土工格室低路堤—刚性路面体系理论分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于高路堤而言,低路堤具有占地少、造价省,符合科学发展观的特点,近年来越来越受到工程界的亲睐,但当面对一些特殊土地质,尤其在穿越软土地区时,如果不采取有效的软基处理措施,采用低路堤的效果往往会不尽如人意,这是由于低路堤因有限的填土高度无法有效扩散上部荷载,容易引起差异沉降量过大的问题,为解决在软弱土地区内进行低路堤设计中的荷载扩散问题,本文提出将土工格室与其内碎石等填料组成的加筋结构层置于路基上部,构成一种新型的土工格室低路堤-刚性路面结构体系。它综合了土工格室结构层能抗弯抗剪的特点,低路堤在土地资源节约上的优势以及混凝土刚性路面的原材料在我国可以自给自足、更适合重交通量、设计寿命期长等长处,而具备良好的发展潜力,但是对该体系的研究尚在起步阶段。为此,本文结合国家自然科学基金项目“散体材料桩复合地基承载机理及其按变形控制设计理论研究”(项目编号51078138),以理论分析结合有限元数值模拟以及室内模型试验为手段,针对此种新型结构体系的承载机理、沉降两方面开展较为深入、系统的研究,主要工作分为以下几点:
     (1)通过对国内外已有的相关文献的总结分析,较为全面的梳理有关低路堤结构、路基对交通荷载的响应,以及作为加筋土类中重要一员的土工格室的应用与加固机理的知识,作为对本文提出的新体系进行深入研究的基础性资料。
     (2)针对土工格室结构层作为下面层的适用性开展了研究,主要分为土工格室结构层的抗弯能力和抗冲刷能力两部分。在研究土工格室结构层的抗弯能力时,通过有限元反分析,定量的建立起弯曲模量与跨中挠度的经验关系,可作为同类型实验的数据处理工作的参考;进一步,设计了6组叠梁试验来研究土工格室结构层的弯曲模量测定及其影响因素,试验结果表明:格室的展开宽度对弯曲模量值有较大的影响,在实际工程中应尽可能的将格室展开至近正菱形。在分析刚性路面下基层的冲刷机理时,认为冲刷现象的内因可归结为积聚于板底的自由水的浸泡软化作用,外因是交通荷载导致的动水压力的反复冲刷作用。而采用土工格室碎石结构层不但可以在刚性路面下形成良好的排水通道,使渗入水分可以及时排出,而且因为土工格室碎石结构层独特的强度与刚度的形成机理,它受到的水的软化作用较小;借鉴土工膜袋防冲刷的成功经验,在土工格室结构层上覆一层透水土工布,可减少动水压力对结构层的直接冲刷作用,保证它的抗冲刷能力。
     (3)全面地阐述了本文所提出的土工格室低路堤-刚性路面结构体系,说明了软弱土地区的土工格室低路堤-刚性路面结构体系的主要组成部分及各部分的功能,并深入地研究了该结构体系承载特性。利用数值分析软件ADNIA建立起平面应变模型,计算了交通荷载产生的应力与变形在路堤中的扩散问题,证明了土工格室结构层的存在将大大改善混凝土路面板的受力状态,并让路基内部应力更快的衰减。在工程设计实用性计算方面,研究结果表明,可用现行规范中的弹性地基双层板计算模型来分析新体系的路面板临界荷位处的荷载应力。
     (4)通过有限元模拟计算,定性地比较了路面下有无土工格室结构层时的变形特点,证明了设置土工格室结构层可以有效减小地基表面的差异沉降;而与设置同样厚度同样参数的土工格室垫层于地基表面的情况进行了对比研究时,发现总沉降值在采用土工格室结构层时比以垫层形式置换出软基中的部分软土时明显减小,而在控制差异沉降的表现上两者相当。进一步对可能影响到板间差异沉降的7个因素设计了3个水平的正交试验,对以板间差异沉降为试验指标时进行的极差分析与方差分析都表明,各因素的影响大小顺序为:土工格室结构层厚度>低路堤高度>软基模量>低路堤填土的模量>土工格室结构层模量>路面板厚度>路面板模量,所以要控制好板间差异沉降,最有效的方法是提高土工格室结构层的高度和低路堤的填土高度。
     (5)基于相似理论,设计并完成了两组具有可比性的室内模型试验,将模型试验中的六个小项分成三个阶段来进行,藉此来比较有无土工格室结构层时两种体系工作性能的差异,以研究土工格室低路堤-刚性路面体系的承载和变形特性。试验中采用加装变速箱的强制式搅拌机驱动将圆周运动转变为往复直线运动的连杆体系,成功的控制了小车运动距离和速度,实现了交通荷载的周期性模拟。试验结果验证了本文提出的土工格室低路堤-刚性路面结构体系的可行性。
Recently, the low embankment has been receiving more and more attention for the design of road structures attributed to its advantages, such as economic space occupa-tion and saving construction cost, compared with the high embankment. However, for some special land especially the soft soil area, the low embankment cannot exploit its advangages if effective soft ground treatment measures were not taken. The reason is that the limited filling height of the low embankment cannot diffuse the upper load ef-fectively which easily leads to excessive differential settlement problems. In order to solve the issue of load proliferation for the design of low embankment in soft soil area, this thesis presented a new type of geocell reinforced low embankment-rigid pavement system (GRLERPS) by putting the geocell and its internal gravel packing placed on the top of the embankment. As a new road structure type, the GRLERPS has a good poten-tial for applications, because it combines the high flexural and shearing strength of geocell and land resource-saving of the low embankment, as well as advantages of the concrete rigid pavement, such as readily available raw materials, capability of carring heavy traffic and long design life. But the new system is still in the exploratory re-search stage. In this thesis, an in-depth systematic research on GRLERPS is carried out from two aspects:load bearing mechanism analysis and the settlement analysis, by means of theoretical analysis, model test and finite element analysis. The main work can be clarified as follows:
     (1) Through the relevant existing literature at home and abroad, the knowledge has been summarized and analyzed as the references for the investigations on the pro-posed new system, which includes low embankment structure, the response of the em-bankment under the traffic load, as well as the application and its reinforcement me-chanism of geocell structural layer.
