反应型氰离子和硫醇探针合成及光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氰化物是医药、合成树脂、杀虫剂、化肥、农药等的重要原料,同时还是冶金、镀金工业用的一种重要试剂。但氰化物属于剧毒物质,对人的中毒量及致死量极微,除了直接误服外,其粉尘和蒸汽也能通过消化道或呼吸道进入人体,甚至能渗入人和动物的皮肤,与体内细胞色素氧化酶中的三价铁结合,从而使人和动物的细胞不能获取氧,失去了传递氧的作用,使机体缺乏氧,导致中毒甚至造成内窒息死亡因此,研究微量氰根的测定方法在环境监测和食品分析中非常重要。长期以来,人们就其定量方法做出了大量的研究。传统的氰根离子的识别主要是通过氰根与探针之间的氢键作用,但是存在着选择性差的缺陷。本文主要是选择香豆素和蒽作为发光基团,1,3-茚满二酮和苯并[b]噻吩-3(2H)-酮1,1-二氧化物作为受体,设计合成了一系列的荧光化学传感器,用于识别氰根离子。
     另一方面,硫醇在结构上含有强亲核性的巯基,在性质上和氰离子一样,也能和α,β-不饱和双键发生1,4-加成反应,实现对硫醇的专一识别。生物硫醇如半胱氨酸(Cys)、同型半胱氨酸(Hcy)和谷胱甘肽(GSH)在维持细胞新陈代谢和氧化还原平衡等众多生理过程中扮演着重要的角色。细胞内硫醇水平的改变与很多疾病密切相关,如牛皮癣、癌症和艾滋病。体内缺乏半胱氨酸(Cys)会导致很多病症,如儿童生长缓慢,皮肤损伤,头发掉色,肝脏水肿。血液中高浓度的同型半胱氨酸(Hcy)是冠心病和脑梗塞的独立致病因素。谷胱甘肽(GSH)是细胞内最富裕的非蛋白质硫醇,在维持细胞的氧化还原动态平衡中起着重要作用,而且谷胱甘肽的水平还与许多疾病和癌症有着直接的联系。因此,定量检测生物体系中硫醇的浓度在生物化学和临床化学中具有重要意义。该部分主要是选择香豆素作为发光基团,苯并[b]噻吩-3(2H)-酮1,1-二氧化物作为受体,设计合成了一种的比色化学传感器,用于识别硫醇。
     本论文主要的内容如下所述:
     第一章,重点介绍了化学传感器的原理,并对于氰根离子和硫醇的检测进展进行了综述,最后提出了本文的主要研究内容。
     第二章,以香豆素为发光基团,1,3-茚满二酮为受体,合成了一种香豆素-1,3-茚满二酮的加合物(2-1)。化合物2-1能够在乙腈中,氰离子和化合物2-1发生迈克加成反应,荧光光谱上表现为一种比率荧光变化,同时显示了快速响应性和高选择性。化合物2-1分子内存在着强的分子内电荷转移效应(ICT),当氰根离子加成以后,分子内的共轭体系遭到破坏,ICT终止,紫外-可见光谱和荧光光谱上都有明显的比率变化。同时溶液颜色由粉红色变成无色。主客体之间是通过1:1的化学计量比进行反应的,加成产物通过核磁滴定和高分辨质谱得以证实。此外,研究了分子结构中含有吸电子的硝基基团(2-2)的影响。
     第三章,以香豆素为发光基团,苯并[b]噻吩-3(2H)-酮1,1-二氧化物为受体,合成了一种香豆素-苯并[b]噻吩-3(2H)-酮1,1-二氧化物(3-1)。化合物3-1能够在乙腈中,氰根离子和化合物3-1发生迈克加成反应,荧光光谱上表现为一种比率荧光变化,同时显示了快速响应性和高选择性。化合物3-1分子内存在着强的ICT效应,当氰根离子加成以后,分子内的共轭体系遭到破坏,ICT终止,紫外-可见光谱和荧光光谱上都有明显的比率变化。同时溶液颜色由粉红色变成无色。主客体之间是通过1:1的化学计量比进行反应的,加成产物通过核磁滴定和高分辨质谱得以证实。
     第四章,以蒽为发光基团,1,3-茚满二酮为受体,合成了一种香豆素-1,3-茚满二酮(4-1)。化合物4-1能够在乙腈中,氰根离子和化合物4-1发生迈克加成反应,荧光光谱上表现为一种双发射增强型变化,同时显示了快速响应性和高选择性。化合物4-1整个分子处于一个共轭体系,当氰根离子加成以后,分子内的共轭体系遭到破坏,但分子结构变得更加柔性,分子更容易发生折叠,光照下,分子内部形成激基复合物(Exciplex),分子内的光诱导电子转移(PET)终止,荧光光谱上都有明显的变化。同时溶液颜色由黄色变成无色。主客体之间是通过1:1的化学计量比进行反应的,加成产物通过核磁滴定和高分辨质谱得以证实。
     第五章,化合物2-1,3-1能够在DMSO-PBS buffer (0.01M, pH=7.4,9:1, v/v)体系中,和硫醇发生迈克加成反应,紫外-可见光谱上表现为一种比率型变化,同时显示了快速响应性和高选择性。化合物2-1,3-1分子内存在着强的ICT效应,当硫醇加成以后,分子内的共轭体系遭到破坏,分子内的电荷转移(ICT)终止,紫外-可见光谱上都有明显的蓝移。同时溶液颜色由紫蓝色变成无色。
Among various anions, cyanide is one of the most concerned anions because of its being widely used in synthetic fibers, resins, herbicide, and the gold-extraction process. However, cyanide anion is extremely detrimental, and could be absorbed through lungs, gastrointestinal track and skin, leading to vomiting, convulsion, loss of consciousness, and eventual death. Thus, there is a need for an efficient sensing system to monitor cyanide concentration from contaminant sources. Due to the importance of cyanide in environment, the design and synthesis of efficient cyanide receptors attracts intensive interests of scientists and have become a significant subject in the field of supramolucular chemistry. However, the traditional cyanide synthetic receptors or sensors on the basis of hydrogen bonding interactions show poor selectivity due to the presence of F-, AcO-, CO32-, HCO3-, HSO4-, and H2PO4-which often display the strong interference to cyanide detection. In this dissertation, three novel fluorescent probes with coumarin and anthracene as fluorophores and1,3-indanedione and benzo[b]thiophene-3(2H)-one1,1-dioxide as receptors for cyanide were designed and synthesized.
