脉冲微纳米电铸相关问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在微机电系统中,微电铸广泛应用于微纳金属结构的制造,成为非硅基微结构和器件加工的重要技术。微电铸作为一个复杂的工艺体系,影响其沉积微结构性能的因素有很多,如电流密度、电铸液温度、电铸液组分、沉积速度和添加剂的使用等。纳米电铸是在微电铸发展的基础上,根据细晶强化理论,通过调整微电铸工艺使金属电沉积层中晶粒尺寸部分或全部小于100nm,制备出晶粒细小、组织致密的电铸层,以改善微结构的物理和机械性能。
     本文对脉冲微电铸过程的电结晶机理进行了研究。利用多电流阶跃法测量了不同脉冲参数下的过电位—时间关系曲线,验证过电位是脉冲微电铸过程中阴极电沉积主要的动力学因素。运用中间态金属吸附原子概念分析脉冲微电铸电结晶过程中的晶种产生和晶核形成,建立了相应晶核形成的模型,合理地解释了脉冲微电铸中的电结晶过程。基于微电铸体系的等效电路,运用交流阻抗法研究微电铸镍结构的电极过程动力学特性。以微流控芯片微模具上十字铸层为例,建立了数学模型,给出了描述微电铸体系电流密度和流体流场的偏微分方程,运用有限元法对影响微电铸铸层生长的阴极电流密度和流体流场进行三维数值分析。微电铸中电流—流体耦合场的电流密度和流场分布的三维数值分析结果,可用于微电铸结构的设计和工艺的制定,能够缩短微电铸工艺的开发周期。
     在研究脉冲微电铸的基础上,提出了一种采用周期换向正向连续脉冲电流的纳米电铸方法,分析其减小铸层晶粒尺寸的机理。建立了铸层和电铸液间的双扩散层模型,通过双扩散层模型研究了周期换向脉冲纳米电铸的极限电流密度。在电铸液组分相同的条件下,进行了周期换向脉冲电流和正脉冲电流的微电铸实验研究,分析了铸层的微观结构、晶粒尺寸和高度均匀性的变化规律,研究了铸层的显微硬度和耐磨性等机械性能。
     与正脉冲微电铸相比,周期换向脉冲纳米电铸的极限电流密度比较大,能够在较大的平均电流密度下达到细化晶粒的效果。在脉冲正向导通时间和关断时间与正脉冲微电铸相当的条件下,当正向电流密度大于10A/dm2时,周期换向脉冲纳米电铸铸层的晶粒尺寸小、显微硬度高、耐磨性好。实验结果表明,这种周期换向脉冲纳米电铸能够提高电铸微结构的物理和机械性能。
Micro-electroforming is extensively applied to manufacture micro-nano metal structure in micro mechanical electrical system (MEMS), and become a key fabricating technology of non-silicon microstructures and devices. Micro-electroforming as a complicated process, there are many factors impact on the properties of its deposit microstructures, for example, current density, temperature and components of electroforming solution, deposit rate, and use of additives, et al.. Nano-electroforming is based on the development of micro-electroforming, According to fine grain strengthening theory, micro-electroforming process is adjusted to part or all grain sizes of deposit smaller than 100 nm. Microstructures with small grains and high density can be obtained to improve physical and mechanical properties.
     In this dissertation, electrocrystallization of pulse micro-electroforming is studied on. The relation between overpotential and time is established by mult-current step method under different pulse current parameters. It is shown that overpotential is the primary kinetics factor that induces electrodeposition on the cathode. The concept of metal adatom in intermediate is used to analyse the crystal seed formation and nucleation. A related model of crystal nuclei formation is set up in order to explain electrocrystallization in pulse micro-electroforming. Based on equivalent circuit of micro-electroforming, the electrode process kinetics of micro-electroforming nickel structure is studied with alternating current impedance method. Taken the crossing electroforming layer on micro-mold of micro-fluid chip as the example, the mathematical model is established. The current density and fluid field are describe with partial derential equation. Then three dimension numerical simulation of micro-electroforming is performed with the finite element method. The distribution of current density and fluid feild are helpful to plan and design micro-electroforming process, and reduce the developing time of micro-electroforming process.
