自励式缓速器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自励式缓速器是一种新型的节能环保型车用缓速器,它集现代发电技术与车用电涡流制动技术于一体,将汽车行驶的惯性能量转化为电能,为缓速器提供制动所必需的励磁电流,克服了使用普通电涡流缓速器所带来的附加能耗问题。作为一种新型的车用缓速器,其发电性能的计算分析及其能否满足缓速器对励磁电流的要求、制动力矩计算与控制、转子温度场分布及其随时间变化规律等基础性研究相对落后。
     自励式缓速器自身发电性能是制动力矩能否达到设计目标的关键因素。发电性能的分析离不开电磁场求解,文中建立了自励式缓速器发电装置瞬态电磁场方程、场路耦合方程及其空间与时间离散模型,利用有限元对其进行了求解,并对发电装置运行性能及其能否满足缓速器制动力矩对励磁电流的要求进行了计算分析。
     制动力矩作为车用缓速器的一个主要设计目标,文中根据电磁感应定律和Maxwell理论详细推导了自励式缓速器制动功率、制动力矩计算公式;稀土永磁发电装置将汽车惯性能量转化为电能过程中,作用于转子的切向电磁力能够产生定的制动力矩,即电磁转矩,本文对计算电磁转矩的两种常用方法——磁通法和Maxwell张量法进行了阐述和比较。这些公式表示了缓速器制动功率、制动力矩与结构参数及使用参数的关系,为自励式缓速器的设计、性能分析奠定了理论基础。
     自励式缓速器由于机械结构紧凑和复杂,结构散热设计尤为重要。研究转子温度场分布及其随时间变化规律不仅是自励式缓速器转子散热设计的理论基础,同时为基于转子温差及温差变化率的制动力矩闭环Fuzzy控制提供理论依据。文中建立了自励式缓速器转子瞬态温度场数学模型,确定了相关的边界条件,推导了内热源强度及深度计算公式,对瞬态温度场控制方程离散化、边界条件和源项处理及算法进行了详细阐述。利用有限元的方法研究了自励式缓速器转子瞬态温度场分布及转子外表面温度随时间的变化规律,分析了试验测试值与理论仿真之间的误差原因。
     研究了自励式缓速器制动力矩的控制方法。当转子处于低温时,提出了以主制动器踏板压力信号为输入变量、以可控硅导电角为输出变量的制动力矩开环Fuzzy控制方法,以尽可能提供驾驶人员期望的制动力矩。关于转子高温问题,通常的处理方法是设计一个门限温度,超过这个门限则停止缓速器工作,避免高温膨胀导致的转子与定子之间的刮擦。但停止缓速器工作必然带来车辆前冲,尤其对于行驶在长距离下坡道路上的汽车。针对上述问题,提出了以转子温差及温差变化率为输入变量、以可控硅导电角变化量为输出变量的制动力矩闭环Fuzzy控制方法,实现了高温情况下对制动功率实时调整,避免了高温下因停止缓速器工作带来的车辆前冲问题。
     自励式缓速器的安装使用改变了汽车原有的制动力分配。文中从制动力分配曲线、利用附着系数、附着效率分析了使用自励式缓速器对汽车制动稳定性的影响。根据ECE R13制动法规建立了主制动器制动力分配比与缓速器制动力之间的匹配关系,提出了安装车用自励式缓速器后汽车制动力分配比的优化设计方法。
The self-excited retarder is a kind of energy-saving retarder which integrates modern generation technology and eddy current braking technology. In the braking process, it could transform automotive inertial energy into electric energy and provide excitation current for the retarder unit by itself. So the self-excited retarder is free from additional energy consumption. As a new type retarder, however, some key technologies, such as generation performance, braking torque caculation and control, rotor temperature field distribution with time etc. are relatively backward.
     Generation performance of a self-excited retarder determines whether the design goal of braking torque could be achieved. Transient electromagnetic field equation, field-circuit coupled equation and its discrete model about space and time were established and derived. On this basic, transient electromagnetic field of generation unit was caculated with Finite Element Method and the generation performance of a self-excited retarder was analyzed.