     On the other hand, considering the similar strong nucleophility of the thiols and cyanide, we were thinking that the conjugate1,4-addition of thiols to unsaturated bond could be used for the detection of thiol with high selectivity. Biothiols such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) play crucial roles in many physiological processes. Alternations in the level of cellular thiols have been linked to a number of diseases, such as cardiovascular disease, Alzheimer's disease, leucocyte loss, psoriasis, liver damage, cancer, and AIDS. Thus, it is important to develop efficient methods for the detection and quantification of biothiols in physiological media for academic research and clinic applications. Due to their simplicity, inexpensiveness, sensitivity and selectivity, optical approach based on synthetic colorimetric and fluorescent probes has attracted increasing interest during the last decade. In the last part of this dissertation, a novel fluorescent probe with coumarin as fluorophore and benzo[b]thiophene-3(2H)-one1,1-dioxide as receptor for thiol was designed and synthesized.
     The main contents and results are outlined as follows:
     In chapter1, the major sensing principles of optical chemosensors are introduced, and the progress of cyanide recognition and thiol detection is reviewed. Finally, the objective of this dissertation was proposed.
     In chapter2, a ratiometric fluorescent probe (2-1) based on coumarin-indandione conjugate was synthesized for cyanide detection. A colorimetricand ratiometric fluorescent probe (2-1) for the detection of cyanide ion based on the1,4-addition reaction of cyanide ion to indandione moiety in CH3CN, exhibits fast response and high selectivity toward cyanide ion over other anions. The Michael addition of cyanide to indandione of2-1would block the ICT from the electron-rich coumarin group to the electron-poor indandione group, leading to a blue shift in the absorption spectra and emission spectra with an observed color change (from pink to colorless). The1:1binding stoichiometry for the compound2-1with cyanide ion was confirmed by HRMS, and the proposed mechanism was confirmed by1HNMR. Additionally, compound2-2with a nitro group was designed and synthesized as a control compound for investigating the substituent effect.
     In chapter3, a ratiometric fluorescent probe (3-1) based on coumarin-benzo[b]thiophene-3(2H)-one1,1-dioxide conjugate was synthesized for cyanide detection. A colorimetric and ratiometric fluorescent probe (3-1) for the detection of cyanide ion based on the1,4-addition reaction of cyanide ion to benzo[b]thiophene-3(2H)-one1,1-dioxide moiety in CH3CN, exhibits fast response and high selectivity toward cyanide ion over other anions. The Michael addition of cyanide to benzo[b]thiophene-3(2H)-one1,1-dioxide of3-1would block the ICT from the electron-rich coumarin group to the electron-poor benzo[b]thiophene-3(2H)-one1,1-dioxide group, leading to a blue shift in the absorption spectra and emission spectra with an observed color change(from pink to colorless). The1:1binding stoichiometry for the compound3-1with cyanide ion was proven by HRMS, and the proposed mechanism was confirmed by1HNMR.
     In chapter4, a turn-on fluorescent probe (4-1) based on anthracene-indanedione conjugate was synthesized for cyanide detection. A colorimetric (from yellow to colorless) and turn-on fluorescent probe (4-1) for the detection of cyanide ion based on the 1,4-addition reaction of cyanide ion to indandione moiety in CH3CN, exhibits fast response and high selectivity toward cyanide ion over other anions. The Michael addition of cyanide to indandione of4-1would block the π-conjugation of the molecule and the whole molecular structure becomes flexible, which makes it easy for the two parts of the compound to fold. Consequently, light excitation may induce the interaction of1,3-indandione anion with anthracene, leading to exciplex formation. In addition, the fluorescence enhancement at short wavelength (467nm) is probably a result of the inhibition of PET quenching from the anthracene to the indandione-containing Michael receptor upon addition of cyanide. The1:1binding stoichiometry for the compound4-1with cyanide ion was proven by job'plot and by HRMS, and the proposed mechanism was confirmed by1HNMR.
     In chapter5, two colorimetric probes for the detection of thiol based on the1,4-addition reaction of thiol to indandione moiety in DMSO-PBS buffer, exhibit fast response and high selectivity toward thiol over other amino acids. The Michael addition of thiol to2-1or3-1would block the ICT from the electron-rich coumarin group to the electron-poor1,3-indandione or benzo[b]thiophene-3(2H)-one1,1-dioxide group, leading to a blue shift in the absorption spectra with an observed color change(from bluevoilet to colorless).
引文
[1]Yegor G. Timofeyenko, Jeffrey J. Rosentreter, and Susan Mayo, Piezoelectric Quartz Crystal Microbalance Sensor for Trace Aqueous Cyanide Ion Determination [J].Anal. Chem.2007,79:251-255.
    [2]Guidelines for Drinking-water Quality, World Health Organization, Geneva,2004.
    [3]Toshihiro Suzuki, Akiharu Hioki, Masayasu Kurahashi, Development of a Method for Estimating an Accurate Equivalence Point in Nickel Titration of Cyanide Ions [J]. Anal. Chim. Acta.,2003,476:159-165.
    [4]V. Kameswara Rao, S. Suresh, N. B. S. N. Rao, P. Rajaram, An Electrochemical sensor for Detection of Hydrogen Cyanide Gas [J]. Bull. Electrochem.,1997, 13(7):327-329.
    [5]Terri T. Christisona, Jeffrey S. Rohrera, Direct Determination of Free Cyanide in Drinking Water by Ion Chromatography with Pulsed Amperometric Detection [J]. Journal of Chromatography A,2007,1155 (1):31-39.
    [6]Dan Shan, Christine Mousty, and Serge Cosnier, Subnanomolar Cyanide Detection at Polyphenol Oxidase/Clay Biosensors [J]. Anal Chem,2004,76, 178-183.
    [7]Qi Zeng, Ping Cai, Zhen Li, Jingui Qin and Ben Zhong Tang, An Imidazole-Functionalized Polyacetylene:Convenient Synthesis and Selective Chemosensor for Metal Ions and Cyanide [J]. Chem. Commun.,2008, (9): 1094-1096.
    [8]Zhong'an Li, Xiaoding Lou, Haibo Yu, Zhen Li and Jingui Qin, An Imidazole-Functionalized Polyfluorene Derivative as Sensitive Fluorescent Probe for Metal Ions and Cyanide [J]. Macromolecules,2008,41(20):7433-7439.
    [9]Xiaoding Lou, Liyao Zhang, Jingui Qin and Zhen Li, An Alternative Approach to Develop a Highly Sensitive and Selective Chemosensor for the Colorimetric Sensing of Cyanide in Water [J]. Chem. Commun.,2008,44:5848-5850.
