用于神经功能修复的电、近红外激光及其组合刺激方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经功能性疾病因很难通过药物等手段治愈,成为医学界的重大难题之一。从根本上讲,人体各种感觉和运动功能,都是与之对应的神经细胞或肌肉接受各种刺激产生动作电位的结果。当功能发生异常时,可以通过建立神经接口施加外界刺激而治愈。目前用于神经修复的刺激方式有电、光、化学、机械等。其中功能性电刺激是研究的热点,已进入临床阶段,并有很多产品问世。然而现有电刺激方法空间分辨率低,电极使用寿命短,且在供能、数据传输效率和安全方面都有待提高。新出现的红外激光神经刺激疗法采用低能量脉冲激光照射神经,具有空间分辨率高、安全性高等优点。但红外激光刺激疗法目前尚处于实验初步阶段,所研究的应用领域较窄,很多问题有待进一步研究解决。
     针对上述研究背景,本学位论文围绕神经功能修复这一目的,在总结分析功能性神经电刺激、近红外激光神经刺激及其组合刺激的原理和应用的基础上,首先提出了实现多通道刺激信号体内外无线传输的新设计方案并最终通过动物实验进行了可行性验证,其次提出了短波长近红外激光应用到视皮层修复的方案并通过实验进行了初步验证,最后将两种刺激方法结合,借助阈下电刺激,降低光刺激阈值,避免了热消融现象,实现了对不同神经纤维的选择性激活与抑制以及动作电位的单向传导。本论文的研究内容主要总结如下:
     1.基于微线圈阵列的多通道植入式神经电刺激系统的研制及实验研究
     针对植入式神经电刺激器的能量供应和数据传输需求,提出了一种基于微线圈阵列的多通道神经电刺激信号透皮传输方案。该方案通过设计多组信号传输通道实现了多路电刺激信号的真正意义上的并行传输,且各通道信号有自己单独的控制电路和信号产生电路,能够根据需求灵活的发送各自的刺激信号。并且采用AM调制方式,对应的体内接收模块全部采用无源元件,电路简单且无需设计能量传输通道对其供电。在此基础上首先建立了该方案的数学模型,计算多通道系统的信号和噪声耦合系数,从理论上验证了基于微线圈阵列的多道神经电刺激信号透皮传输方案的可行性,并求得了系统的优化方法。然后基于此方案设计了一种多通道植入式神经电刺激系统,进一步对该系统的电路性能进行了测试,并开展了基于本系统的猫硬脑膜外电刺激视皮层的动物实验,验证了本系统的可靠性和实际可用性。
     2.电刺激青蛙坐骨神经——神经纤维的选择性刺激
     针对神经纤维的选择性刺激要求,本研究以青蛙坐骨神经为研究对象,建立了基于三电极模式多触点卡夫电极的电刺激青蛙坐骨神经的理论模型和实验模型。理论模型基于COMSOL、NEURON、SIMULINK三大软件实现,分析了电极的设计、刺激电流模式的选择、以及电极—电解液接口等因素对产生动作电位的影响,提出了改进电极使用寿命的方法,并实现了神经纤维的选择性刺激。在理论模型基础上开展了电刺激离体青蛙坐骨神经的实验,成功实现了电刺激对神经纤维的选择性激活和抑制。该方法可用于外周神经刺激器,有望解决电刺激在修复神经功能时带来的肌肉疲劳、疼痛等负面影响。
     3.近红外激光刺激LE鼠视皮层——激光对中枢神经的兴奋和抑制
     选择短波长脉冲式近红外激光为刺激光源,建立了近红外激光刺激老鼠视皮层实验平台。本研究从三方面验证近红外激光刺激对视皮层电位的影响:图形刺激眼球,记录诱发的视觉动作电位(VEP);图形刺激眼球,同时近红外激光刺激视皮层,研究近红外激光刺激对正常VEP的影响;近红外激光刺激视皮层,研究是否诱发视皮层动作电位。同时建立了激光照射生物组织热效应理论模型,计算激光照射后组织的温度变化情况,并用红外测温成像仪对实际温度变化进行了初步试验验证。通过研究发现了短波长近红外激光对视皮层神经电活动的调制作用,该发现为建立一种无创伤、无感染、高空间分辨率的视皮层假体提供了实验基础。
     4.光电组合刺激青蛙坐骨神经——局部瞬间热阻断
     基于近红外激光对视皮层电活动的抑制性发现,以及激光高空间分辨率的优点,在电刺激青蛙坐骨神经的基础上搭建了光电组合刺激青蛙坐骨神经的理论模型和实验模型。研究两种方法共同作用下,青蛙坐骨神经动作电位的变化规律。通过理论和实验成功实现了激光对坐骨神经动作电位的局部瞬间热阻断,并成功抑制了动作电位的产生或传导,特别地实现了对动作电位的单边抑制。光电组合的刺激方法降低了抑制所需的激光能量阈值,有效地避免了单独近红外激光神经刺激时热消融的发生。
     本论文从功能性电刺激、近红外神经刺激及其组合刺激三种刺激模式在神经修复中的关键技术进行了深入的研究,一方面改进了植入式神经电刺激系统,另一方面开拓了光刺激的可应用范围,最后实现了对不同神经的选择性刺激。本文取得的创新性研究结果总结如下:
     1.提出一种基于微线圈阵列的多通道神经电刺激信号透皮传输方案。该方案实现了多通道信号的并行无线传输,各通道信号有自己单独的控制电路和信号产生电路,能够根据需求灵活的发送各自的刺激信号,并且所设计体内接收模块,电路简单,全部采用无源元件,无需设计能量传输通道对其供电。在此基础上建立了该多通道系统的数学模型,不仅可以计算任意位置的两线圈的耦合系数,并且可以求得各通道的信号和噪声,为系统的优化提供理论指导。该传输方案适用于如视皮层假体、视网膜假体等需要很多刺激电极且对各电极刺激信号的独立设计有较高要求的植入式神经电刺激器。
     2.提出一种基于短波长近红外激光的视皮层神经假体的方案,并搭建了激光刺激LE鼠视皮层的动物实验平台,初步验证了短波长近红外激光对视皮层电活动的调控作用,为激光刺激视皮层神经假体的研究奠定了实验基础。短波长近红外激光穿透能力强,无需接触即可以刺激到深层的神经。并且激光方向性好,空间分辨率高,可以解决电刺激视皮层假体在多点刺激时由于电流扩散导致的作用范围重叠的问题。
     3.建立了一种基于SIMULNK、COMSOL和NEURON三大软件结合实现对神经接受电刺激和激光照射的电活动的建模方法。该方法灵活性强,可以任意改变神经纤维的尺寸和位置,以及刺激电流或者激光的参数。在理论模型的基础上搭建了光电组合刺激青蛙坐骨神经的动物实验,并成功实现了对神经纤维的选择性激活和抑制,该方法即利用光刺激的高空间分辨率的优点,又借助阈下电刺激降低刺激所需激光的能量,避免了热消融对组织的损害,为神经功能修复提供了一个更安全有效的刺激模式。