     (2) The research of the applicability of the geocell structural layer as the lower layer is conducted dividing into two parts:the flexural capacity of the geocell structure layer and its anti-erosion ability. On the basis of the finite element analysis of the flexural capacity of geocell structure layer, a flexural modulus and mid-span deflection relations is established quantitatively. This can be used as a reference for the same type of experiment data processing. Subsequently,6trials based on superposed beam theory are designed to study the of geocell structure layer bending modulus determination and its influencing factors. The trial results show that the expanded width of the geocell has great influence on the bending modulus, geocell should be expanded as far as possible to nearly diamond shape. Analysis of the rigid pavement base erosion me-chanism indicates that, the internal reason of flushing phenomenon can be attributed to the soak softening effect of the free water accumulated in the bottom of the board, the external one due to repeated flushing of the hydrodynamic pressure caused by traffic. The utilization of the geocell gravel structure layer can not only form a good drainage channel under the rigid pavement to make the infiltrated water drain in time, but also be softened slightly by the water because of its unique strength and stiffness formation mechanism. Learning from the successful experience of the geomembrane bag against erosion, a layer of permeable geotextile is adopted to put on the geocell structure layer, to reduce the direct scouring action of the hydrodynamic pressure, thus to ensure its anti-erosion ability.
     (3) A comprehensive introduction on the main parts and their function of the GRLERPS in soft soil area is presented in this thesis, and its load bearing characteris-tics are further analyzed. Subsequently, the ADNIA is used to establish its plane strain model to calculate the proliferation problem of the stress and deformation in the em-bankment caused by traffic load. This model proves that the presence of the geocell structure layer will improve the stress state of the concrete pavement significantly and make the stress inside the roadbed decayed faster. In the engineering design of prac-tical calculation, the results reveal that the elastic foundation layer board model available in the existing norms can be utilized to analyze the load stress at the critical load position for the road panel of the new system.
     (4) By the finite element simulations, the deformation characteristics of the structure layer of the road with geocell are compared qualitatively with that without geocell. Results indicate that the geocell structure layer can effectively reduce the dif-ferential settlement of the foundation surface. Furthermore, it is found that the total settlement value reduced significantly by adopting geocell structure layer, in case of a comparative study of setting the same thickness of the same parameters geocell cu-shion on the ground surface. However, the performance of controlling differential set-tlement between the two methods is nearly the same. What is more, the orthogonal tests of three levels and seven factors that might affect the differential settlement be-tween the boards are designed. Variance and range analysis show various influence factors in this order from high to low:geocell structure layer thickness, the height of low embankment, the modulus of the soft soil, the modulus of low embankment, the modulus of the geocell layer, the thickness of road panel, the modulus of road panel. Thus, the most effective way, to control the differential settlement between plates, is to increase the height of geocell structure layer and the fill height of the low embank-ment.