    [10]Xiaoqiang Chen, Seong-Won Nam, Gun-Hee Kim, Nari Song, Yongsuk Jeong, Injae Shin, Seog K. Kim, Jinheung Kim, Sungsu Park and Juyoung Yoon, A Near-Infrared Fluorescent Sensor for Detection of Cyanide in Aqueous Solution and Its Application for Bioimaging [J]. Chem. Commun.,2010, (46):8953-8955.
    [11]Ruslan Guliyeva, Onur Buyukcakira, Fazli Sozmenb,O. Altan Bozdemir, Cyanide-Sensing via Metal Ion Removal from a Fluorogenic BODIPY Complex[J]. Tetrahedron Letters,2009,50:5139-5141.
    [12]Xiaoding Lou, Yi Zhang, Shuang Li, Daxin Ou, Zhaomin Wan, Jingui Qin and Zhen Li, A new polyfluorene bearing pyridine moieties:a sensitive fluorescent chemosensor for metal ions and cyanide[J] Polym.Chem.,2012,3,1446.
    [13]Jiang-Fei Xu, Hong-Hai Chen, Yu-Zhe Chen, Zhong-Jin Li, Li-Zhu Wu, Chen-Ho Tung, Qing-Zheng Yang, A colorimetric and fluorometric dual-modal chemosensor for cyanide in water [J] Sensors and Actuators B 2012,168:14-19.
    [14]Hyo Sung Jung, Ji Hye Han, Zee Hwan Kim, Chulhun Kang, and Jong Seung Kim, Coumarin-Cu(II) Ensemble-Based Cyanide Sensing Chemodosimeter [J]. Org. Lett.,2011,13:5056-5059.
    [15]Li Shang, Lihua Jin and Shaojun Dong, Sensitive Turn-On Fluorescent Detection of Cyanide Based on the Dissolution of Fluorophore Functionalized Gold Nanoparticles [J]. Chem. Comm.,2009,21:3077-3079.
    [16]Mi Hee Kim, Sudeok Kim, Hyun Hye Jang, Sujung Yi, Seong Hyeok Seo, Min Su Han, Gold Nanoparticle-Based Colorimetric Sensing Ensemble for the Colorimetric Detection of Cyanide Ions in Aqueous Solution [J]. Tetrahedron Letters,2010,51:4712-4716.
    [17]Yueming Zhai, Lihua Jin, Ping Wang and Shaojun Dong, Dual-Functional Au-Fe3O4 Dumbbell Nanoparticles for Sensitive and Selective Turn-On Fluorescent Detection of Cyanide Based On the Inner Filter Effect [J]. Chem. Comm.,2011,47:8268-8270.
    [18]Ramachandram Badugu, Joseph R. Lakowicz, and Chris D. Geddes, Enhanced Fluorescence Cyanide Detection at Physiologically Lethal Levels:Reduced ICT-Based Signal Transduction [J]. J. Am. Chem. Soc.,2005,127:3635-3641.
    [19]Matinee Jamkratoke, Vithaya Ruangpornvisuti, Gamolwan Tumcharern, Thawatchai Tuntulani and Boosayarat Tomapatanaget. A-D-A Sensors Based on Naphthoimidazoledione and Boronic Acid as Turn-On Cyanide Probes in Water [J]. J. Org. Chem.,2009,74:3919-3922.
    [20]Jae Han Lee, A Reum Jeong, Ik-Soo Shin, Hae-Jo Kim and Jong-In Hong, Fluorescence Turn-On Sensor for Cyanide Based on a Cobalt(II) Coumarinylsalen Complex [J]. Org. Lett.,2010,12:764-767.
    [21]Nelida Gimeno, Xiaoe Li, James R. Durrant, Ramon Vilar, Cyanide Sensing with Organic Dyes:Studies in Solution and on Nanostructured Al2O3 Surfaces [J]. Chem. Eur. J.,2008,14:3006-3012.
    [22]Shih-Sheng Sun and Alistair J. Lees, Anion Recognition through Hydrogen Bonding:a Simple, yet Highly Sensitive, Luminescent Metal-Complex Receptor [J]. Chem. Common,2000,17,1687-1688.
    [23]Maurice O. Odago, Diane M. Colabello, Alistair J. Lees, A Simple Thiourea Based Colorimetric Sensor for Cyanide Anion [J]. Tetrahedron,2010,66:7465-7471.
    [24]Sukdeb Saha, Amrita Ghosh, Prasenjit Mahato, Sandhya Mishra, Sanjiv K. Mishra, E. Suresh, Satyabrata Das and Amitava Das, Specific Recognition and Sensing of CN-in Sodium Cyanide Solution [J]. Org. Lett.,2010,12:3406-3409.
    [25]Ming Dong, Yu Peng, Yu-Man Dong, Ning Tang, and Ya-Wen Wang. A Selective, Colorimetric, and Fluorescent Chemodosimeter for Relay Recognition of Fluoride and Cyanide Anions Based on 1,10-Binaphthyl Scaffold [J]. Org. Lett.,2012,14, 130-133.
    [26]Jose V. Ros-Lis, Ramon Martinez-Manez and Juan Soto. A Selective Chromogenic Reagent for Cyanide Determination [J]. Chem. Commun.,2002,19: 2248-2249.
    [27]Garci'a F, Garci'a J M, Garci'a-Acosta B, Marti'nez-Ma'nez R, Sanceno'n F, Soto J. Pyrylium-Containing Polymers as Sensory Materials for the Colorimetric Sensing of Cyanide in Water [J]. Chem Commun,2005,22,2790-2792.
    [28]YANG Y. K, TAE J. Acridinium Salt Based Fluorescent and Colorimetric Chemosensor for the Detection of Cyanide in Water [J]. Org. Lett.,2006,8: 5721-5723.
    [29]Sabir H. Mashraqui, Rupesh Betkar, Mukesh Chandiramani, Carolina Estarellas and Antonio Frontera, Design of a Dual Sensing Highly Selective Cyanide Chemodosimeter Based on Pyridinium Ring Chemistry [J]. New J. Chem.,2011, 35:57-60.
    [30]Xuehua Zhang, Chao Lia, Xuexin Cheng, Xuesong Wang, Baowen Zhang, A Near-Infrared Croconium Dye-Based Colorimetric Chemodosimeter for Biological Thiols and Cyanide Anion [J]. Sensors and Actuators B,2008,129: 152-157.