Nerve functional disorder is a serious disease that affecting the quality of life formillions of patients worldwide today. Since it is often ineffective with conventionaldrug treatment and accompanying with harmful side effects, neuroprosthetics are thenext generation in an age-old practice of using assistive devices to improve our health.All the motor and sensory functions of the body are the process the muscle or nervecells change from a resting potential to an action potential after receiving a variety ofstimuli. Thus, nerve functional disorder can be repaired by applying an artifact neuralinterface with external stimuli. A number of methods have been proposed for nerverestoration typically based on electrical, optical, chemical and mechanical methods.Among them the most widely used and studied is the electrical method, which hasalready entered the clinical stage. However, the existing electrical techniques arechallenged by worse spatial resolution, short working life, low power and datatransmission efficiency, and the safety problem. The newly-minted optical stimulationmethod, applying pulse laser with low power to irradiate the nerve, has higher spatialresolution and security. However, the optical techniques are only at the experimentalstage now, with narrow application field and a lot of unsolved problems.
     In order to solve the existing problems, this thesis firstly analysed the theoreticalbasis and applications of Functional Electrical Stimulation, Near-infrared NeuralStimulation, and their combination application in neural prosthesis. Then this thesisproposed a new method on multichannel signals’ wireless transmission with microcoilarray and verified its feasibility through animal experiments. Thirdly, the thesis appliedshort-wavelength near-infrared laser to stimulate the visual cortex in the preliminaryanimal experiments. Finally, the dissertation combined the two stimulation methods toachieve selective activation or inhibition of different nerve fibers and unidirectionalconduction of action potentials. The research context of this paper is mainly:
     1. Design and experimental study of the microcoil-array based multichannel
     neural electrical stimulation implantable system
     This paper has developed a multichannel electrical stimulation implantable systembased on the multigroup of electromagnetic induction coils. This system can realize thereal parallel transmission of signal in different channels. And each channel has its ownindependent control circuit and signal generating circuit. Moreover, AM modulation is used in the system and the receiving part is group of passive elements which reduceenergy consumption. An analytical model for inductively coupled multichannelimplantable system with micro-coil array was built to check up the feasibility of theenergy and data transmission on microcoil-arry and find the optimization method for thesystem. Then the electrical performance and the the reliability of the system was test,and the system was implanted on the duramater and successfully activated the visualcortex of cat.