     (5) Based on the similarity theory, two sets of the comparable model tests are de-signed and completed. To study the load bearing and deformation characteristics of the GRLERPS, six small items in the model test are divided into three stages to compare the difference of the performance between the two systems possessing the geocell structure layer or not. The simulation of periodic traffic load is carried out by a model car running back and forth on the roadway slabs. The car is drived by a novel link mechanical system which transforms the circular motions of concrete mixer into reci-procating linear motions. The model test results show that the proposed GRLERPS is feasible.
引文
[1]日本道路协会编,蔡恩捷译.道路土工软土地基处理技术指南.北京:人民交通出版社,1989,4-10
    [2]刘春华,崔春涛.软土地基的处理方法—低路堤的处理方法.黑河科技,996,(1):16-17
    [3]张强,陈雨人.平原微丘区高速公路低路堤设计研究.辽宁交通科技,2006,(2):3-6+44
    [4]张强,陈雨人.高速公路低路堤理念探讨.交通与运输(学术版),2005,(2):63-66
    [5]陈雨人,张强.长三角地区高速公路低路堤方案与环境保护技术研究.北京:第四届亚太可持续发展交通与环境技术大会论文集,中国公路学会,2005,6-10
    [6]温学钧,王海燕.平微区高速公路合理路堤高度.长安大学学报(自然科学版),2002,(1):14-16’
    [7]Chai J,Miura N. Traffic-Load-Induced Permanent Deformation of Road on Soft Subsoil. Geotech Geoenviron Eng.2002,128(11):907-916
    [8]江苏省交通规划设计研究院.江苏省高速公路低路堤的可行性研究.2005,1-10
    [9]王维.低路堤在江苏省高速公路工程中的适用性研究:[南京林业大学硕士学位论文].南京:南京林业大学,2012,1-6
    [10]李海善.平微区高速公路合理路堤高度研究:[同济大学硕士学位论文].上海:同济大学,2005,2-8
    [11]张江洪,王书伏,丁小军.平原区高速公路合理降低路堤填筑高度方案的探讨.2005,(1):71-73
    [12]河南省公路管理局.河南省高等级公路低路堤关键技术研究.河南:2007,3-12
    [13]蒋相华,鲍燕妮.高等级公路低路堤设计影响因素及方法分析.中外公路,2009,(4):40-42
    [14]秦仁杰,刘朝晖,张宝静.低路堤高速公路集水净化渗滤系统排水方式研究.中国公路学报,2009,(3):31-35
    [15]叶文尧.在苏州地区采用低路基设计的可行性.公路,1999,(6):21-24
    [16]张蕴杰.A4高速公路低路堤设计.上海公路,2002,(S1):41-45
    [17]周兴顺.盐通高速公路低路堤设计研究.公路交通科技,2006,(10):96-99
    [18]邹淑国.高速公路低路堤方案适用性研究:[同济大学硕士学位论文].上海:同济大学,2008,30-32
    [19]彭巨为.浙北地区高速公路低路堤设计关键技术研究:[中南大学硕士学位论文].长沙:中南大学,2008,41-43
    [20]傅智,李红.高速公路水泥路面对水泥的路用品质技术要求.北京:中国公路学会99学术交流论文集,1999,5-7
    [21]傅智.如何改善水泥混凝土路面舒适性.公路,2004,(7):47-53
    [22]傅智.我国高速公路水泥混凝土路面建造新技术.北京:第三届全国公路科技创新高层论坛,2006,10-12
    [23]傅智,李红.我国水泥混凝土路面30年建设成就与展望.公路交通科技,2008,(12):21-27
    [24]傅智,赵尚传,王春生等.梅河高速公路水泥混凝土路面建设新技术.广东公路交通,2009,(4):10-13
    [25]赵明华,陈炳初,黄立葵.土工格室低路堤-刚性路面体系及模型试验研究.中国公路学报,2011,(4):1-6
    [26]赵明华,陈炳初,尹平保等.土工格室碎石基层+刚性路面承载特性模型试验研究.岩土工程学报,2012,(4):577-581
    [27]赵明华,张玲,蒋德松.土工格室+碎石桩处治软土路基设计计算方法.公路交通科技,2008,(4):47-51
    [28]赵明华,张玲,邹新军等.土工格室-碎石桩双向增强复合地基研究进展.中国公路学报,2009,(1):1-10
    [29]郭忠印,丛林,潘正中等.半刚性基层沥青路面结构施工阶段的测试与分析.中国公路学报,2001,14(12):8-12
    [30]查文华,洪宝宁.交通荷载下低路堤路基的动力响应.江苏大学学报(自然科学版),2008,29(3):264-268
    [31]Hrovat D. Infuence of Unsprung weight on Vehicle ride Quality journal of Sound and Vibration.1988,124(3):497-516
    [32]周华飞,蒋建群,毛根海.路面不平整引起的车辆动荷载分析.中国市政工程,2002,99(3):10-13
    [33]邓学钧,黄晓明.路面设计原理与方法.北京,人民交通出版社,2001,5-7
    [34]王凯.路面设计的碗形分布荷载图式.岩土工程学报,1983,(4):43-55
    [35]Tohno I S, Iwata, Shamoto Y Land subsidence caused by repeated loading[A]. Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering. Blazil:Rio De Janeiro,1989:1819-1822