    [31]Abbas Afkhamia, Nahid Sarlaka, A Novel Cyanide Sensing Phase Based on Immobilization of Methyl Violet on Triacetylcellulose Membrane [J]. Sensors and Actuators B,2007,122:437-441.
    [32]Paramjit Kaur, Divya Sareen, Sandeep Kaur, Kamaljit Singh. An Efficacious 'Naked-Eye" Selective Sensing of Cyanide from Aqueous Solutions using a Triarylmethane Leuconitrile [J]. Inorg. Chem. Commun.,2009,12:272-275.
    [33]Haibo Yu, Meiyan Fu and Yi Xiao, Switching off FRET by analyte-induced decomposition of squaraine energy acceptor:A concept to transform'turn off' chemodosimeter into ratiometric sensors [J]. Physical Chemistry Chemical Physics,2010,12:7386-7391.
    [34]Seong-Jin Hong, Jaeduk Yoo, Sook-Hee Kim, Jong Seung Kim, Juyoung Yoon and Chang-Hee Lee, β-Vinyl Substituted Calix[4]pyrrole as a Selective Ratiometric Sensor for Cyanide Anion [J]. Chem. Commun.,2009,2:189-191.
    [35]Sook-Hee Kim, Seong-Jin Hong, Jaeduk Yoo, Sung Kuk Kim, Janathan L. Sessler and Chang-Hee Lee, Strapped Calix[4]pyrroles Bearing a 1,3-Indanedione at a, β-Pyrrolic Position:Chemodosimeters for the Cyanide Anion [J]. Org. Lett.,2009, 11:3626-3629.
    [36]Zhipeng Liu, Xiaoqing Wang, Zhenghao Yang, and Weijiang He, Rational Design of a Dual Chemosensor for Cyanide Anion Sensing Based on Dicyanovinyl-Substituted Benzofurazan [J]. J. Org. Chem.,2011,76 (24): 10286-10290.
    [37]Xiaofu Wu, Bowei Xu, Hui Tong, and Lixiang Wang, Highly Selective and Sensitive Detection of Cyanide by a Reaction-Based Conjugated Polymer Chemosensor [J]. Macromolecules,2011,44:4241-4248.
    [38]Zhipeng Liu, Xiaoqing Wang, Zhenghao Yang, and Weijiang He, Rational Design of a Dual Chemosensor for Cyanide Anion Sensing Based on Dicyanovinyl-Substituted Benzofurazan [J]. J. Org. Chem.,2011,76(24): 10286-10290.
    [39]Xiaohong Cheng, Yue Zhou, Jingui Qin, and Zhen Li, Reaction-Based Colorimetric Cyanide Chemosensors:Rapid Naked-Eye Detection and High Selectivity[J]. Appl. Mater. Interfaces 2012,4,2133-2138.
    [40]Gun-Joong Kim, Hae-Jo Kim, Coumarinyl Aldehyde as a Michael Acceptor Type of Colorimetric and Fluorescent Probe for Cyanide in Water [J]. Tetrahedron Letters,2010,51:2914-2916.
    [41]Gun-Joong Kim, Hae-Jo Kim, Doubly Activated Coumarin as a Colorimetric and Fluorescent Chemodosimeter for Cyanide [J]. Tetrahedron Letters,2010,51: 185-187.
    [42]Seokan Park, Hae-Jo Kim, Highly selective chemodosimeter for cyanide based on a doubly activated Michael acceptor type of coumarin thiazole fluorophore[J]. Sensors and Actuators B.2012.161.317-321.
    [43]Lin Yuan, Weiying Lin, Yueting Yang, Jizeng Song, and Jiaoliang Wang, Rational Design of a Highly Reactive Ratiometric Fluorescent Probe for Cyanide [J].Org. Lett.,2011,13(14):3730-3733.
    [44]Yu-Man Dong, Yu Peng, Ming Dong, and Ya-Wen Wang, A Selective, Sensitive, and Chromogenic Chemodosimeter for Cyanide Based on the 1,1'-Binaphthyl Scaffold [J]. Journal of Organic Chemistry,2011,76(16):6962-6966.
    [45]Hidekazu Miyaji, Dae-Sik Kim. Byoung-Yong Chang, Eunju Park, Su-Moon Park and Kyo Han Ahn, Highly Cooperative Con-Pair Recognition of Potassium Cyanide Using a Heteroditopic Ferrocene-Based Crown Ether-Trifluoroacetylcarboxanilid Receptor [J]. Chem. Common.,2008, (6): 753-755.
    [46]Hanna Lee, Yun Mi Chung, Kyo Han Ahn, Selective Fuorescence Sensing of Cyanide With An o-(carboxamido)Trifluoroacetophenone Fused with a Cyano-1,2-Diphenylethylene Fuorophore [J]. Tetrahedron Letters,2008,49: 5544-5547.
    [47]Yun Mi Chung, Balamurali Raman, Dae-Sik Kim and Kyo Han Ahn, Fluorescence Modulation in Anion Sensing by Introducing Intramolecular H-Bonding Interactions in Host-Guest Adducts [J]. Chem. Commun.,2006, (2): 186-188.
    [48]Zeynep Ekmekci, M. Deniz Yilmaz, and Engin U. Akkaya, A Monostyryl-boradiazaindacene (BODIPY) Derivative as Colorimetric and Fluorescent Probe for Cyanide Ions [J]. Org. Lett.,2008,10:461-464.
    [49]Hao-Tao Niu, Dongdong Su, Xueliang Jiang, Wenzhi Yang, Zhenming Yin, Jiaqi He and Jin-Pei Cheng. A Simple yet Highly Selective Colorimetric Sensor for Cyanide Anion in an Aqueous Environment [J]. Org. Biomol..Chem.,2008,6: 3038-3040.
    [50]Hao-Tao Niu, Xueliang Jiang, Jiaqi He, Jin-Pei Cheng, A Highly Selective and Synthetically Facile Aqueous-Phase Cyanide Probe [J]. Tetrahedron Letters,2008, 49:6521-6524.
    [51]Jalal Isaad, Ahmida El Achari, A Novel Cyanide Chemodosimeter Based on Frifluoroacetamide Benzhydrol-2 as Binding Motif:Importance of Substituent Positioning on Intra-Molecular Charge Transfer [J]. Tetrahedron.2011,67: 4196-4201.
    [52]Xin Lv, Jing Liu, Yunlong Liu, Yun Zhao, Maliang Chen, Pi Wang, Wei Guo, Rhodafluor-basedchromo-and fluorogenicprobe for cyanideanion [J]. Sensors and Actuators B:Chemical,2011,158(1):405-410.
