ. SESWG/1 4013E, Edition 1, 1994-11
    12. H. Moulton, Light Pulse System Shrinks High-Voltage Protection Device, Electronics, Vol.38, No.10, 1965, pp.71-75
    13. S. Saito, et al, Development of the Laser Current Transformer for Extra High-Voltage Power Transmission Lines, IEEE J. Quantum Electronics, Vol.QE-3, 1967, pp.587-597
    14. A. Jaecklin, Measuring Current at Extra-High Voltage, Laser Focus, Vol.6, No.5, 1970, pp.35-38
    15. Y. Pelence, et al, Prototype Industriel de Transformateur de Courant a Effet Magneto-Optique, Rev. Gen. Electricite (France), Vol.76, No.7-8, 1967, pp.1055-1064
    16. S. Saito, et al, Microwave Current Transformer for EHV Power Transmission Lines, European Microwave Conference, Paper C9, Aug.23-28, 1971
    17. Ryszard Malewski, High-Voltage Current Transformers with Optical Signal Transmission, Optical Engineering, Vol.20, No.1, 1981, pp.54-57
    18. Michael N. Rzewuski, et al, A New Electromagnetic Current Transformer for EHV Power Systems, IEEE Transaction on Instrument and Measurement, Vol.IM-25, No.3, 1976, pp.256-264
    19. A. M. Smith, Polarization and Magneto-optic Properties of Single-Mode Optical Fiber,Applied Optics, Vol.17, 1978, pp.52-56
    20. T. W. Cease, A Magneto-Optic Current Transducer, IEEE Transactions on Power Delivery, Vol.5, No.2, 1990, pp.548-554
    21. S. Kobayashi, et al, Development and Field Test Evaluation of Optical Current and Voltage Transformers, IEEE Transactions on Power Delivery, Vol.7, No.2, 1992, pp.815-821
    22. T. Mitsui, et al, Development of Fiber-Optic Voltage Sensors and Magnetic-Field Sensors, IEEE Transactions on Power Delivery, Vol.PWRD-2, No.1, 1987, pp.87-93
    23. E. A. Ulmer, High Accuracy Faraday Rotation Measurements, OFS’88, New Orleas, USA, 1988, pp.Thcc21-1-Thcc21-4
    24. T. D. Maffetone, et al, 345kV Substation Optic Current Measurement System for Revenue Metering and Protective Relaying, IEEE Transactions on Power Delivery, Vol.6, No.4, 1991, pp.1430-1437
    25. Kazuaki Kato, et al, Distribution Automation Systems for High Quality Power Supply, IEEE Transactions on Power Delivery, Vol.6, No.3, 1991, pp.1196-1204
    26. Dr. Harald Schwarz, et al, Optical Current Transformers Successful First Field Test in a 380kV System, ABB Review, 3/1994, pp.12-18
    27. T. W. Cease, et al, Optical Voltage and Current Sensors Used in a Revenue Metering System, IEEE Transactions on Power Delivery, Vol.6, No.1, 1991, pp.1374-1379
    28. 李红斌, 光学电流传感器的研究, 博士学位论文, 华中理工大学, 1994
    29. Eiya Aikawa, et al, Development of New Concept Optical Zero-Sequence Current/Voltage Transducers for Distribution Network, IEEE Transactions on Power Delivery, Vol.6, No.1, 1991, pp.414-420
    30. 高希才等, 光纤电压测量仪, 压电与声光, Vol.13, No.5, 1991, pp.54-61
    31. 廖延彪等, 光纤电流传感器, 中国激光, Vol.11, No.9, 1984, pp.513
    32. 罗承沐等, 无源光纤电压传感器测量高速暂态电压, 高电压技术, Vol.22, No.4, 1996, pp.14-15
    33. 李开成等, 新型光纤电压测量仪的性能试验与现场运行, 电工技术杂志, No.1, 1997, pp.33-34
    34. 易本顺等, 光学电流传感器现场运行性能分析, 中国电机工程学报, Vol.17, No.2, 1997, pp.138-140
    35. Ye Miaoyuan, et al, A New Optical Fiber Voltage Transformer, SPIE, Vol.3555, 1998
    36. Ye Miaoyuan, et al, 110kV Optical Fiber Voltage Transformer Using a Porcelain Capacitor Divider, SPIE, Vol.3555, 1998
    37. IEC60044-7: Instrument transformers-Prat 7: Electronic Voltage Transformers