     Braking torque as one of the most important design goals, the calculation formulae for braking power and braking torque are detailedly derived based on the Electromagnetic Induction Law and the Maxwell's Law. When automotive inertial energy was transformed into electric energy by generation unit, tangential electricomagnetic force (EMF) acting on the rotor would produce certain braking torque that is so-called electromagnetic torque. Flux method and Maxwell tention which are two common methods for caculating electricomagnetic torque were presented detailedly in paper. All above caculation formulae described the relation between braking power or braking torque and structural parameters of a self-excited retarder. And this would lay a theoretical foundation for the design and performance analization of a self-excited retarder.
     Because the mechanical structure of a self-excited retareder is more complex than other eddy current retareder, thermal design is especially important. Study on rotor transient temperature field distribution and how it changes with time not only are the theoretical basis for thermal design but also provide reference for closed loop fuzzy control of the braking torque based on rotor temperature difference and temperature difference ratio. Rotor transient temperature field, as well as boundary condition, was modeled and the caculation formula of inner heat source intensity was derived from braking power. Based on these models and caculation formulae, rotor transient temperature field distribution and how it changes with time were obtained with Finite Element Method and the error causes between theoretical and experimental results were analyzed.
     Control methods of a self-excited retarder braking torque were studied too. When rotor temperature is low, the main brake pedal pressure was taken as input variable and SCR conduction angle taken as output variable, controler would run at open loop fuzzy control model so as to provide as possible as the expected braking torque. As far as rotor high temperature is concerned, the usual processing method is to set up a threshold temperature. If rotor temperature is higher than the threshold, retarder would stop work so as to avoid possible scratch brought by high temperature expansion between rotor and stator. However, this would inevitablly lead to sudden acceleration and risk the road safty especially for a vehicle running on the long downhill mountain road. To this question, rotor temperature difference and temperature difference ratio were taken as input variables and SCR conduction angle variation was taken as output variable, closed loop fuzzy control would be selected if rotor temperature exceeds the threshold temperature. Fuzzy controllor would realtimely regulate SCR conduction angle variation and bifittingly reduce brake power, instead of simply stopping retarder work. So above sudden acceleration and risk would be avoided and road safty would be be greatly improved.
     Practices have proved that retarder has changed the vehicle's existing braking force distribution. Impact on vehicle braking stability brought by retarder were analized from the braking force distribution, utilization adhesion coefficient and adhesion efficiency. Matching relation between the braking force distribution ratio and retarder braking force was studied based on the ECE_R13 Law and the optimal design of the braking force distribution ratio of a vehicle was put forward after installing retarder.
引文
[1]宿富旺,陈发昌,梁楷,贾志忠.客车电涡流缓速器制动技术探讨[J].装备制造技术.2007,(11):102-113.
    [2]赵迎生,何仁,王永涛.电涡流缓速器对车辆制动稳定性的影响分析[J].农业机械学报.2007,38(9):16-22.
    [3]黄榕清,吴磊,邵建华.汽车液力缓速器的原理及应用[J].汽车电器.2006, (11):51-53
    [4]何仁,盛金东,李强.车用电涡流缓速器试验方法的探讨[J].汽车技术.2005,(3):26-29.
    [5]刘增刚.电涡流缓速器的发展与应用[J].汽车技术.2006,(5):64-67.
    [6]何仁.汽车辅助制动装置[M].北京:化学工业出版社.2005.
    [7]杨凯华,郑慕侨,阎清东,项昌乐.车辆传动中液力减速器的技术发展[J].工程机械,2001,(6):32-35.
    [8]余强.汽车下坡持续制动性能研究[D].长安大学博士学位论文,2000.5.
    [9]马建,陈荫三等.缓行器在汽车下长坡中的应用研究[J].西安交通大学学报,1999(4):86-88.
    [10]斯尚高,韩敏.加装缓速器以解决制动鼓发烫并延长制动蹄片寿命[J].客车技术与研究,2003,(5):32-33.
    [11]牛润新.车用永磁缓速器设计理论与控制方法研究[D].江苏大学博士论文,2007,6.
    [12]Longya Xu, Senior Member. A New Design Concept of Permanent Magnet Machine for Flux Weakening Operation[J]. IAS.1995.:373-378.
    [13]朱宁,王永华.轻型永久磁铁式汽车缓速器[J].客车技术与研究,2002(4):19-20.
    [14]王俊,周云辉.汽车用电磁缓速器[J].汽车研究与开发,2000,(2):35-39.
    [15]国家统计局.中国统计年鉴[M].北京: 中国统计出版社.2007.