    [53]Hongda Li, Bao Li, Long-Yi Jin, Yuhe Kan, Bingzhu Yin, A Rapid Responsive and Highly Selective Probe for Cyanide in the Aqueous Environment [J]. Tetrahedron,2011,67:7348-7353.
    [54]Chun-Lin Chen, Yen-Hsiu Chen, Chan-Yu Chen, and Shih-Sheng Sun, Dipyrrole Carboxamide Derived Selective Ratiometric Probes for Cyanide Ion [J]. Org. Lett., 2006,8:5053-5056.
    [55]Yue Sun, Guofeng Wang, Wei Guo, Colorimetric detection of cyanide with N-nitrophenyl benzamide derivatives [J]. Tetrahedron,2009,65(17):3480-3485.
    [56]Yao-Kang Tsui, Soosai Devaraj, Yao-Pin Yen, Azo dyes featuring with nitrobenzoxadiazolc (NBD) unit:A new selective chromogenic and fluorogenic sensor for cyanide ion[J]. Sensors and Actuators B,2012, 161:510-519.
    [57]Lee Kyung-Sik, Lee Jong Tak, Hong Jong-In, Kim Hae-Jo, Visual Detection of Cyanide through Intramolecular Hydrogen Bond [J]. Chemistry Letters,2007, 36(6):816-817.
    [58]Kyung-Sik Lee, Hae-Jo Kim, Gun-Hee Kim, Injae Shin, and Jong-In Hong, Fluorescent Chemodosimeter for Selective Detection of Cyanide in Water [J]. Org. Lett.,2008,10:49-51.
    [59]Soo Kyung Kwon, Songzi Kou, Ha Na Kim, Xiaoqiang Chen, Hyejin Hwang, Seong-Won Nam, So Hyun Kim, K.M.K. Swamy, Sungsu Park, Juyoung Yoon, Sensing Cyanide Ion via Fluorescent Change and Its Application to the Microfluidic System [J]. Tetrahedron Letters,2008,49:4102-4105.
    [60]Jonathan L. Sessler and Dong-Gyu Cho, The Benzil Rearrangement Reaction: Trapping of a Hitherto M inor Product and Its Application to the Development of a Selective Cyanide Anion Indicator [J]. Org. Lett.,2008,10:73-75.
    [61]Dong-Gyu Cho, Jong Hoon Kim and Jonathan L. Sessler, The Benzil-Cyanide Reaction and Its Application to the Development of a Selective Cyanide Anion Indicator[J].J. Am. Chem. Soc.,2008,130:12163-2167.
    [62]Young-Keun Yang and Jinsung Tae, Acridinium Salt Based Fluorescent and Colorimetric Chemosensor for the Detection of Cyanide in Water [J]. Org Lett, 2006,8,5721-5723.
    [63]E. Palomares, M. V. Martinez-Diaz, T. Torres, E. Coronado, A Highly Sensitive Hybrid Colorimetric and Fluorometric Molecular Probe for Cyanide Sensing Based on a Subphthalocyanine Dye [J]. Adv. Funct. Mater.,2006,16:1166-1170.
    [64]Jose V. Ros-Lis, Ramon Martinez-Manez and Juan Soto, Subphthalocyanines as Fluoro-Chromogenic Probes for Anions and Their Application to the Highly Selective and Sensitive Cyanide Detection [J]. Chem. Commun.,2005,42: 5260-5262.
    [65]Jung Oh Huh, Youngkyu Do and Min Hyung Lee, A BODIPY Borane Dyad for the Selective Complexation of Cyanide Ion [J]. Organometallics,2008,27: 1022-1025.
    [66]Xin Lv, Jing Liu, Yunlong Liu, Yun Zhao, Yuan-Qiang Sun, Pi Wang and Wei Guo, Ratiometric fluorescent detection of cyanide based a hybrid coumarin-hemicyanine dye:the large emission shift and the high selectivity [J]. Chem. Commun.,2011, (47):12843-12845.
    [67]Hao-Tao Niu, Xueliang Jiang, Jiaqi He, Jin-Pei Cheng, Cyanine Dye-Based Chromofluorescent Probe for Highly Sensitive and Selective Detection of Cyanide in Water [J]. Tetrahedron Letters,2009,50,6668-6671.
    [68]Subodh Kumar, Sandeep Kumar, 1-(4-Nitrophenyl)-Benzimidazolium-Based Ratiometric Chromogenic Probes for Cyanide Ion [J]. Tetrahedron Letters,2009, 50:4463-4466.
    [69]Hyun Jung Kim, Kyoung Chul Ko. Jae Hong Lee, Jin Yong Lee and Jong Seung Kim, KCN Sensor:Unique Chromogenic and'Turn-On'Fluorescent Chemodosimeter:Rapid Response and High Selectivity [J]. Chem Commun,2011, 47,2886-2888.
    [70]Xin Lv, Jing Liu, Yunlong Liu, Yun Zhao, Maliang Chen, Pi Wang and Wei Guo A ratiometric fluorescent probe for cyanide based on FRET [J]. Org. Biomol. Chem., 2011,9:4954-4958.
    [71]Junro Yoshino, Naokazu Kano and Takayuki Kawashima, Fluorescence Properties of Simple N-Substituted Aldimines with a B-N Interaction and Their Fluorescence Quenching by a Cyanide Ion [J]. J. Org. Chem.,2009,74:7496-7503.
    [72]Carmel, R.; Jacobsen and Eds, D. W. Homocysteine in Health and Disease [M]. Cambridge Press:Cambridge, UK,2001.
    [73]Chen, Xiaoqiang; Zhou, Ying; Peng, Xiaojun; Yoon, Juyoung, Fluorescent and colorimetric probes for detection of thiols [J]. Chemical Society Reviews,2010, 39(6):2120-2135.
    [74]Weiying Lin, Lin Yuan, Zengmei Cao, Yanming Feng, Lingliang Long, A Sensitive and Selective Fluorescent Thiol Probe in Water Based on the Conjugate 1,4-Addition of Thiols to α,β-Unsaturated Ketones [J].Chemistry-A European Journal,2009,15(20):5096-5103.
    [75]Deng, Ling; Wu, Wenting; Guo, Huimin; Zhao, Jianzhang; Ji, Shaomin; Zhang, Xin; Yuan, Xiaolin; Zhang, Chunlei, Colorimetric and Ratiometric Fluorescent Chemosensor Based on Diketopyrrolopyrrole for Selective Detection of Thiols: An Experimental and Theoretical Study [J]. Journal of Organic Chemistry,2011, 76(22):9294-9304.