    38. IEC60044-8: Instrument transformers-Prat 8: Electronic Current Transformers
    39. 李尔宁, 光学电流/电压传感器及有关绝缘问题的研究, 博士学位论文, 华中理工大学, 1998
    40. 罗苏南等, 锗酸铋晶体光学电压传感器性能研究, 华中理工大学学报, Vol.27, No.10, 1999, pp.42-44
    41. S. J. Weikel, et al, An Electro Optic Voltage Transducer, CIGRE, 1996, 23-208
    42. Josemir Coelho Santos, et al, Optical High Voltage Measurement Technique Using Pockels Device, Jan. J. Appl. Phys. Vol.36, No.4A, 1997, pp.2394-2398
    43. Klaus Bohnert, et al, Fiber-Optic Voltage Sensor for SF6 Gas-Insulated High-Voltage Switchgear, Applied Optics, Vol.38, No.10, 1999, pp.1926-1932
    44. Luo Sunan, et al, 220kV Combined Optical Voltage and Current Transformer, SPIE, Vol.3897, 1999
    45. 靳伟等, 《导波光学传感器: 原理与技术》, 科学出版社, 1998
    46. B. Culshaw, et al, 李少慧等译, 光纤传感器, 华中理工大学出版社, 1997
    47. 徐雁等, 无分压纵向线性电光效应用于高电压测量, 高电压技术, Vol.26, No.4, 2000, pp.59-60
    48. Y. K. Choi, et al, Measurement of low frequency electric field using Ti:LiNbO3 Optical Modulator, IEE Proceedings J. Vol.140, No.2, 1993, pp.137
    49. H. N. David, et al, An Integrated Photonic Mach-Zehnder Interferometer with no Electrodes for Sensing Electric Fields, Lightwave technology, Vol.12, No.6, 1994, pp.1092
    50. Takashi Maeno, et al, Determination of Electric Field Distribution in Oil Using the Kerr-Effect Technique After Application of dc Voltage, IEEE Trans E I, Vol.25, No.3, 1990, pp.475
    51. A. J. Rogers, Optical Methods for Measurement of Voltage and Current on Power Systems, Optics and Laser Technology, December, 1977, pp.273-283
    52. Y. N. Ning, et al, Recent Progress in Optical Current Sensing Techniques, Rev. Sci. Instrum., Vol.66, No.5, pp.3097-3111
    53. A. J. Rogers, Optical Measurement of Current and Voltage on Power Systems, IEE J. Elect. Power Applications, Vol.2, No.4, 1979, pp.120-124
    54. 廖延彪等, 光纤电流传感器的结构与理论, 中国激光, Vol.16, No.3, 1988, pp.138-140
    55. D. V. Payne, et al, Development of Low-and High-Birefringence Optical Fibers, IEEE J. Quantum Electron, QE-18, 1982, pp.477-488
    56. N. C. Pistoni, et al, Vibration-Insensitive Fiber-Optic Current Sensor, Optics Letters, Vol.18, No.4, 1993, pp.314-316
    57. R. Vlrich, et al, Polarization Optics of Twisted Mode Fibers, Applied Optics, Vol.18, 1979, pp.2241-2251
    58. W. Caton, et al, An Absolute Electric Current Probe Based on Faraday Effect, J. Res. NBS, Vol.87, No.3, 1984, pp.265
    59. S. P. Bush, et al, Numerical Investigation of the Effects of Birefringence and Total Internal Reflection on Faraday Effect Current Sensors, Applied Optics, Vol.31, No.25, 1992, pp.5366-5374
    60. O. Kamada, et al, Electro-Optical Effect of Bi4Ge3O12 Crystals for Optical Voltage Sensors, Jan. J. Appl. Phys., Vol.32, No.9B, 1993, pp.4288-4291
    61. A. Cruden, et al, Compact 132kV Combined Optical Voltage and Current Measurement system, IEEE Instrumentation and Measurement Technology Conference, Ottawa, Canada,May 19-21, 1997, pp.1399-1402
    62. A. Cruden, et al, Optical Crystal Based Devices for Current and Voltage Measurement, IEEE Transactions on Power Delivery, Vol.10, No.3, 1995, pp.1217-1223
    63. A. Papp, et al, Magnetooptical Current Transformer, 1: Principles, Applied Optics, Vol.19, No.22, 1980, pp.3729-3748
    64. L. M. Martinez, et al, An Optical Current Transducer for Residual Current Sensing in the Milliampere Range, Sensors and Actuators, A 67, 1998, pp.102-108