    [16](美)詹姆斯·D·霍尔德曼,小蔡斯·D·米切尔著.汽车制动系统.北京:中国劳动社会保障出版社.2006.
    [17]方泳龙.汽车制动理论与设计.北京:国防工业出版社.2005.
    [18]何仁,沈海军,杨效军.商用汽车辅助制动技术综述[J].交通运输工程学报2009,9(2):50-60.
    [19]吴修义.德国福伊特(VOITH)液力缓速器[J].汽车与配件.2005(33):30-33.
    [20]Alexander F. A. Coordinated control of the Zero Inertia Powertrain[D]. Technische Universiteit Eindhoven,2001.
    [21]卢国钊.电涡流缓速器应用情况分析[J].城市公共交通.2003,(6):27-2.
    [22]http://www.china5e.com/
    [23]陈泽仁.电涡流缓速器对客车电系的影响及对策[J].城市车辆.2005,(2):56-58.
    [24]邹炽导.电涡流缓速器电气故障分析及实例探讨[J].汽车电器.2007,(11):40-42.
    [25]邹炽导.电涡流缓速器控制盒起火事故分析及改进措施[J].汽车维修.2007,(8):21-22.
    [26]赵万忠,翁茂荣.车用自励式缓速器的工作原理及其使用[J].浙江工贸职业技术学院学报2005,5(4):36-40
    [27]高徐娇,赵争鸣,赵强.永磁同步电机的结构与其电磁参数关系分析[J].清华大学学报(自然科学版).2001,41(9):53-74.
    [28]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.
    [29]赵朝会,李遂亮,王新威.径向和切向结构永磁同步发电机的比较研究[J].大电机技术.2007,(4):1-4.
    [30]魏静.微小功率永磁同步发电机设计特点[J].微电机.2003,36(3):11-13.
    [31]白颖,耿松亮,张学义.小型拖拉机用稀土永磁发电机的研究设计[J].机械研究与应用.2006,15(2):36-46.
    [32]Trumper. DL, Willianms. ME, Nguyen. TH. Magnet arrays for synchronous machines [A].Proceedings of the IEEE IAS 28th Annual Meeting [C]. New York,1993.9-18.
    [33]Li Y, Leonardi FT. A novel doubly salient permanentmagnet generator capable of field weakening [A]. DMMI'95 Slovenia[C].1995,:5259.
    [34]Alasuvanto T, Jokinen T. Comparison of four different permanent magnet roiors[A]. Proceedings of the 1999 IEEE Industry Applications Conference 34th IAS Annual Meeting[C]. New York.1997,:173-179.
    [35]张宏杰,唐任远,励庆孚.混合励磁永磁同步发电机的原理与设计[J].电工电能新技术.2002,21(1):20-23.
    [36]Yue L, Lipo TA. A doubly salient permanent magnet motor capable of field weakening [A]. PESC 95 Record [C]. NewYork,1995,:565-571.
    [37]Gu Q, Gao H. The Fringing Effect in PM Electric Machines. Electric Machines and Power System[M]. Elsevier.1996.
    [38]李白雅,郭小定,王文丽.永磁同步发电机极限电磁功率的分析计算[J].微电机.2001,34(2):21-43.
    [39]刘景林,李钟明.径向励磁结构的稀土永磁同步发电机设计方法[J].微电机.1997,30(4)8-11.
    [40]ZHAO Chaohui, Qin Haihong, YAN Yangguang. The Optimization of Rare Earth Magnet Thickness of IPM Synchronous Machine With "Flux Concentration Function" [C]. IEEE ICIT 2005,:185-190.
    [41]赵强,赵争鸣,高徐娇.永磁电机中永磁体尺寸优化设计[J].电机电器技术.2001,(3):2-5.
    [42]Gordon R, Slemon. On the Desion of High Penormance Surface Mounted PM Motors[J]. IAS.1994,:134-140.
    [43]Nady Boules. Design Optimization of Permanent Magnet DC Motors[J]. IAS.1990,:786-792.
    [44]田杰,张宁,赵韩,王勇.电涡流缓速器的结构参数对磁场影响的研究[J].机械工程与自动化.2008,(1):1-3.
    [45]M. Lajoie-Mazenc, B. Nogarede, J. C. Fagundes. Analysis of torque ripple in electronically commutated permanent magnet machines and minimization methods[J]. Proc. Inst. Elect. Eng. Conf. Publ.1989,:85-89.