    [36]Sakai A, Samang L, Miura N. Partially-drained cyclic behavior and applica-tion to the settlement of a low embankment road on silty-clay. Soils and Foundations.2003,43(1):33-46
    [37]Yasuhara K, Hirao K, Hyodo M. Partial-drained behavior of clay under cyclic loading. Proceedings of the 6th International Conference on Numerical Me-thods in Geomechanics. Rotterdam:Balkema,1988:659-664
    [38]凌建明,王伟.行车荷载作用下湿软路基残余变形的研究.同济大学学报,2002,(11):1315-1320
    [39]Dodds C J, Robson J D. The description of road surface roughness. Journal of sound and vibration.1973,31(2):175-183
    [40]Antle J R. Measurement of lateral and longitudinal vibration in commercial truck shipment. Journal of sound and vibration.1988.45(2):125-137
    [41]Marcondes J. Spectral analysis of highway pavement roughness. Journal of Transportation Engineering ASCE,1992,117(5):540-549
    [42]David J, Cole H. Fundamental issues in suspension design for heavy road ve-hicles. Vehicle System Dynamics.2001,35(4):319-360
    [43]孙璐,邓学均.飞机对机场道面的随机动压力.重庆交通学院学报,1996,(4):14-19
    [44]孙璐,邓学均.路面波谱密度与运动车辆对路面的随机动压力分析.西安公路交通大学学报,1996,(2):17-21
    [45]孙璐,邓学均.路面动荷载数学模型与实验设计.西安公路交通大学学报,1996,(4):50-53
    [46]孙璐,邓学均.车辆-路面相互作用产生的动力荷载.东南大学学报,1996,(5):142-145
    [47]黄立葵,盛灿花.车辆动荷系数与路面平整度的关系.公路交通科技,2006,(3):27-30
    [48]Sunaga,Makoto. Vibration behavior of roadbed on soft grounds under train load. Quartly Report of RTRI,1990, (31):29-35
    [49]Leykauf,Guntbcr.Manner, Lothar. Elastisches Verformungsver-Halten des Eisenbahningenieur,1990,41(3):111-119
    [50]蔡英.大秦重载铁路路基的动力响应及分析-重载铁路线路结构与养护.北京:中国铁道出版社.1992,12-14
    [51]徐毅.交通荷载对高速公路路基影响的试验研究:[河海大学硕士学位论文].南京:河海大学.2006,32-56
    [52]Bunnister D M.The general theory of stresses and displacements in layered soil systems. Journal of Applied Physics,1945,89-94
    [53]Yasuhara K, Yamanouchi T. Hirao K. Cyclic Strength and Deformation of Normally Consolidation Clay. Soils and Foundations.1982,22 (3):77-91
    [54]Muhanna A S. A Testing Procedure and a Model for Resilient Modulus and Accumulated Plastic Strain of Cohesive Subgrade Soils. Narth Carolina State University,1994,165-174
    [55]杨艳.加筋路基在重复车辆荷载作用下的变形性状研究:[长沙理工大学硕士学位论文].长沙:长沙理工大学,2007,52-58
    [56]廖化荣.交通荷载下路基软土动应力累积及塑性应变累积特性研究:[中山大学博士学位论文].广州:中山大学,2008,123-125
    [57]卜鑫.交通荷载下软土路基的动力响应分析:[浙江大学硕士学位论文].杭州:浙江大学,2006,97-99
    [58]陈勇.交通荷载对低路堤高速公路路基影响的数值模拟研究:[河海大学硕士学位论文].河海大学,2006,6-27
    [59]刘伟,汤连生,张庆华.车辆动载下路基土竖向动应力及扩散规律.重庆交通大学学报,2011,(4):799-802
    [60]Barksdale R D, Brown S F, Chan F. Potential benefits of geosynthetics in flexible pavement systems. National Cooperative Highway Research Program Report No.315. Transportation Research Board, National Research Council, Washington DC,1989,17-33
    [61]Yegian M K, Harb J N, KADAKAL U. Dynamic response analysis procedure for landfills with geosynthetic liners. Journal of Geotechnical and Geoenvi-romental Engineering. ASCE,1998.124(10):1027-1033.