    65. M. Takahashi, et al, Optical Current Transformer for Gas Insulated Switchgear Using Silica Optical Fiber, IEEE Transactions on Power Delivery, Vol.12, No.4, 1997, pp.1422-1427
    66. N. E. Fisher, et al, Faraday Current sensors and the Significance of Subtended Angles, Sensors and Actuators, A 63, 1997, pp.119-123
    67. O. Tannesen, et al, Electrooptic Method Measurement of Small DC Current at High Voltage Level, IEEE Transactions on Power Delivery, Vol.4, No.3, 1989, pp.1568-1572
    68. J. Song, et al, A Prototype Clamp-on Magneto-Optical Current Transducer for Power System Metering and Relaying, IEEE Transactions on Power Delivery, Vol.10, No.4, 1995, pp.1764-1770
    69. T. W. MacDougall, et al, Stray Magnetic-Field Response of Linear Birefringence Optical Current Sensors, Applied Optics, Vol.34, No.21, 1995, pp.4373-4379
    70. E. Aikawa, et al, Development of New Concept Optical Zero-Sequence Current/Voltage Transducers for Distribution Network, IEEE Transactions on Power Delivery, Vol.6, No.1, 1991, pp.414-420
    71. K. Kurosawa, et al, Development of optical Instrument Transducer for DC Voltage Measurement, IEEE Transactions on Power Delivery, Vol.8, No.4, 1993, pp.1721-1726
    72. S. J. Huang, et al, The Potential Use of Optical Sensors for the Measurement of Electric Field Distribution, IEEE Transactions on Power Delivery, Vol.4, No.3, 1989, pp.1579-1585
    73. M. Adolfsson, et al, EHV Series Capacitor Banks, a New Approach to Platform to Ground Signalling, Relay Protection and Supervision, IEEE Transactions on Power Delivery, Vol.4, No.2, 1989, pp.1369-137
    74. K. Hidaka, et al, Simultaneous Measurement of Two Orthogonal Components of Electric Field Using a Pockels device, Review of Science Instrument, Vol.60, No.7, 1989, pp.1252-1257
    75. K. Matsuura, et al, Measurement of Optical Phase difference Using a Polarization Technique, Optical and Laser Technology, December, 1977
    76. K. B. Rochford, et al, Faraday Effect Current Sensor With Improved Sensitivity-Bandwidth Product, Optics Letters, Vol.19, No.22, 1994, pp.1903-1905
    77. H.S. Kang, et al, A Stabilization Method of the Sagnac Optical Fiber Current Sensor with Twist Control, IEEE Photonics Technology Letters, Vol.10, No.10, 1998, pp.1464-1466
    78. A. Garcia-Weidner, Design of an Ultralinear Pockels Effect Modulation: a Successive Approximation Method Based on Poincare Sphere Analysis, Applied Optics, Vol.32, No.36, 1993, pp.7313-7325
    79. K. B. Rochford, et al, Design and Performance of a Stable Linear Retarder, Applied Optics, Vol.36, No.25, 1997, pp.6458-6465
    80. D. Tang, et al, Progress in the Development of Miniature Optical Fiber Current Sensors, IEEE 1988 LEOS Annual Meeting, Santa Clara California, 1988, p.306-307
    81. A. Ben-Kish, et al, Geometrical Separation Between the Birefringence Components in Faraday-Rotation Fiber-Optic Current Sensors, Optics Letter, Vol.16, No.9, 1991, pp.678-689
    82. 叶妙元等, 磁光电流传感器设计, 华中工学院学报, Vol.15, No.6, 1987, pp.119-123
    83. Y. N. Ning, et al, Recent Progress in Optical Current Sensing Techniques, Rev. Sci. Instrum., Vol.66, No.5, 1995, pp.3097-3111
    84. G. W. Day, et al, Faraday Effect Sensors: the State of the Art, SPIE, Vol.985, 1988, pp.138-150