    [76]Jose V. Ros-Lis, Beatriz Garcia, Diego Jimenez, Ramon Martinez-Manez, Felix Sancenon, Juan Soto, Fernando Gonzalvo, and M. Carmen Valldecabres, Squaraines as Fluoro-Chromogenic Probes for Thiol-Containing Compounds and Their Application to the Detection of Biorelevant Thiols [J]. J. Am. Chem. Soc., 2004,126 (13):4064-4065.
    [77]Zuo, Q.; Li, B.; Pei, Q.; Li, Z.; Liu, S. A highly selective fluorescent probe for detection of biological samples thiol and its application in living cells [J]. J. Fluoresc.2010,20:1307-1313.
    [78]Jung, H. S.; Ko, K.C.; Kim, G.; Lee, A.; Na, Y.; Kang, C.; Lee, J. Y.; Kim, J. S. Coumarin-Based Thiol Chemosensor:Synthesis, Turn-On Mechanism, and Its Biological Application [J]. Org. Lett.,2011,13:1498-1501.
    [79]Kwon, Hyockman; Lee, Kiwon; Kim, Hae-Jo, Coumarin-malonitrile conjugate as a fluorescence turn-on probe for biothiols and its cellular expression [J]. Chemical Communications,2011,47(6):1773-1775.
    [80]Gun-Joong Kim, Kiwon Lee, Hyockman Kwon, and Hae-Jo Kim, Ratiometric Fluorescence Imaging of Cellular Glutathione [J]. Org. Lett.,2011,13 (11): 2799-2801.
    [81]Jung, H. S.; Han, J.H.; Pradhan, T.H.; et al., A cysteine-selective fluorescent probe for the cellular detection of cysteine[J].Biomaterials,2012,33(3):945-953.
    [1]Tsin R. Y, Poenie M. Fluoreseence Ratio Imaging:a New Window into Intracellular Ionic Signaling [J]. Trends Biochem Sci,1986,11:450-455.
    [2]Lin Yuan, Weiying Lin, Yueting Yang, Jizeng Song, and Jiaoliang Wang, Rational Design of a Highly Reactive Ratiometric Fluorescent Probe for Cyanide [J].Org. Lett.,2011,13 (14):3730-3733.
    [3]Chun-Lin Chen, Yen-Hsiu Chen, Chan-Yu Chen, and Shih-Sheng Sun, Dipyrrole Carboxamide Derived Selective Ratiometric Probes for Cyanide Ion [J]. Org. Lett.,2006,8:5053-5056.
    [4]Kizhumuri P. Divya, Sivaramapanicker Sreejith, Bugga Balakrishna, Purushothaman Jayamurthy, Palappuravan Anees and Ayyappanpillai Ajayaghosh, A Zn2+-specific fluorescent molecular probe for the selective detection of endogenous cyanide in biorelevant samples [J]. Chem. Commun., 2010, (46):6069-6071.
    [5]Haibo Yu, Meiyan Fu and Yi Xiao, Switching off FRET by analyte-induced decomposition of squaraine energy acceptor:A concept to transform turn off chemodosimeter into ratiometric sensors [J]. Phys. Chem. Chem. Phys.,2010, 12:7386-7391.
    [6]Sukdeb Saha, Amrita Ghosh, Prasenjit Mahato, Sandhya Mishra, Sanjiv K. Mishra, E. Suresh, Satyabrata Das and Amitava Das, Specific Recognition and Sensing of CN- in Sodium Cyanide Solution [J]. Org. Lett.,2010,12: 3406-3409.
    [7]Haibo Yu, Qin Zhao, Zhongxing Jiang, Jingui Qin, Zhen Li, A ratiometric fluorescent probe for cyanide:Convenient synthesis and the proposed mechanism [J]. Sensors and Actuators B:Chemical,2010,148(1):110-116.
    [8]Xin Lv, Jing Liu, Yunlong Liu, Yun Zhao, Maliang Chen, Pi Wang and Wei Guo A ratiometric fluorescent probe for cyanide based on FRET [J]. Org. Biomol. Chem.,2011,9:4954-4958.
    [9]Zhipeng Liu, Xiaoqing Wang, Zhenghao Yang, and Weijiang He, Rational Design of a Dual Chemosensor for Cyanide Anion Sensing Based on Dicyanovinyl-Substituted Benzofurazan [J]. J. Org. Chem.,2011,76 (24): 10286-10290.
    [10]John F. Callan, A. Prasanna de Silva, David C. Magri, Luminescent sensors and switches in the Early 21st century [J]. Tetrahedron,2005,61(36): 8551-8588.
    [11]刘文玉,张宗礼,林道兵等.化工百科全书[M].北京:化学工业出版社,1998,17:337-340
    [12]N. R. Ayyangar, K.V. Srinivasan, Thomas Daniel. Polycyclic compounds Part VII. Synthesis laser characteristics and dyeing behaviour of 7-diethylamino-2H-1-benzopyran-2-ones [J]. Dyes and Pigments,1991,16(3): 197-204.
    [13]Heintzelman, Geoffrey R.; Averill, Kristin M.; Dodd, John H.; Demarest, Keith T.; Tang, Yuting; Jackson, Paul F. Preparation of 5-oxo and 5-thio derivatives of 5H-indeno[1,2-b]pyridine with adenosine A2a receptor binding and phosphodiesterase inhibiting activity for the treatment of neurodegenerative disorders and inflammation related diseases. USA, WO 2003088963 [P].2003-10-30.
    [14]Heintzelman, Geoffrey R.; Averill, Kristin M.; Dodd, John H.; Demarest, Keith T.; Tang, Yuting; Jackson, Paul F. Preparation of arylindenopyridines as phosphodiesterase inhibitors and adenosine A2a receptor antagonists. US 20040082578 [P].2004-04-29.
    [15]Safak C; Simsek R; Altas Y; Boydag S; Erol K. 2-methyl-3-acetyl-4-aryl-5-oxo-1,4-dihydro-5H indeno(1,2-b) pyridine derivatives studies and their calcium antagonistic activities [J]. Bollettino Chimico Farmaceutico,1997,136(11):665-669.
    [16]Rentzea, Costin; Meyer, Norbert; Kast, Juergen; Plath, Peter; Koenig, Hartmann; Harreus, Albrecht; Kardorff, Uwe; Gerber, Matthias; Walter, Helmut; et al.4-methyl-5H-indeno[1,2-b]pyridines and 1-methyl-9H-indeno[2,1-c]- pyridines and their uses as herbicides or plant growth regulators. Germany, DE4301426. [P].1994-07-21.