    [46]王自,张晓英,陈国弟.车用永磁发电机的研制[J].微电机.2000,33(1):49-53.
    [47]Philippe Viarouge, Michel Lajoie-Mazenc. Design and Construction of a Brushless Permanent Magnet Servomotor for Direct-Drive Application[J]. IAS.1987,:526-531.
    [48]David L, Trumper. Design and Analysis Framework for Linear Permanent-Magnet Machines[J]. IAS.1996,:371-379.
    [49]窦一平,陈海镇,严仰光.稀土永磁同步发电机结构参数对外特性的影响[J].中小型电机.2000,27(4):45-47.
    [50]Atallah K, Zhu Ziqing. Amarture reaction field and winding inductances of softless permanent-magnet brushless machines[J]. IEEE Trans, on Magnetics.1998,34(5): 3737-3744.
    [51]史立伟,张学义.汽车用42V永磁发电装置参数计算与设计[J].微电机.2008,41(2):19-21.
    [52]N. Boules. Prediction of no-load flux density distribution in permanent magnet machines[J]. IEEE Trans. Ind. Applicat.1985,21(4):633-643.
    [53]T. Ohnishi, N. Takahashi. Optimal design of efficient IPM motor using finite element method[J]. IEEE Trans. Magn.2000,36:3537-3539.
    [54]陈阳生,林友仰.永磁电机气隙磁密的分析计算[J].中国电机工程学报.1994,14(5):17-26.
    [55]Y. Marechal, G. Meunier. Computation of 2D and 3D eddy currents in moving conductors of electromagnetic retarders[J]. IEEE Trans.1990,26(5):2382-2384.
    [56]T.J.E.Miller. Single-Phase permanent magnet motor analysis[J].IEEE Trans.IAS.1985,21(4): 1237-1242.
    [57]罗军波,黄守道.稀土永磁同步电机的设计特点[J].防爆电机.2003,(1):5-8.
    [58]K. Muramatsu, T. Nakata, N. Takahashi, K. Fujiwara. Comparison of coordinate systems for eddy current analysis in moving conductors[J]. IEEE Trans.1992,23(2):1186-1189.
    [59]HA. Vander Vorst, Bi-CGSTAB. A fast and smoothly converging variation of Bi-CG for the solution of nonsvmmetric linear svstems[J]. SLAM J. Sci. Stat. Comut.1992, (13):631-644.
    [60]陶果,邱阿瑞,柴建云,肖曦.永磁同步伺服电动机的磁场分析与参数计算[J].清华大学学报(自然科学版).2004,44(10):1317-1320.
    [61]N. Takahashi. Optimization of permanent magnet type of retarder using 3-D finite element method and direct search method[J]. IEEE Trans. Magn.1998,34(5):2996-2999.
    [62]T. Y. Chuang, D. K. Lieu, J. S. McAllister. Optimization of pole and slot widths for reluctance torque reduction in a brushless DC spindle motor[J]. Proc. Amer. Soc. Mech. Eng., Inform. Storage Processing Division.1996,2:153-158.
    [63]刘景林,李声晋,罗兵,李钟明.稀土永磁同步发电机的结构特点及关键技术[J].微电机.1997,30(1):3-5.
    [64]刘景林,李钟明.小型稀土永磁同步发电机分析及应用[J].中小型电机.2001,28(5):14-16.
    [65]A. Kameari. Local force calculation in 3D FEM with edge Elements[J]. International Journal or Applild Electromagnetics in Material.1993, (3):231-240.
    [66]何仁,衣丰艳,何建清.电涡流缓速器制动力矩的计算方法[J].汽车工程.2004,26(2):197-200.
    [67]何建清,何仁,衣丰艳.汽车用电涡流缓速器的工作原理及其使用效果[J].轻型汽车技术.2002,(11):75-81.
    [68]俞宏生.工程电磁场分析与计算[M].北京:人民交通出版社,1997.
    [69]Venkataratnam K. Analysis of Eddy-current Brakes with Nonmagnetic Rotors[J]. IEE proc.1977,124 (1):1426-1433.
    [70][日]正田英介,高木正藏.电磁学[M].北京:科学出版社,2001.
    [71]Sebastien E, Gay, Mehrdad Ehsani. Parametric Analysis of Eddy-Current Brake Performance by 3-D Finite-Element Analysis[J]. IEEE TRANSACTIONS ON MAGNETICS.2006, 42(2):319-328.