     2. Electrical stimulation of the frog’s sciatic nerve——selective stimulation of thenerve fibers
     In order to achieve selective stimulation of different nerve fibers, this paperchooses the frog sciatic nerve as the object and establishes the tripolar multi-contactcuff electrode electrical stimulation experimental platform. Theoretical model andexperimental model are established to analyze the effect of various factors on thegeneration of action potential, including the electrode, the waveform of the stimuluscurrent and the electrode-electrolyte interface. Finally, we realize selective activationand blocking the given nerve fiber and find the method to improve the electrode withlonger service life. This method can be used for peripheral nerve stimulator, which isexpected to solve the musle fatigue, pain and other negative effects from electricalstimulation.
     3. Near-infrared neural stimulation of LE rat visual cortex——the activation andinhibition of the laser on central nervous system
     Choose the pulsed short-wavelength near-infrared laser as light source and set upthe near-infrared neural stimulation experimental platform for LE rat visual cortex.Effect of the near-infrared stimulus on the visual cortex from three aspects was test:stimulating the eyes with image to record the induced visual evoked potential (VEP);stimulating the eyes with image while stimulating the visual cortex with near infraredlaser to inspect the effect of the laser irradiation on the normal VEP; only stimulatingthe visual cortex with near infrared laser to record the electrical behavior of the visualcortex. Meanwhile, a model of biological tissue thermal effects under laser irradiation isbuilt to calculate the temperature variation and an infrared temperature imaging camerais used to test the real temperature during the irradiation of the laser. This studydiscovered that short-wavelength near-infrared laser can modulate the electrical activityof visual cortex. This finding establishs the experimental basis for a new visual cortexprosthesis with high resolution and no trauma and infection.
     4. Combined near-infrared and electrical stimulation of the frog sciaticnerve——the localized transient heat block
     Based on the experiment of electrical stimulation of the frog sciatic nerve, this partadded the near-infrared laser stimulation on the local nerve and tested the electricalbehavior of the frog sciatic with two kinds of stimulation. The near-infrared stimulationsuccessfully blocked the generation and/or propagation of action potential withlocalized transient heat increase of the nerve fiber. Theoretical model was also built tosimulate the electrical behavior of the sciatic nerve, with finite element softwareCOMSOL calculating electric distribution, NEURON software simulating the neuralelectricity physiological characteristics of sciatic nerve. The combined stimulationmethod reduces the inhibition threshold of the laser energy, and effectively avoids theoccurrence of thermal ablation.
     In this thesis, the key technologies of the three stimulation patterns have beenstudied deeply. The electrical stimulation system was improved and the application ofinfrared neural stimulation was expanded, and finally the selective stimulation wasrealized in the experiments. Innovative research results of this thesis are summarized asfollows:
     1. Proposed a new method on multichannel signals wireless transmission based onmicrocoil array. This method solves the problem of short supply of energy whilehundreds of stimulating electrodes are working at the same time. Also it realizes theparallel transmission of signal in different channels, and each channel has its ownseparate control circuit and signal generating circuit, which makes the stimulation moreclose to the real world. On this basis, a mathematical model of the multichannel systemwas established, which can calculate not only the coupling coefficient between any twocoils, but also the signal and noise in each channel. The mathematical model alsoprovides theoretical guidance for the optimization of the system. This transmissionmethod applies to the system such as visual cortex prosthesis and retinal prosthesis.
     2. Proposed a new method to design visual cortex prosthesis based on theshort-wavelength near-infrared laser and built the animal experiment platform forinfrared stimulation of LE rat visual cortex. The preliminary experiment results validatethe regulatory role of the short-wavelength near-infrared on the electrical activity of thevisual cortex and lay the experiment foundation for the visual cortex prosthesis based oninfrared laser stimulation. Short-wavelength near-infrared is with deep penetration depth in biological tissue, contactless and high spatial resolution, which can solve thecurrent spreading effect of the electrical stimulation in multi-point stimulation.