     Periodic pulse reverse micro-electroforming with zero positive on-tmie is proposed, and the reason that the kind of micro-electroforming decreases grain sizes of electroforming layer is analysed. Under pulse reverse micro-electroforming condition, the duplex diffusion lyer between electroforming layer and bulk solution is build. Then the limiting current density of pulse reverse micro-electroforming is studied on. Pulse reverse micro-electroforming and pulse micro-electroforming are done respectively with the same compositions of electroforming solution. Microstructure, grain sizes and height uniformity of deposit change with pulse current are analysed. The mechanical properties, microhardness and wear resistance of electroforming layer is also studied.
     The limiting current density of pulse reverse micro-electroforming is larger than that of pulse micro-electroforming. The larger average current density effects on refine nanocrystalline structure. The negative average current density is 10% of the positive average current density in pulse reverse micro-electroforming, positive on-time and pulse off-time is correspond to those of pulse micro-electroforming. While positive average current density is larger than 10A/dm2, the average grain size of pulse reverse deposit is smaller; the microhardness of the pulse reverse deposit is higher; the wear resistance is better. This kind of pulse reverse micro-electroforming may improve the quality of electroforming microstructure.
引文
[1]Lian K, Jiang J C, Ling Z G. Processing-microstructure-resulting materials properties of LIGA Ni[J]. Microsystem Technologies,2007,13(3-4):259-264.
    [2]Chou M C, Yang H, Yeh S H. Microcomposite electroforming for LIGA technology[J]. Microsystem Technologies,2001,7(1):36-39.
    [3]Kima I, Mentone F P. Electroformed nickel stamper for light guide panel in LCD back light unit[J]. Electrochimica Acta,2006,52(4):1805-1809.
    [4]Huang J T, Lee K Y, Wu C S. Using Micro-electroforming and Micro-assembly Technology to Fabricate Vertical Probe Card[C]. International Conference on Electronic Materials and Packaging,2006.
    [5]Wei X Y, Zhua Z G, Prewett P D. Fabrication of Ni-Al2O3 composite microcomponent by electroforming[J]. Micron,2008,39(3):263-268.
    [6]Zhu D, Zhu Z W, Qu N S. Abrasive Polishing Assisted Nickel Electroforming Process[J]. CIRP Annals-Manufacturing Technology,2006,55(1):193-196.
    [7]李冠男,黄成军,罗磊等.微电铸技术及其工艺优化进展研究[J].微细加工技术,2006(6):1-6.
    [8]Hart T, Watson A. Electroforming[J]. Metal Finishing.2007,105(10):331-341.
    [9]万斌,周云.电铸镍在激光模压全息中的应用[J].南京师大学报(自然科学版),1996,19(3):43-45.
    [10]Ehrfeld W, Gotz F, Muncheyer D, et al. Deep X-ray lithograph for the production of three-dimensional microstructures from metals, polymers and ceramic[J]. radiation Physics and Chemistry,1995,45(3):349-365.
    [11]Arnold J, Dasbach U, Ehrfeld W, et al. Combination of excimer laser micromachining and replication processes suited for large scale production[J]. Applied Surface Science,1995,86:251-258.
    [12]陈迪,张大成,丁桂甫等.DEM技术研究[J].微细加工技术,1998,139(4):1-6.
    [13]余国彬,姚汉民,胡松等.深紫外深度光刻蚀在LIGA工艺中的应用[J].微细加工技术,2002,139(4):30-32.
    [14]Guckel H. Micromechanics via synchrotron radiation[C]. Proceedings of Micro Electro Mechanical System, San Diego:IEEE,1996.
    [15]刘益芳,崔宏巍.利用微电铸制作镍悬臂梁[J].厦门大学学报(自然科学版),2005,44(5):658-660.
    [16]Tajiri K, Nakamurab T, Kabeya Z. Development of an electroformed copper lining for accelerator components[J]. Electrochimica Acta,2001,47(1-2):143-148.
    [17]Lee S J, Chen Y P, Huang C H. Electroforming of metallic bipolar plates with micro-featured flow field[J]. Journal of Power Sources,145,145(2):369-375.
    [18]Tsai M C, Hsu L Y. Winding design and fabrication of a miniature axial-flux motor by micro-electroforming[J]. IEEE Transactions on Magnetics,2007,43(7): 3223-3228.
    [19]Prasad K D V Y, Ismet P. I, Periklis C. Development of rapid tooling for sheet metal drawing using nickel electroforming and stereo lithography processes [J]. IEEE Transactions on Magnetics,2001,111(1-3):286-294.