    [72]M. Hofmann, T. Werle, R. Pfeiffer, A. Binder.2D and 3D numerical field computation of eddy current brakes for traction[J]. IEEE Trans.Magn.,2000,36(4):1758-1763.
    [73]冯慈璋,马西奎.工程电磁场导论[M].北京:高等教育出版社,2000.
    [74]S. E. Gay. Contactless magnetic brake for automotive applications[D]. A&M University, TX, College Station,2005.
    [75]M. Hecquet, P. Brochet, L. S. Jin, P. Delsalle. A linear eddy current braking system defined by finite element method[J]. IEEE Trans. Magn.1999,35(3):1841-1844.
    [76]孙为民,张跃明,吴兵波.电涡流缓速器制动力矩计算的新方法[J].现代机械.2005,(4):21-29.
    [77]A. B. Dietrich, I. E. Chabu, J. R. Cardoso. Eddy-current brake analysis using analytical and FEM calculations-Fart I:Theory[A]. IEEE Int. Electric Motor Drive Conf., Cambridge, MA[C].2001,:454-457.
    [78]J. Bigeon. Finite element analysis of an electromagnetic brake[J]. IEEE Trans. Magn.1983, 19(6):2632-2634.
    [79]王生发,顾新建,钱亚东,马军.基于混合模型的电涡流缓速器制动力矩特性分析[J].浙江大学学报(工学版).2006,40(11):1981-1983.
    [80]D. Albertz, S. Dappen, G. Henneberger. Calculation of the 3D nonlinear eddy-current field in moving conductors and its applications tobraking systems[J]. IEEE Trans. Magn.1996, 32(3):768-771.
    [81]H.K. Collan. Rapid Optimization of a Magnetic Induction Brake[J].IEEE Trans. Magn.1996, 32(4):3040-3044.
    [82]张逸成.旋转涡流制动器电磁机构的设计研究[J].铁道学报.1998,20(6):4-9.
    [83]M. Fujita.3-dimensional electromagnetic analysis and design of an eddy-current rail brake system[J]. IEEE Trans. Magn.1998,34(5):3458-3551.
    [84]J.H. Wouterse. Critical torque and speed of eddy current brake with widely separated soft iron poles[A]. IEE Proceedings-B[C].1991,138(4):153-158.
    [85]何仁,赵万忠,牛润新.车用永磁式缓速器制动力矩的计算方法[J].交通运输工程学报.2006,6(4):62-65.
    [86]Mark A. Heald. Magnetic braking:Improved theory[J]. Am.J. Phys.1988,56(6):521-522.
    [87]H.D. Wiederick, N. Gauthier, D. A. Campbell, P.Rochon. Magnetic braking:simple theory and experiment[J]. Am. J. Phys.1987,55(6):500-503.
    [88]何仁,盛金东,李强.车用电涡流缓速器试验方法的探讨[J].汽车技术.2005,(3):26-29.
    [89]P. J. Wang, S. J. Chiueh. Analysis of Eddy-Current Brakes for High Speed Railway[J]. IEEE Trans. Magn.1998,34(4):1237-1239.
    [90]K. Venkataratnam, M. S. Abdul Kadu. Normalized Force-Speed Curves of Eddy Current Brakes with Ferromagnetic Loss Drums[J]. IEEE Trans. Magnetics.1984,5:656-663.
    [91]哈尔滨工业大学电机研究所.涡流测功机[M].哈尔滨:黑龙江科学技术出版社,1993.
    [92]J. Bigeon, J. C. Sabonnadiere. Analysis of Electromagnetic Brake[J]. Electrical Machine and Power System.1985,10:285-297.
    [93]J. Bigeon, J. C. Sabonnadiere. Finite Element Analysis of an Electromagnetic Brake[J]. IEEE Trans. Magnetics.1983,19:2632-2634.
    [94]郑廷海,叶东.计算永磁电机电磁转矩的方法[J].电力情报.1996,(1):6-10.
    [95]王勇,林林,孙立功.基于Buck-Boost结构的永磁发电机稳压电路设计[J].微特电机.2008,(1):28-30.
    [96]Comanescu Mihai, Keyhani Ali, Min Dai. Design and Analysis of 42V Permanent magnet Generator for Automotive Applications[J]. IEEE Trans.2003,18 (1):107-110.