    [62]Li J, Ding D W. Nonlinear elastic behavior of fiber reinforced soil under cyc-lic loading. Soil Dynamics and Earthquake Engineering,2002,22(9):977-983
    [63]张兴强,邓卫东,陈文金等.动载作用下土工格栅加筋土计算模型的研究.水利学报,2001,(7):91-97.
    [64]刘飞禹,余炜,蔡袁强等.考虑软土软化特性的软基加筋道路动力响应.哈尔滨工业大学学报,2009,(41):138-143
    [65]Huang W X. Investigation on stability of saturated sand foundations and slopes against Liquefaction. In:Proceedings of the fifth International Confe-rence of Soil Mechanics and Foundation Engineering:Vol.2. Paris:1961. 629-631
    [66]徐志英.沈珠江.土坝地震孔隙水压力产生、扩散和消散的有限元法动力分析.华东水利学院学报,1981,(4):1-16
    [67]徐志英.周健.土坝地震孔隙水压力产生、扩散和消散的三维动力分析.地震工程和工程振动.1985,(4):57-72
    [68]刘明.饱和软粘土动力本构模型研究与地铁隧道长期振陷分析.[同济大学博士学位论文].上海:同济大学,2006,51-52
    [69]中华人民共和国行业标准.公路土工合成材料应用技术规范(JTJ/T 019-98).1998.20-23
    [70]俞仲泉,李少豫.土工织物加固堤基的离心模型试验.岩土工程学报,989,(1):67-72
    [71]李广信.陈轮,蔡飞.加筋土应力变形计算的新途径.岩土工程学报,1994,(3):46-53
    [72]Yin-jianhua. A one-dimensional geosynthetics-reinforced foundation model with non-linear spring support Chinese Journal of Geotechnical Engineering. 1998,20(1):76-79.
    [73]徐少曼,洪昌华.考虑加筋垫层的堤坝下软基稳定分析法.土木工程学报,2000,(4):25-30
    [74]Caught R W, Woodwatd R J. Analysis of embanlanent stress and deformations. Journal of the Soil Mechanics and Foundations Division ASCE,1967, 93(SM4):529-545
    [75]Duncan J M, Chang C Y. Non-linear anslysis of stress and strain in soils. Journal of the soil mechanics and foundations Division ASCE,1970, (5): 1629-1653
    [76]Duncan J M. Strengh,stress-strain and bulk modulus parameters for finite element analysis of stress and movements in soil masses,Report No.UCB/GT/80-01,Univasity of Clifomia,Berkeley,1980,56-61
    [77]Duncan J M.A computer program for finite element analysis of dams, Report No.UCB/GT,univasity of Clifornis,Berkeley,1984,65-75
    [78]Andrawas. The finite element method of analysis apllied to soil-geotexfles systens,2nd Internation-Conf on Geotextiles,Las Vegs,1982,695-700
    [79]张道宽.土工织物加强软土地基的研究.北京:铁道部学研究院科,1987,18-19
    [80]乐翠英.利用土工织物加固油雄软基的有限元分析.沈阳:全国第二届生工合成材料学术会议,1990.371-375
    [81]李艳春.弹簧元模型用于分析土工格栅受力特性的研究.上海:全国第四届土工合成材料学术会议,1996.159-163
    [82]介玉新.加筋土的等效附加应力法分析及模型试验研究:[清华大学博士学位论文].北京:清华大学.1998.80-81
    [83]马缤辉.土工格室+碎石桩双向增强复合地基承载特性及沉降计算研究:[湖南大学博士学位论文].长沙:湖南大学,2012,45-46
    [84]杨果林.现代加筋土技术应用与研究进展.力学与实践,2002,(1):9-17
    [85]杨果林,王永和.钢筋(煤矸石)混凝土网格式加筋土挡土结构强度特性与试验研究.岩土工程学报,1999,(5):534-539
    [86]贾胜娟.土工格室处治半填半挖路基的有限元分析:[河北工业大学硕士学位论文].河北工业大学,2007,40-42