    85. 刘延冰等, 光纤弱磁场测量传感器, 光子学报, Vol.23, No.1, 1994, pp.45-48
    86. 陈纲等, 《晶体物理学》, 科学出版社, 1992
    87. 杨晓春等, 光纤电场传感器泡克尔斯元件的理论分析与设计, 压电与声光, Vol.8, No.2, 1986, PP.13-18
    88. 卢亚雄, 矩阵光学, 大连理工大学出版社, 1989
    89. Lars Hofmann Christensen, Desig, Construction and Test of a Passive Optical Prototype High Voltage Instrument Transformer, IEEE Transactions on Power Delivery, Vol.10, No.3, 1995, pp.1332-1337
    90. A. H. Rose, et al, Optical Fiber Voltage Sensors for Broad Temperature Ranges, SPIE, Vol.1580, 1991
    91. A. Horowilz, et al, The Nature of Imperfections in Bismuth Germanete (BGO) Crystals, Journal of Crystal Growth, Vol.78, 1996
    92. Henrik Fabricius, Achromatic Prism Retarder for Use in Polarimetric Sensors, Applied Optics, Vol.30, No.4, 1991, pp.426-429
    93. 李开成, 光纤电压互感器研究, 博士学位论文, 华中理工大学, 1998
    94. 催瑛等, 110kV 无分压光纤电压互感器的开发, 高电压技术, Vol.24, No.4, 1998, pp.75-78
    95. 朱勇, 光学组合式互感器传感部件的研究, 硕士学位论文, 华中理工大学, 2000
    96. R. M. A. Azzam, et al, Ellipsometry and Polarized Light, OXFORD: NORTH-HOLLAND PUBLISHING COMPANY, 1997
    97. 谢克诚, Bi4Ge3O12 晶体线性电光效应的稳定性分析, 压电与声光, Vol.12, No.4, 1990, pp.46-51
    98. W. 莫尔施等著, 李建基译, 高压绝缘用六氟化硫, 机械工业出版社, 1984
    99. 周伟明, 光纤传感器光源温度特性研究, 大连理工大学学报, Vol.34, No.4, 1994, pp.485-488
    100. K. S. Lee, New Compensation Method for Bulk Optical Sensors with Multiple Birefringences, Applied Optics, Vol.28, No.11, 1989, pp.2001-2013
    101. P. A. Williams, et al, Optical, Thermo-Optic, Electro-Optic, and Photoelastic Properties of Bismuth Germanate (Bi4Ge3O12), Applied Optics, Vol.35, No.19, 1996, pp.3562-3569
    102. 刘国风等, 棱镜偏振分光镜, 压电与声光, Vol.13, No.6, 1991, pp.46-49
    103. M.Ohtsuka, et al, Influence of Optical Rotary Power on Optical Voltage Sensor Using BGO Crystal, Electronics and Communications in Japan, Part2, Vol.77, No.5, 1994, pp.21-31
    104. 王廷云等, 一种新型光纤电流传感器, 仪器仪表学报, Vol.18, No.6, 1997, pp.650-653
    105. A. 亚里夫等著, 于荣金等译, 晶体中的光波, 科学出版社, 1991
    106. T. Sato, et al, Method and Apparatus for Optically Measuring a Current, Eur. Patent No.0088419 A1, 1983
    107. A. M. Smith, Polarization and Magneto-optic Properties of Single-Mode Optical Fiber, Applied Optics, Vol.17, 1978, pp.52-56
    108. K. Kyuma, et al, Fiber Optic Measuring System for Electric Current by Using a Magneto-Optic Sensor, IEEE Journal of Quantum Electronics, Vol.QE-18, No.10, 1982, pp.1619-1623
    109. P. A. Williams, et al, Temperature Dependence of the Verdet Constant in Several Diamagnetic Glasses, Applied Optics, Vol.30, No.10, 1991, pp.1176-1178
    110. M. A. Bwtler, Wavelength and Temperature Dependence of the Faraday Effect in Cd(1-x)MnxTe, Solid State Communication, Vol.62, 1987, pp.45-47
    111. Xianyun Ma, et al, A Method to Eliminate Birefringence of a Magneto-Optic AC Current Transducer with Glass Ring Sensor Head, IEEE Transactions on Power Delivery, Vol.13, No.4, 1998, pp.1015-1019
    112. 李红斌, 光学电流传感器的研究, 博士学位论文, 华中理工大学, 1994
    113. GB1207-1997: 电压互感器
    114. GB1208-1997: 电流互感器
    115. GB311.1-1997: 高压输变电设备的绝缘配合
    116. GB7354-87: 局部放电测量
    117. GB/T16927-1997: 高电压试验技术第一部分 一般试验技术
    118. GB5832.1-86: 气体中微量水分的测定 电解法
    119. GB7674-87: 六氟化硫封闭式组合电器
    120. GB/T8905-1996: 六氟化硫电器设备中气体管理和检测导则
    121. GB12022-89: 工业六氟化硫
    122. GB11023-89: 高压开关设备六氟化硫气体密封试验方法

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700