    [20]Hsieh S S, Huang C F, Feng C L. A novel design and micro-fabrication for copper (Cu) electroforming bipolar plates[J]. Micron,2008,39(3):263-268.
    [21]Ehrfeld W. Electrochemistry and microsystems[J]. Electrochimica Acta,2003,48 (20-22):2857-2868.
    [22]McGeough J A, Leu M C, Rajurkar K P, et al. Electroforming process and application to micro/macro manufacturing[J]. CIRP Annuals-Manufacturing technology,2001, 50(2):499-514.
    [23]Youssefa Kh M S, Kocha C C, Fedkiw P S. Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition[J]. Corrosion Science,2004,46(1):51-64.
    [24]Myung N V, Parkb D Y, Yoob B Y, et al. Development of electroplated magnetic materials for MEMS [J]. Journal of Magnetism and Magnetic Materials,2003,265(2): 189-198.
    [25]Courtney Th. Mechanical Behavaiour of Materials[M].2nd ed., New York:McGraw-Hill, 2000:182.
    [26]Budevski E, staikov G, Lorenz W J. Elec;rocrystallization Nucleation and growth phenomena[J]. Electrochimica Acta,2000,45:2559-2574.
    [27]Conway B E, Bockris J 0'M. The Mechanism of Electrolytic Metal Deposition[J]. Proceedings of the Royal Society Series A,1958,248:394-403.
    [28]杨防祖,牛振江,曹刚敏等.镍钨磷合金电结晶机理及其镀层结构与显微硬度[J].物理化学学报,2000,16(11):1022-1027.
    [29]Katsuyoshi K, Atsushi C, Naoki M. Effects of ultrasound on both electrolytic and electroless nickel depositions[J]. Ultrasonics,2000,38:676-681.
    [30]李永海,丁桂甫,张永华等.LIGA技术微电铸镍的电化学研究[J].电镀与环保,2005,25(3):8-10.
    [31]Moller P, Pelzer R, Fredenberg M, et al. ECPR (ElectroChemical Pattern Replication)-Metal printing for advanced packaging applications[C]. Proceedings of 6th Electronics Packaging Technology Conference,2004.
    [32]DRUESNE F, PAUMELLE P, VILLON P. Application of the BEM to chromium electroplating simulation and to identification of experimental polarisation laws[J]. Engineer Analysis with Boundary Elements,2000,24:615-622.
    [33]DRUESNE F, AFZALI M. Electroplating simulation and design tool[J]. Proceedings of the Institution of Mechanical Engineers,2003,217:705-707.
    [34]WILLIAM, KIMBERLEY. Research group pioneers electroplating simulation[J]. Automotive Engineer,2006,31(6):44-44.
    [35]明平美,朱荻,胡洋洋.高深宽比微细结构电铸时传质过程数值分析[J].机械工程学报,2008,44(8):195-201.
    [36]Landolt D, Marlot A. Microstructure and composition of pulse-plated metals and alloys[J]. Surface and Coatings Technology,2003 (169-170):8-13.
    [37]Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Progress in Materials Science,2006 51:427-556.
    [38]El-Sherik A M, Erb U. Proceedings of Nickel-Cobalt[C]. Montreal,1997:257.
    [39]Erb U, E1-Sherik A M. Nanocrystalline metals and process of producing the same: U.S.,5,353,266 [P].1994.
    [40]Jeong D H, Gonzalez F, Palumbo G, et al. The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings[J]. Scripta Materialia,2001,44:493-499.
    [41]卢柯.纳米晶体Cu的室温超塑延展性[J].中国科学院院刊,2001,1:29-31.
    [42]Lu L, Sui M L, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature[J]. Science,2000,287(25):1463-1466.
    [43]卢柯,卢磊.金属纳米材料力学性能的研究进展[J].金属学报,2000,36(8):785-789.
    [44]朱荻,张朝阳,明平美等.微细电化学加工技术的研究与发展[C].中国机械工程学会年会论文集,2008:46-54.
    [45]明平美,朱荻,胡洋洋等.辅助交变低气压—温度梯度微细电铸技术[J].兵工学报,2008,29(6):746-751.
    [46]Tsai T H, Yang H, Chein R. New electroforming technology pressure aid for LIGA process[J]. Microsystem Technologies,2004,10(5):351-356.
    [47]Zhu D, Lei W N, Qu N S, et al. Nanocrystaline Electroforming Process[J]. CIRP Annuals-Manufacturing technology,2001,50(2):499-514.