    [97]Ehsani M, Emadi A.42 V Automotive Power Systems [J]. SAE 2001 Future Transport-ation Technology Conference, Costa Mesa, CA, Aug.2001,:119-125.
    [98]丙卜冰,刘长良,耿松亮.汽车用稀土永磁发电机电枢反应电抗的研究[J].电机技术.2006(3):39-41.
    [99]Hans Joachim Gutt, Jrugen Muller. Mechanical Considerations in Modern Motor Car Generators[J].IEEE Trans. IAAS Annual Meeting, Denver.1996,2(6):33-38.
    [100]李开成,张健梅.利用磁通法计算永磁同步电机电磁转矩[J].微电机.2000,33(3):14-28.
    [101]Madakondaiah Naidu, Nady Boules, Rassem Henry. A High Efficiency High Power eneration System for Automobiles[J]. IEEE Trans. IA.1997,33 (6):1535-1543.
    [102]王兴华,励庆孚,王曙鸿.永磁无刷直流电机负载磁场及其电磁转矩的计算[J].中国电机工程学报.2003,23(4):140-145.
    [103]Sebastian T. Analysis of induced EMF waveforms and torque ripple in a brushless permanent magnet machine [J]. IEEE Trans. On magnetics.1996,32(1):195-200.
    [104]G. H. Jang, D. K. Lieu. Vibration reduction in electric machine by magnet interlacing[J]. IEEE Trans. Magn.1992,28:3024-3026.
    [105]林荣文,江辉用有限元法求解稀土永磁同步电机电磁转矩[J].微电机.2004,37(5):21-23.
    [106]S. M. Hwang, D. K. Lieu. Reduction of torque ripple in brushless DC motors[J]. IEEE Trans. Magn.1995,31(2):3737-3739.
    [107]M. Sunil, D. Benoit, B. Liu, T. S. Sebastian. Minimization of torque pulsations in a trapezoidal back-EMF permanent magnet brushless dc motor[J]. Proc. IEEE Ind. Applicat. Soc. Annu. Meet.1999,2:1237-1242.
    [108]周杰.30kW防尘涉水稀土永磁发电机的研制电机控制与应用[J].微电机.2008,35(2):6-10.
    [109]S. Salon, K. Sivasubramaniam, L. Tukenmez-Ergene. An approach for determining the source of torque harmonics in brushless dc motors[J]. Proc. Int. Conf. Elect. Mach.2000, 3:1707-1711.
    [110]李新华,张勇.单相永磁同步电动机变频调速的脉动转矩研究[J].微特电机.2002(5)5-7.
    [111]M. Lukaniszyn, R. Wrobel. Study on the influence of permanent magnet dimensions and stator core structures on the torque of the disc-type brushless DC motor. Elect. Eng.2000, 82:163-171.
    [112]S. C. Park, T. H. Yoon, B. I. Kwon, H. S. Yoon, S. H. Won. Influence on brushless DC motor performance due to unsymmetric magnetization distribution in permanent magnet[J]. IEEE Trans. Magn.2000,36:1898-1901.
    [113]陈世元,郭建龙.双凸极永磁电动机磁阻转矩和转矩脉动的关系研究[J].中国电机工程学报.2008,28(9):76-81.
    [114]Z. Q. Zhu, D. Howe. Influence of design parameters on cogging torque in permanent magnet machines[J]. IEEE Trans. Energy Conversion.2000,15:407-412.
    [115]王淑红,熊光煜.无刷直流电动机气隙磁场及电磁转矩的分析计算[J].电气应用.2006,25(9):67-71.
    [116]B. S. Lee, R. Krishnan. Variable voltage converter topology for permanent-magnet brushless DC motor drives using buck-boost front-end power stage[J]. IEEE Int. Symp. Ind. Electron. 1999,2:689-694.
    [117]T. Sebastian, V. Gangla. Analysis of induced EMF waveforms and torque ripple in a brushless permanent magnet machine[J]. IEEE Trans. Ind. Applicat.1996,32:195-200.
    [118]乔静秋,陈旭东,陈立铭等.直槽式永磁无刷电动机的有限元分析[J].电机与控制学报,2001,5(4):229-232.
    [119]S. Waikar, T. Gopalarathnam, H. A. Toliyat, J. C. Moreira. Evaluation of multiphase brushless permanent magnet (BPM) motors using finite element method (FEM) and experiments[J]. IEEE Appl.Power Electron. Conf. Exposition.1999,1:396-402.