    [87]王炳龙,周顺华,宫全美等.不同高度土工格室整治基床下沉病害的试验研究.岩土工程学报,2003,(25):165-169
    [88]Koerner R M. Designing with Geosynthetics. New Jersey prentice Hall,1998: 109-114
    [89]王协群,王陶,王钊.土工格室加筋地基的承载力.长江科学院院报,2004,(2):60-64
    [90]王协群.土工合成材料加筋地基的极限平衡设计与加筋材料的研究:[武汉理工大学博士学位论文].武汉:武汉理工大学,2003,65-67
    [91]赵明华,杨明辉,陈昌富.土工格室+碎石桩复合地基承载机理及其试验研究.公路交通科技,2005,(11):6-11
    [92]陈昌富.组合型复合地基加固机理及仿生智能优化分析计算方法研究.浙江大学博士后出站报告,2005,15-16
    [93]饶为国,江辉煌,侯庆华.桩-网复合地基工后沉降的薄板理论解.水利学报,2002,(4):23-27
    [94]饶为国,胡凤庚,陈建明等.桩-网复合地基及其沉降计算.北京交通管理干部学院学报,2001,(4):11-18
    [95]饶为国,赵成刚.桩-网复合地基应力比分析与计算.土木工程学报,2002,(2):74-80
    [96]饶为国,杜文锋,罗卫东等.三点法推算桩-网复合路基工后沉降量.公路,2001,(8):92-95
    [97]赵明华,杨明辉,吴亚中等.土工格室+碎石桩复合地基承载机理及其试验研究.公路交通科技,2005,22(11):6-9
    [98]杨宇,陈昌富,赵明华.桩承式水平加筋复合地基承载性能及影响因素研究.中南公路工程,2007,(2):73-76
    [99]赵明华,张玲,蒋德松.土工格室+碎石桩处治软土路基设计计算方法.公路交通科技,2008,25(4):47-51
    [100]杨宇,陈昌富,赵明华.水平加筋与散体材料桩组合型复合地基承载力计算.公路交通科技,2008,25(6):35-39
    [101]赵明华,刘敦平,张玲.双向增强体复合地基工后沉降分析.公路交通科技,2008,25(10):26-30
    [102]赵明华.张玲,邹新军等.土工格室+碎石桩双向增强复合地基研究进展.中国公路学报.2009,(1):1-10
    [103]倪富健,韩艳,顾兴宇.土工格室水泥混凝土路面结构力学分析.东南大学学报(自然科学版),2004,(5):651-655
    [104]顾良军.土工格室结构层工程性状试验研究:[长安大学硕士学位论文].长安:长安大学,2004,10-39
    [105]杨爱武.土工合成材料加筋地基研究:[合肥工业大学硕士学位论文].合肥:合肥工业大学,2006,43-46
    [106]张志国,刘鼎兴.土工格室处理的软基沉降的有限长梁解.甘肃水利水电技术,2004,(2):136-137
    [107]张福海.堤坝土工格室加筋垫层变形的双参数法分析:[河海大学硕士学位论文].南京:河海大学,1998,23-36
    [108]周正兵.土工格室加筋软土地基的沉降变形与地基承载力研究:[武汉大学硕士学位论文].武汉:武汉大学,2002,21-32
    [109]刘俊彦.加筋垫层减小软基沉降的现场试验及分析:[西南交通大学硕士学位论文].成都:西南交通大学,2002,67-68
    [110]俞永华.桥头楔型柔性搭板作用性状的仿真分析:[长安大学硕士学位论文].西安:长安大学,2002,29-30
    [111]华锋.风积沙作为路面结构材料的研究:[长安大学硕士学位论文].西安:长安大学,2003,24-34
    [112]韩明.高速公路软土地基土工格室加筋路堤研究:[东南大学硕士学位论文].南京:东南大学,2004,22-23
    [113]陈昌富.组合型复合地基加固机理及仿生智能优化分析计算方法研究.杭州:浙江大学,2005,108-109
    [114]邓岳保.格室垫层刚度测试技术及其计算理论研究:[湖南大学硕士学位论文].长沙:湖南大学,2009,30-33
    [115]杨明辉,邓岳保,赵明华.基于叠梁试验的土工格室垫层刚度确定方法研究.土木工程学报,2011,(11),87-92
    [116]Machan G, Diamond S. Laboratory Study of the Effeetiveness of Cemented of Lime Stabilization for Erosion Control. Transportation Research Board.1977. Vol32:97-110
    [117]Dempsey B J. Laboratory and field studies of channeling and pumping. Transportation Research Record,1982:34-38
    [118]Vanwijk A J.Rigid Pavement Pumping Sub base Erosion and Economic Mod-eling Rigid Pavement. Purdue University,1985:34-38
    [119]Dixon P. Robertson A I. A compact,self-contained zooplankton Pump for use in shallow coastal habitats:design and Performance compared to net sam-ples.1986. Vol32:97-110