    [17]Farinha, Andreia S. F.; Tome, Augusto C.; Cavaleiro, Jose A. S. (E)-3-(meso-Octamethylcalix[4]pyrrol-2-yl)propenal:a versatile precursor for calix[4]pyrrole-based chromogenic anion sensors [J]. Tetrahedron Letters, 2010,51(16):2184-2187.
    [18]Nishiyabu, Ryuhei; Anzenbacher, Pavel, Jr.1,3-Indane-Based Chromogenic Calixpyrroles with Push-Pull Chromophores:Synthesis and Anion Sensing [J]. Organic Letters,2006,8(3):359-362.
    [19]Farinha, Andreia S. F.; Tome, Augusto C.; Cavaleiro, Jose A. S, (E)-3-(meso-Octamethylcalix[4]pyrrol-2-yl)propenal:a versatile precursor for calix[4]pyrrole-based chromogenic anion sensors [J]. Tetrahedron Letters 2010,51(16),2184-2187.
    [20]Lv, Yongjun; Guo, Yong; Xu, Jian; Shao, Shijun. Simple indole-based colorimetric sensors with electron-withdrawing chromophores:Tuning selectivity in anion sensing [J]. Journal of Fluorine Chemistry,2011,132(11): 973-977.
    [21]Kim. Sook-Hee; Hong, Seong-Jin; Yoo, Jaeduk; Kim, Sung Kuk; Sessler, Janathan L.; Lee, Chang-Hee. Strapped Calix[4]pyrroles Bearing a 1,3-Indanedione at a β-Pyrrolic Position:Chemodosimeters for the Cyanide Anion [J]. Organic Letters,2009,11(16):3626-3629.
    [22]Wu J. S, Liu W. M, Zhuang X. Q, Wang F, Wang P. F, Tao S. L, Zhang X. H, Wu S. K, Lee S. T. Fluorescence turn on of coumarin derivatives by metal cations:a new signaling mechanism based on C=N isomerization [J]. Org. Lett. 2006,9:33-36.
    [23]李世学,含茚酮骨架化合物的合成与抑菌活性研究[D].西安:西北大学,2009:16.
    [24]J. Griffiths, V. Millar, The influence of chain length and electron acceptor residues in 3-substituted 7-N,N-diethylaminocoumarin dyes [J]. Dyes and Pigments,1995,28(4):327-339.
    [25]Raj (S. B.) Rajur, Venugopal N. Rao, Hwa-Ok Kim, Pamela Nagafuji, Xavier Hearult, John D. Williams & Norton P. Peet, Efficient Synthesis of 7-Amino-3-hydroxyindan-1-one [J]. Synthetic Communications,2009,39(4): 626-635.
    [26]Aysem Uzer, Erol Ercag, Resat Apak, Selective spectrophotometric determination of trinitrotoluene, trinitrophenol, dinitrophenol and mononitrophenol [J]. Analytica Chimica Acta,2004,505(1):83-93.
    [1]Tsin R. Y., Poenie M. Fluoreseence Ratio Imaging:a New Window into Intracellular Ionic Signaling [J]. Trends Biochem Sci,1986,11:450-455.
    [2]Lin Yuan, Weiying Lin, Yueting Yang, Jizeng Song, and Jiaoliang Wang, Rational Design of a Highly Reactive Ratiometric Fluorescent Probe for Cyanide [J].Org. Lett.,2011,13 (14):3730-3733.
    [3]C. L. Chen, Y. H. Chen, C. Y. Chen and S. S. Sun, Dipyrrole Carboxamide Derived Selective Ratiometric Probes for Cyanide Ion [J]. Org. Lett.,2006,8: 5053-5056.
    [4]K. P. Divya, S. Sreejith, B. Balakrishna, P. Jayamurthy, P. Anees, and A. Ajayaghosh, A Zn2+-specific fluorescent molecular probe for the selective detection of endogenous cyanide in biorelevant samples [J]. Chem. Commun., 2010, (46):6069-6071.
    [5]H. Yu, M. Fu and Y. Xiao, Switching off FRET by analyte-induced decomposition of squaraine energy acceptor:A concept to transform turn off chemodosimeter into ratiometric sensors [J]. Phys. Chem. Chem. Phys.,2010, 12:7386-7391.
    [6]S. Saha, A. Ghosh, P. Mahato, S. Mishra, S. K. Mishra, E. Suresh, S. Das, A. Das, Specific Recognition and Sensing of CN- in Sodium Cyanide Solution [J]. Org. Lett.,2010,12:3406-3409.
    [7]H. Yu, Q. Zhao, Z. Jiang, J. Qin and Z. Li, A ratiometric fluorescent probe for cyanide:Convenient synthesis and the proposed mechanism [J]. Sensors and Actuators B:Chemical,2010,148(1):110-116.
    [8]X. Lv, J. Liu, Y. Liu, Y. Zhao, M. Chen, P. Wang, and W. Guo, A ratiometric fluorescent probe for cyanide based on FRET [J]. Org. Biomol. Chem.,2011,9: 4954-4958.
    [9]Zhipeng Liu, Xiaoqing Wang, Zhenghao Yang, and Weijiang He, Rational Design of a Dual Chemosensor for Cyanide Anion Sensing Based on Dicyanovinyl-Substituted Benzofurazan [J]. J. Org. Chem.,2011,76 (24): 10286-10290.
    [10]Callan J. F., Silva A. P. D., Magri D. C. Luminescent sensors and switches in the Early 21st century [J]. Tetrahedron,2005,61(36):8551-8588.
    [11]刘文玉,张宗礼,林道兵等.化工百科全书[M].北京:化学工业出版社,1998,17:337-340
    [12]N.R. Ayyangar, K.V. Srinivasan, Thomas Daniel. Polycyclic compounds Part VII. Synthesis laser characteristics and dyeing behaviour of 7-diethylamino-2H-1-benzopyran-2-ones [J]. Dyes and Pigments,1991,16(3): 197-204.
    [13]Watanabe, Kousuke; Watanabe, Tetsuya; Hashizume, Taro; Ogiyama, Masashi, Optical information recording medium, method of recording information, and azo dye-metal complex, US,20080254252 [P].2008-10-16.
    [14]Hahn, Klaus M, Live cell biosensors comprising a binding domain, such as scFv, and a solvent sensitive merocyanine dye derivatized to prevent aggregation, US, WO2005088308 [P].2005-09-22.