    [48]雷卫宁,朱荻.纳米晶粒精密电铸层力学性能的试验研究[J].机械工程学报,2004,40(12):173-176.
    [49]徐惠宇,朱荻,曲宁松.电铸沉积层性能的试验研究[J].电加工与模具,2001(1):18-20.
    [51]石淑云,常立民.周期换向脉冲电沉积纳米Al2O3-Ni复合镀层的摩擦磨损性能[J].电镀与环保,2007,27(2):1-3.
    [51]庞梅,李洪友,李哲煜.双向脉冲电铸镍的研究[J].电镀与环保,2010,30(1):11-14.
    [52]EL-Sherik A M, Erb U. Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition[J]. Journal of materials Science,1995,30:5743-5749.
    [53]Wei Z J, Wang Y Y, Wan C C, et al. Study of wetters in nickel electroforming of 3D microstructures[J]. Materials Chemistry and Physics,2000,63:235-239.
    [54]张文麒,李谋成,姜莉莉等.添加剂对脉冲电沉积纳米晶锌镀层性能的影响[J].材料保护,2008,41(1):44-45.
    [55]Li M C, Luo S Z, Qian Y H, et al. Effect of Additives on Electrodeposition of Nanocrystalline Zinc from Acidic Sulfate Solutions[J]. Journal of The Electrochemical Society,2007,154(11):567-571.
    [56]姜莉莉,李谋成,张文麒等.纳米晶镀锌层在3.5%NaCl溶液中的腐蚀电化学行为[J].中国腐蚀与防护学报,2008,28(5):303-306.
    [57]杜爱华,龙晋明,裴和中.电铸纳米晶材料的研究现状[J].电镀与涂饰,2008,27(4):16-19.
    [58]Takeuchi H, Tamura S, Tsunekawa Y, et al. Application of electrolyte jet to rapid composite electroplating[J]. Surface Engineering,2004,20(1):25-30.
    [59]熊毅,荆天辅,张春江等.喷射电沉积纳米晶镍的研究[J].电镀与精饰,2000,22(5):1-4.
    [60]赵阳培,黄因慧,赵剑峰.射流电铸快速成型纳米晶铜的研究[J].材料导报,2003,17:7.
    [61]朱荻,张朝阳,明平美.微细电化学加工技术的研究与发展[C].中国机械工程学会年会论文集,2005.
    [62]Schutze J W, Tsakov V.Electrochemical microsystem technology:from fundamental research to technical systems[J]. Electrochimica Acta,1999,44:3605-3627.
    [63]Senturia S D. Microsystem Design[M]. Beijing:Publishing House of Electronics Industry,2004:19-51.
    [64]Chung C K, Lin C J, Chen C C, et al. Combination of thick resist and electroforming technologies for monolithic inkjet application [J]. Microsystem Technologies,2004, 10(6-7):462-466.
    [65]Lee S J, Chen Y P, Huang C H. Electroforming of metallic bipolar plates with micro-featured flow field[J]. Journal of Power Sources,2005,145(2):369-375.
    [66]Zhu Z W, Zhu D, Qu N S, et al..Pulse electroforming of nickel under perturbation of hard particles [J]. Transactions of the Nonferrous Metals Society of China,2005, 15(3):251-254.
    [67]Vikarchukl A A, Yasnikov I S. Phase transitions in small particles formed at the initial stages of electrocrystallization of metals[J]. Physics of the Solid State, 2007,49(1):1-5.
    [68]Abyaneh M Y. Modeling of single phase electrocrystallization processes[J]. Journal of The Electrochemical Society,2004,151(11):743-748.
    [69]ZHANG Z. Electrocrystallization nucleation and growth of NiFe alloys on brass substrate[J]. Transactions of Nonferrous Metals Society of China,2005,15(4): 897-901.
    [70]向国朴.脉冲电镀的理论与应用[M].天津:天津科学出版社,1989:10-20.
    [71]Milchev A. Electrocrystallization:Fundamentals of Nucleation and Growth[M]. Spring Science:Kluwer Academic Publishers,2002:11-20.
    [72]黄子勋,吴纯素.电镀理论[M].北京:中国农业机械出版社,1982:17-31.
    [73]王竹溪.热力学[M].北京:北京大学出版社,2005:181-191.
    [74]Omanovic S, Mtikos-Hukovic M. A study of kinetics and mechanisms of electrocrystallization of indium oxide on an in situ prepared metallic indium electrode[J]. Thin Solid Films,2004,458:52-62.