    [120]师军,高金行,李玉忍.基于SG3525的无刷直流电动机调速系统[J].微电机.2006,39(5):47-49.
    [121]R. Rabinovici, T. J. E. Miller. Back EMF waveform and core losses in brushless dc motors[J]. SPEED Report, Apr.1993, University of Glasgow.
    [122]Jerme C, Philippe V. Synthesis of high performance PM motors with concentrated windings [J]. IEEE Transactions on Energy Conversion,2002,17 (2):248-253.
    [123]Ana-Maria Bianchi, Yves Fautrelle and Jacqueline Etay.传热学[M].大连:大连理工大学出版社,2008.
    [124]Baehr H.D.,Stepphan K. Heat and Mass Transfer[M].Spring Verlag,1996.
    [125]Guyer E.R., Brownell D.L. Handbook of applied thermal design [M]. Taylors&Francis, 1999.
    [126]孙为民,张跃明,陶保建.用ANSIS实现电涡流缓速器转子盘的温度分析[J].机械设计与制造.2006,(1):115-117.
    [127]赖三霞,李刚炎,HILLION Thomas,吴迎峰.客车电磁缓速制动器的制动与温升研究[J].汽车科技.2006, (5):27-29.
    [128]何仁,牛润新.永磁式缓速器热-磁耦合建模与试验[J].农业机械学报.2007,738(11):12-16.
    [129]Churchill S.W, Chu H.H.S. Correlation equations for laminar and turbulent free convection from a vertical plate[J]. Int. J. Heat mass Transfer.1975, (18):1323-1329.
    [130]Bar-Cohen A, Rohsenow W.M. Thermally Optimum Spacing of Vertiacal Natural Convection Cooled Parallel Plates[J]. J. Heat Transfer.1984, (106):114-119.
    [131]Holland K., Unny T., Raithby G, Konicek L. Free convetion heat transfer across inclined air layers[J]. Trans. ASME. J. Heat Transfer.1976,189-198.
    [132]何仁,赵万忠,胡青训.永磁式缓速器转子鼓瞬态温度场的计算方法[J].兵工学报.2007,28(1):52-55.
    [133]刘成晔,何仁,袁传义,汪永志.电涡流缓速器转子盘强制散热分析和试验[J].2009,31(4):349-353.
    [134]何仁,刘成晔.车用电涡流缓速器转子盘非稳态温度场数值分析[J].汽车工程.2006,28(2):182-185.
    [135]Voller V.R., Cross M., Markatos N.C. An enthalpy method for convection/diffusion phase change [J]. Int. J. Num Meth. Engng.1987,24:253-261.
    [136]何仁,赵万忠,胡青训.车用永磁式缓速器转子鼓温度应力场计算[J].江苏大学学报(自然科学版).2006,27(3):221-225.
    [137]何仁,汤沛.车用转筒式电涡流缓速器设计和试验研究[J].汽车技术.2006,(11):28-30.
    [138]Chan C.L., Chen M.M, Mazumder J. Asymptotic solution for thermocapillary flow at high and low prandtl number due to concentrated surface heating [J]. Trans. ASME.1988, 110-120.
    [139]赵迎生,何仁,王永涛.电涡流缓速器转子盘换热系数的试验求解[J].拖拉机与农用运输车2008,35(3):12-13.
    [140]Sun Y.S., Emery A.F. Multigrid computation of natural convection in enclosures with a conductive baffle [J]. Numer Heat Transfer, Part A.1994,25:575-592.
    [141]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [142]Gao C, Wang Y.S. A general formulation of Peaceman and Rachford ADI method for the N-dimensional heat diffusion equation [J]. Int. Comm Heat Mass Transfer.1996, 23(6):845-854.
    [143]Xin R.C., Dong Z.F., Ebadian M.A., Tao W.Q. Forced convection in ducts with a boundary condition of the third kind[J]. J. Thermophysics Heat Transfer.1995,9(4):800-802.
    [144]何仁,牛润新.基于Galerkin法的车用永磁式缓速器热2磁耦合场分析[J].机械科学与技术.2007,26(7)872-876.
    [145]何仁,刘成晔,衣丰艳.车用电涡流缓速器转子盘温度场计算方法[J].江苏大学学报(自然科学版).2005,26(2):117-120.