    [120]Vanwijk A J, Larralde J, Lovell C.W, Wai F Chen. PumPing. Prediction model for highway concrete Pavement[J].Journal of Transportation Engineer-ing,1989. Vol.115:161-175
    [121]Hansen E C, Johansson R, Armaghani J M. Field effects of water Pumping beneath concrete Pavements labs.Journal of Transportation Engineering,1991, Vol.117:679-696
    [122]黄立葵.美国路面结构与性能.中南公路工程,2005,(3),157-161
    [123]中华人民共和国交通部.公路路面基层施工技术规范(JTJ034-2000).北京,人民交通出版社,2000,15-17
    [124]沙爱民,胡力群.半刚性基层材料抗冲刷性能试验方法研究.中国公路学报,2002,(2):7-10
    [125]沙爱民,胡力群.路面基层材料抗冲刷性能试验研究.岩土工程学报,2002,(3):276-280
    [126]陈晔,罗立武.沥青路面纤维半刚性基层材料的抗裂设计研究.长沙交通学院学报11992,(2):37-46
    [127]胡力群.半刚性基层材料抗冲刷性能试验研究:[西安公路交通大学硕士学位论文].西安:西安公路交通大学,2000,42-45
    [128]郝培文,胡长顺,张炳乾等.刚性基层材料抗冲刷性能的研究.西安公路交通大学学报,2000,(2):9-11
    [129]刘红瑛.骨架密实型二灰稳定碎石基层配合比设计方法及路用性能研究:[长安大学硕士学位论文].西安:长安大学,2001,23-25
    [130]张嘎吱.考虑抗裂性的水泥稳定类材料配合比设计方法研究:[长安大学硕士学位论文].西安:长安大学,2001,30-32
    [131]易志坚,唐伯明,李祖伟等.水泥混凝土路面面层与基层相互作用引起的基本破坏形式及重要影响.重庆交通学院学报,2001,(11):34-38
    [132]杨红辉.掺膨胀剂及纤维水泥稳定碎石抗裂性能研究:[长安大学硕士学位论文].西安:长安大学,2003.24-27
    [133]安博生.二灰碎石基层抗冲刷性能试验方法研究.石油工程建设.2005,(4):16-18
    [134]孙兆辉.基于抗裂性能的水泥稳定碎石级配组成研究.公路,2006,(8):34-40
    [135]杜天玲.傅智.赵尚传等.黄土地区半刚性基层材料的抗冲刷性能试验研究.公路交通科技(应用技术版),2007.36-37
    [136]马银华,易志坚,杨庆国等.聚丙烯纤维水泥稳定粒料抗冲刷性能试验研究.武汉理工大学学报,2008,(2):32-35
    [137]束懿,魏建明.重交通下半刚性基层材料抗冲刷性能的研究.路基工程,2009,(5):19-21
    [138]Rea C. Mitchell J K. Sand reinforcement using paper grid cells. Proceedings of the Symposium on Earth Reinforcement. Pittsburg:ASCE,1978,644-663
    [139]Bathurst R J, Crowe R E. Recent case histories of flexible retaining walls in North American, Recent case histories of Permanent geosynthetic-reinforced soil retaining walls. Tatsuoka. Rotterdam:Balkema,1994.3-19
    [140]Dash S K, Krishnaswamy N R, Rajagopal K. Bearing capacity of strip footings supported on geocell reinforced sand. Geotextiles and Geomembranes,2001, 19:235-256
    [141]傅舰锋.土工格室柔性结构层力学性状的试验研究:[长安大学硕士学位论文].西安:长安大学,2002,1-18
    [142]杨晓华,林法力.土工格室结构层抗变形性能模型试验.长安大学学报(自然科学版),2006,(3):1-4
    [143]叶方才,顾良军.土工格室粗砂结构层压缩变形性状试验研究.公路交通科技,2003,71-73
    [144]马卓军,张兴彦,贾振功.土工格室加筋粘性土的强度特性研究.公路,2000,(10):34-35
    [145]龚晓南.复合地基理论及工程应用(第二版).北京:中国建筑工业出版社,2007,12-17
    [146]中华人民共和国交通运输部.公路软土地基路基设计与施工技术规范(JTJ017-96).北京:人民交通出版社,1997,53-54
    [147]Perloff W H, Baladi G Y,Harr M E. Stress distribution within and under long elastic embankments. Highway Research Record,1967,6,181:12-40