    [75]Bostanov V, Mladenova E, Kashchiev D.Nucleation rate in electrocrystallization of cadmium on the Cd(0001) crystal face[J]. Journal of Electroanalytical Chemistry, 2000,481:7-12.
    [76]Du L Q, Liu C, Xiao R S, et al.. Design and fabrication of micro hot embossing mold for microfluidic chip used in flow cytometry[C]. Proceeding of the First International Conference on Precision Engineering and Micao/Nano Technology in Asia, ASPEN,2005,2:482-486.
    [77]Du L Q, Liu H J, Qin J, et al. Study on uniformity of micro-electroformed device [J]. Optics and Precision Engineering,2007,15(1):69-75.
    [78]Spearing S M. Materials issues in MEMS[J]. Acta Materialia,2000,48:179-196.
    [79]Maleka C K, Saile V. Applications of LIGA technology to precision manufacturing of high aspect ratio micro-components and-systems:a review[J]. Microelectronics Journal,2004,35:131-143.
    [80]王会香,陈立国,孙立宁等.生物显微切割微操作仪的设计与研制[J].光学精密工程,2006,14:416-421.
    [81]Schultze J W, Tsakov V. Electrochemical microsystem technologys:from fundamental research to technical systems[J]. Electrochemimica Acta,1999,44:3605-3627.
    [82]Budevski E, Staikov G. Electrocrystallization nucleation and growth phenomena [J]. Electrochemimica Acta,2000,45:2559-2574.
    [83]MALEKA C K, SAILE V. Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and systems:a review[J]. Microelectronics Journal,2004,35:131-143.
    [84]PAN L W, LIN L, N J. A flip-chip LIGA assembly technique via electroplating[J]. Microsystem Technology,2001,7 (1):40-43.
    [85]李加东,吴一辉,张平等.掩模电镀镍微结构的镀层均匀性研究[J].光学精密工程,2008,16(3):452-458.
    [86]刘仁志.实用电铸技术[M].北京:化学工业出版社,2006:47-51.
    [87]阿伦.J.巴德,拉里.R.福克拉.电化学方法原理和应用[M].北京:化学工业出版社,2005:256-270.
    [88]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002:20-24.
    [89]Tan Y J, Lim K Y. Understanding and Improving the Uniformity of Electrodeposition[J]. Surface and Coatings Technology,2003,167:255-262.
    [90]肖日松,杜立群,刘冲等.基于MEMS技术的微型模具制作工艺研究[J].高技术通讯,2006,16:368-371.
    [91]Hormes J, Gottert J, Lian K, et al. Materials for LIGA and LIGA-based Microsystems [J]. Nuclear Instruments and Methods in Physics Research B,2003,199: 332-341.
    [92]查全性.电极过程动力学导论[M].北京:科学出版社,2002:213-227.
    [93]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:201-228.
    [94]郑晓虎,朱荻.金属微结构阵列的电铸成型[J].光学精密工程,2008,16(3):473-477.
    [95]朱树敏.电化学加工技术[M].北京:化学工业出版社,2006:10-20.
    [96]王惠民.流体力学基础[M].北京:清华大学出版社,2005:48-62.
    [97]李荻.电化学原理[M].北京:北京航空航天大学出版社,1999:275-289.
    [98]MCGEOUGH J A, LEU M C, RAJURKAR K P, et al. Electroforming Process and Application to Micro/Macro Manufacturing[J]. Keynote paper in annals of CIRP,2001,50(2): 499-513.
    [99]杜立群,刘海军,秦江等.微电铸器件铸层均匀性的研究[J].光学精密工程,2007,15(1):69-75.
    [100]李国锋,王翔,何冀军等.微细电铸电流密度的有限元分析[J].微细加工技术,2007(6):35-39.
    [101]Shi Y N, Han Z. Tribological behaviors of nanostructured surface layer processed by means of surface mechanical attrition treatment [J]. Key Engineering Materials, 2008,384:321-334.
    [102]Zhitomirsky I, Niewczas M, Petric A. Synthesis and magnetic properties of Ni-Zirconia composites[J]. Materials and Manufacturing Processes,2003, 18(5):719-730.
    [103]Wen S, Szpunar J A. Direct electrodeposition of highly ordered magnetic nickel nanowires on silicon wafer [J]. Micro and Nano Letters,2006,1(2):89-93.