    [15]Bhatti, Harjinder Singh; Seshadri, Sambamurthy, Novel disperse dyes from benzo[b]thiophen-3(2H)-one 1,1-dioxide and ethyl benzo[b]thien-3(2H)-ylidenecyanoacetate S,S-dioxide:synthesis and properties [J]. Dyes and Pigments,2004,62(1):83-92.
    [16]Metz, Hans Joachim; Steffanut, Pascal; Winter, Martin, Optical layers comprising dyes based on 3-dicyanomethylidene-2,3-dihydrothiophen-1,1-dioxide derivatives, Eur. Pat. Appl., EP 1445769 [P].2004-08-11.
    [17]Moeller, Hinrich; Hoeffkes, Horst; Oberkobusch, Doris. Oxidative hair dyes containing aromatic compounds, other dyes and color intensifiers, Ger. Offen., DE 10148845 [P].2003-04-10.
    [18]J. Griffiths, V. Millar, The influence of chain length and electron acceptor residues in 3-substituted 7-N,N-diethylaminocoumarin dyes [J]. Dyes and Pigments,1995,28(4):327-339.
    [19]于凯,祁咏梅,彭建邦,3-氧-2,3-[H]苯并噻吩1,]-二氧的合成方法,中国,CN1884279[P].2006-12-27.
    [20]Matskanova, M. A.; Vanags, G. Ya. Some derivatives of 1-thianaphthen-3-one 1,1-dioxide [J]. Doklady Akademii Nauk SSSR,1960,132:615-618.
    [21]Aysem Uzer, Erol Ercag, Resat Apak, Selective spectrophotometric determination of trinitrotoluene, trinitrophenol, dinitrophenol and mononitrophenol [J]. Analytica Chimica Acta,2004,505(1):83-93.
    [1]Dong Hoon Lee, Ja Hyun Im, Jae-Han Lee, and Jong-In Hong, A new fluorescent fluoride chemosensor based on conformational restriction of a biaryl fluorophore [J]. Tetrahedron Letters,2002,43(52):9637-9640.
    [2]Shigeru Watanabe, Osamu Onogawa, Yuka Komatsu, and Katsuhira Yoshida, Luminescent Metalloreceptor with a Neutral Bis(Acylaminoimidazoline) Binding Site:Optical Sensing of Anionic and Neural Phosphodiesters [J].J. Am. Chem. Soc.,1998,120 (1):229-230.
    [3]Jia-Sheng Wu, Jian-Hua Zhou, Peng-Fei Wang, Xiao-Hong Zhang, and Shi-Kang Wu, New Fluorescent Chemosensor Based on Exciplex Signaling Mechanism [J]. Org. Lett.,2005,7 (11):2133-2136.
    [4]吴加胜,化学敏感器的设计、合成及分子识别研究[D].北京:中国科学院理化技术研究所,2006:49.
    [5]J. Griffiths, V. Millar, The influence of chain length and electron acceptor residues in 3-substituted 7-N,N-diethylaminocoumarin dyes [J]. Dyes and Pigments,1995,28(4):327-339.
    [6]Aysem Uzer, Erol Ercag, Resat Apak, Selective spectrophotometric determination of trinitrotoluene, trinitrophenol, dinitrophenol and mononitrophenol [J]. Analytica Chimica Acta,2004,505(1):83-93.
    [1]Jung Oh Huh, Youngkyu Do and Min Hyung Lee, A BODIPY Borane Dyad for the Selective Complexation of Cyanide Ion [J]. Organometallics,2008,27: 1022-1025.
    [2]Chen, X.; Zhou, Y.; Peng, X.; Yoon, Fluorescent and colorimetric probes for detection of thiols [J]. Chem. Soc. Rev.,2010,39:2120-2135.
    [3]Wang, W.; Rusin, O.; Xu, X.; Kim, K. K.; Escobedo, J. O.; Fakayode, S. O.; Fletcher, K. A.; Lowry, M.; Schowalter, C. M.; Lawrence, C. M.; Fronczek, F.R.; Warner, I. M.; Strongin, R. M. Detection of homocysteine and cysteine [J].J. Am. Chem. Soc.2005,127:15949-15958.
    [4]Lim, S.; Escobedo, J.O.; Lowry, M.; Xu, X.; Strongin, R. Selective fluorescence detection of cysteine and N-terminal cysteine peptide residues [J]. Chem. Comm.,2010:5707-5709.
    [5]Yuan, L.; Lin, W.; Yang, Y. A ratiometric fluorescent probe for specific detection of cysteine over homocysteine and glutathione based on the drastic distinction in the kinetic profiles [J]. Chem. Comm.,2011:6275-6277.
    [6]Lin, W.; Yuan, L.; Cao, Z.; Feng, Y.; Long, L. A Sensitive and Selective Fluorescent Thiol Probe in Water Based on the Conjugate 1,4-Addition of Thiols to α,β-Unsaturated Ketones [J]. Chem.Eur.J.,2009,15:5096-5013.
    [7]Kim, G.; Lee, K.; Kwon, H.; Kim, H. Ratiometric Fluorescence Imaging of Cellular Glutathione [J]. Org. Lett.,2011,13:2799-2801.
    [8]Lim, S.; Kim, H. Ratiometric detection of cysteine by a ferrocenyl Michael acceptor [J]. Tetrahedron Lett.,2011,52:3189-3190.
    [9]Zuo, Q.; Li, B.; Pei, Q.; Li, Z.; Liu, S. A highly selective fluorescent probe for detection of biological samples thiol and its application in living cells [J]. J. Fluoresc.2010,20:1307-1313.
    [10]Jung, H. S.; Ko, K.C.; Kim, G.; Lee, A.; Na, Y.; Kang, C.; Lee, J. Y.; Kim, J. S. Coumarin-Based Thiol Chemosensor:Synthesis, Turn-On Mechanism, and Its Biological Application [J]. Org. Lett.,2011,13:1498-1501.
    [11]Kwon, H.; Lee, K.; Kim, H. Coumarin-malonitrile conjugate as a fluorescence turn-on probe for biothiols and its cellular expression [J]. Chem. Comm.,2011: 1773-1775.
    [12]Yuan-Qiang Sun, Maliang Chen, Jing Liu, Xin Lv, Jun-fei Li, and Wei Guo, Nitroolefin-based coumarin as a colorimetric and fluorescent dual probe for biothiols [J]. Chem. Commun.,2011,47:11029-11031.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700