    [148]蒋关鲁.王海龙,李安洪.高速铁路路基基底应力计算方法研究.铁道建筑,2009,,(4):65-69
    [149]陈昌富,赵明华,杨宇等.土工格室+碎石桩复合地基加固机理及受力特性研究.第八届全国地基处理学术讨论会论文集.合肥:合肥工业大学出版社.2004.237-241
    [150]Chandrasek B. Broms B B. Wong K S. Strength of fabric reinforced sand un-der axisymmetric loading. Geotextiles and Geomembranes,1989.16(8): 293-310
    [151]Bathurst R J, Karpurapu R. Large-scale triaxial compression testing of geocell reinforced granular soils. Geotechnical Testing Journal,1993,7(3):296-303
    [152]Henkel D J, Gilbert G D. The effect of the rubber membrane on the measured triaxial compression strength of clay samples. Geotechnique,1952,(1):14-20
    [153]Rajagopal K, Krishnaswamy N R, Latha G M. Behaviour of sand confined with single and multiple geocells. Geotextiles and Geomembranes,1999, 15(17):171-184
    [154]Madhavi G. Latha K,Rajagopa N R. Krishnaswamy. Experimental and theo-retical investigations on geocell-supported embankments. International Jour-nal of Geomechanics,ASCE,2006,6(1):30-35
    [155]Michael T, Adams, James G. Collin. Large Model Spread Footing Load Tests on Geosynthetic Reinforced Soil Foundations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1997,123(1):66-72
    [156]Jhan K A KINS. Case studies of geogrid-reinforced and pile-supported earth structures on weak foundation soils. Proceedings of International Deep Foun-dation Congress Geotechnical Special Publication No.116, Deep Foundations 2002,edited by O'Neill and Towsend,ASCE, Orlando,2002:668-679
    [157]Reinaldo Vega-Meyer,Yong Shao. Geogrid-reinforced and pile-supported roadway embankment. Geo-Frotniers 2005 Conference Proceedings-GSP 131: Contemporary Issues in Foundation Engineering-Geosynthetic Reinforced, Pile Supported Embankments.ASCE,2005.3445-3456
    [158]Cheng C F, Yang Y. Research on bearing capacity of geosynthetic-reinforced and pile-supported earth platforms over soft soil and analysis of its affecting factors. In:proceedings of the GeoShanghai International Conference 2006, New York:ASCE publications,2006.115-123
    [159]杨晓华.土工格室加固饱和黄土地基性状及承载力.长安大学学报(自然科学版),2004,(3):5-8
    [160]中华人民共和国交通运输部.公路水泥混凝土路面设计规范(JTG-D40-2011).北京:人民交通出版社,2011.38-45
    [161]黄义,何芳社.弹性地基上的梁、板、壳.北京:科学出版社,2005,21-24
    [162]田口玄一.实验设计法(上).北京:机械工业出版社.1987.1-16
    [163]马希文.正交设计的数学理论.北京:人民教育出版社,1981.56-58
    [164]侯航舰.级配碎石层格室加劲技术研究及其效果评价:[同济大学博士学位论文].上海:同济大学.2008,78-79
    [165]徐挺.相似理论与模型试验.北京:中国农业机械出版社,1982,62-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700