    [146]Palm R., Rehfuess U. Fuzzy Controller as Gain Scheduling Approximators [J]. Fuzzy Sets and Systems.1997,85(2):233-246.
    [147]Whalen T, Schott B, Gim G. Control of Error in Fuzzy Logic Modeling [J]. Fuzzy Sets and Systems.1996,80(1):23-36.
    [148]Pedrycz W, Valente J. de Oliveira. An Algorithmic Framework for development and Optimization of Fuzzy Models[J]. Fuzzy Sets and Systems.1996,80(1):37-56.
    [149]章卫国,杨向忠.模糊控制理论与应用[M].西安:西北工业大学出版社,1999。
    [150]Yen Z M. Adaptive Multivariable Fuzzy Logic controller [J]. Fuzzy Sets and Systems.1997, 86(1):43-60.
    [151]Chao C.T, Teng C.C. A PD-Like Self-tuning Fuzzy Controller without Steady-state error [J]. Fuzzy Sets and Systems.1997,87(2):181-200.
    [152]Cordon O, Herrera F, Peregrin A. Applicability of the Fuzzy Operators in the Design of Fuzzy Logic Controllers [J]. Fuzzy Sets and Systems.1997,86(1):15-42.
    [153]Hwang G.C, Lin S.C. A Stability Approach to Fuzzy Control Design for Nonlinear System[J]. Fuzzy Sets and Systems.1992,48:279-287.
    [154]Michels K.A. Model-Based Fuzzy Controller[J]. Fuzzy Sets and Systems.1997,85(2): 223-232.
    [155]Klawonn F, Kruse R. Constructing a Fuzzy Controller from data[J]. Fuzzy Sets and Systems. 1997,89(2):177-194.
    [156]Grauel A, Mackenberg H. Mathematical Analysis of the Sugeno Controller Learning to General Design Rules[J]. Fuzzy Sets and Systems.1997,85(2):165-176.
    [157]Castro JL, Zurita JM. An Inductive Learning Algorithm in Fuzzy System[J]. Fuzzy Sets and Systems.1997,89(2):193-204.
    [158]Fuh CC, Tung PC. Robust Stability Analysis of Fuzzy Control System[J]. Fuzzy Sets and Systems.1997,88(3):289-298.
    [159]Wong CC, Lin NS. Rule Extraction for Fuzzy Modeling[J]. Fuzzy Sets and Systems.1997, 86(2):139-145.
    [160]Renders JM, Saerens M, Bersini H. Fuzzy Adaptive Control of a Certain Class of SISO Discrete-Time Processes [J]. Fuzzy Sets and Systems.1997,85(1):49-62.
    [161]Lin S, Chen YY. Design of Self-Learning Fuzzy Sliding Mode Controllers Based on Genetic Algorithms[J]. Fuzzy Sets and Systems.1997,86(2):139-154.
    [162]Rao MVC, Prahlad V. A. Tunable Fuzzy Logic Controller for Vehicle-Active suspension systems [J]. Fuzzy Sets and Systems.1997,85(l):11-22.
    [163]Klawonn F, Novak V. The Relation between Inference and Interpolation in the Framework of Fuzzy Systems. Fuzzy Sets and Systems.1996,81(3):331-354.
    [164]Postlethwaite BE. Building a Model-Based Fuzzy Controller[J]. Fuzzy Sets and Systems. 1996,79 (1):69-92.
    [165]Bukley JJ. Stability and the Fuzzy Controller[J]. Fuzzy Sets and Systems.1996,77(2): 167-174.
    [166]马建,陈荫三,余强等.汽车缓行器辅助制动效果分析[J].西安公路交通大学学报.1999,(3):79-82.
    [167]赵迎生.辅助制动和汽车主制动装置联合控制理论和方法的研究[D].江苏大学博士论文.2008.
    [168]马建,陈荫三等.缓行器在汽车下长坡中的应用研究[J].西安交通大学学报,1999(4):86-88
    [169]张滨刚,姜正根.汽车制动过程的理论分析与试验[J].兵工学报.1998(4):1-4.
    [170]余志生.汽车理论[M].北京:清华大学出版社.2000.
    [171]瞿宏敏,程军.汽车动力学模拟中的轮胎模型述评[J].汽车技术.1996,(7):1-7
    [172]刘惟信.汽车制动系的结构分析与设计计算[M].北京:清华大学出版社.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700