    [104]Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials[J]. Progress in Materials Science,2006,51:427-556.
    [105]Chandrasekar M S, Pushpavanam M. Pulse and pulse reverse plating-Conceptual, advantages and applications[J]. Electrochimica Acta,2008,53:3313-3322.
    [106]Landolt D, Marlot A. Microstructure and composition of pulse-plated metals and alloys[J]. Surface and Coatings Technology,2003,169-170:8-13.
    [107]Devaraj G, Guruviah S. Pulse Plating[J]. Materials Chemistry and Physics,1990, 25(5):439-461.
    [108]HOU K H, JENG M C, GER M D. A study on the wear resistance characteristics of pulse electroforming Ni-P alloy coatings as plated[J]. Wear,2007,262(7-8): 833-844.
    [109]Chandrasekar M S, Pushpavanam M. Pulse and pulse reverse plating—Conceptual, advantages and applications[J]. Electrochimica Acta,2008(53):3313-3322.
    [110]Yeh Y M, Chen C S, Tsai M H. Effect of Pulse-Reverse Current on Microstructure and Properties of Electroformed Nickel-Iron Mold Insert[J]. Japanese Journal of Applied Physics,2005,44:1086-1090.
    [111]Peter T T. Pulse reversal plating of nickel and nickel alloys for microgalvanics[J]. Electrochimica Acta,2001,47:61-66.
    [112]Wang F, Arai S, Endo M. Preparation of nickel-carbon nanofiber composites by a pulse-reverse electrodeposition process[J]. Electrochemistry Communications, 2005,7:674-678.
    [113]Ibl N. Some theoretical aspects of pulse electrolysis[J]. Surface Technology, 1980,10:81-104.
    [114]聂时振,王翔,翟中平等.微细电铸电流参数设计与实验研究[J].机械与电子,2009(7):11-14.
    [115]Yin K M. Duplex diffusion layer model for pulse with reverse plating[J]. Surface and Coatings Technology,1996,88:162-164.
    [116]Zhu D, Zhu Z W, Qu N S. Abrasive polishing assistec nickel electroforming process[J]. CIRP annals-manufacturing technology,2006,55, (1):193-196.
    [117]Chen J, Lu L, Lu K. Hardness and strain rate sensitivity of nanocrystalline Cu[J]. Scripta Materialia,2006,54 (11):1913-1918.
    [118]Ebrahimi F, Bourne G R, Kelly M S, et al. Mechanical properties of nanocrystalline nickel produced by electrodeposition[J]. NanoStructured Materials,1999,11(3): 343-350.
    [119]Lian K, Jiang J C, Ling G Z. Processing-microstructure-resulting materials properties of LIGA Ni[J]. Microsystem Technology,2007,13 (3):259-264.
    [120]Du L Q, Yu L C, Song L, et al. Effect of the thickness uniformity in micro-electroforming process by dividing conductive zone on cathode [J]. Advanced Materials Research,2009,60-61:202-206.
    [121]周绍民.金属电沉积-原理与研究方法[M].上海:上海科学技术出版社,1987:36.
    [122]Cullity B D, Stock S R. Elements of x-ray diffraction[M]. USA:Prentice-Hall, Englewood cliffs, nj,2001:170.
    [123]Varina R A, Bystrzycki J, Calka A. Effect of annealing on the microstructure, ordering and microhardness of ball milled cubic (L12) titanium trialuminide intermetallic powder[J]. Intermetallics,1999,7(7):785-796.
    [124]Yang Y L, Shen Y F, Chen J G. Nanocrystalline nickel coating prepared by pulse electrodeposition with ultrasonic agitation[J]. Acta metallurgica sinica,2007, 43(8):883-888.
    [125]Song T, Li D Y. Tribological, mechanical and electrochemical properties of nanocrystalline copper deposits produced by pulse electrodeposition[J]. Nanotechnology,2006,17:65-78.
    [126]Puippe J C, Ibl N. Influence of charge and discharge of electric double layer in pulse plating[J]. Journal of applied electrochemistry,1980,10:775-784.
    [127]冯秋元.Ni-Al2O3纳米复合镀层制备及其性能研究[D].大连:大连理工大学材料工程学院,2008.
    [128]Li J, Wu Y Y, Wang D L, et al. The microstructure and wear resistance Characteristics of electroformed nickel and partially stabilized zirconia composite coatings[J]. Journal of Materials Science.2000,35:1751-1758.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700