     3. Designed a new model based on SIMULINK, COMSOL and NEURONsoftware. This model can simulate the electrical activity of the nerve under extracellularstimulation by electrical or/and infrared stimulus. The main advantage of thisframework over the other proposed models is that spatial properties of the extracellularstimulus can be selected arbitrarily, so that one can simulate a variety of electrode-neurongeometries of practical interest. Based on the theoretical model, we implemented theanimal experiments and successfully achieved the selective activation or/and inhibitionof nerve fibers. The combined stimulation method reduces the inhibition threshold of thelaser energy, effectively avoids the occurrence of thermal ablation, and affords a moreeffective and safer stimulus pattern for nerve function repair.
引文
[1] Gunnar G, Erik B, Morten H. A Chip for an Implantable Neural Stimulator[J]. AnalogIntegrated Circuits ans Signal Processing,1999,22:81-89.
    [2]夏露.一种经硬脑膜的视皮层电刺激装置的设计与实验研究[D].重庆:重庆大学,2009.
    [3]袁启明.功能性电刺激装置及临床应用前景[J].上海生物医学工程,1997,18(1):52-54.
    [4] Ackermann D M, Foldes E L, Bhadra N, et al. Nerve conduction block using combinedthermoelectric cooling and high frequency electrical stimulation[J]. Journal of NeuroscienceMethods,2010,193:72-76.
    [5] Wells J, Kao C, Jansen E D, et al. Application of infrared light for in vivo neuralstimulation[J]. Journal of Biomedical Optics,2005.10(6):064003.
    [6]王保华.经皮能量传输系统的可靠性设计[J].上海生物医学工程,1997,18(3):3-6.
    [7]赵海涛,吕晓迎,王余峰等.透过皮肤的电磁耦合[J].东南大学学报,2007,37(3):368-373.
    [8] Izzo A D, Richter C, Jansen E D, et al. Laser stimulation of the auditory nerve[J]. Lasers inSurgery and Medicine,2006,38:745–753.
    [9] Teudt I U, Nevel A E, Izzo A D, et al. Optical stimulation of the facial nerve-a newmonitoring technique[J]. The Laryngoscope,2007,117:1641-1647.
    [10] Wells J, Konrad P, Kao C, et al. Pulsed laser versus electrical energy for peripheral nervestimulation[J]. Journal of Neuroscience Methods,2007,163(2):326-337.
    [11] Wells J, kao C, Konrad P, et al. Biophysical mechanisms of transientoptical stimulation ofperipheral nerve[J]. Biophysical Journal,2007,93(7):2567-2580.
    [12] Izzo A D, Suh E, Pathria J, et al. Selectivity of neural stimulation in the auditory system: acomparison of optic and electric stimuli[J]. Journal of Biomedical Optics,2007,12(2):021008.
    [13] Izzo A. D., Walsh J. T., Jansen E. D., et al., Optical parameter variability in laser nervestimulation: a study of pulse duration repetition rate, and wavelength[J]. IEEE Transactionson Biomedical Engineering,2007,54(6):1108-1114.
    [14] Izzo A. D., Walsh J. T., Ralph H, et al., Laser stimulation of auditory neurons: effect of shorterpulse duration and penetration depth[J], Biophysical Journal,2008,94:3159-3166.
    [15] Duke A R, Cayce J M, Malphrus J D, et al. Combined optical and electrical stimulation ofneural tissue in vivo[J]. Journal of Biomed Optics Letters,2009,14(6):060501
    [16] Cayce J M, Kao C C, Malphrus J D, et al. Infrared neural stimulation of thalamocortical brainslices[J]. IEEE Journal of selected topics in quantum electronics,2010,16(3):565-572.
    [17] Shoham S and Deisseroth K. Special issue on optical neural engineering: advances in opticalstimulation technology[J]. Journal of Neural Engineering,2010,7:040201.
    [18] Cayce J M, Friedman R M, Jansen E D, et al. Pulsed infrared light alters neural activity in ratsomatosensory cortex in vivo[J]. NeuroImage,2011,57:155–166.
    [19]冯正权.植入式神经肌肉电刺激器的电路研究[D].重庆:重庆大学,2007.
    [20]张澍,王方正,黄德嘉,植入性心脏起搏器治疗——目前认识和建议[J].中国心律失常学杂志,2003,7(1):8-21.
    [21]卓勇.生物体内置电装置的外部供电模式研究[D].重庆:重庆大学,2007.
    [22]陶发.植入式生物遥测装置无线电能传输系统研究[D].南京:南京航空航天大学,2005.
    [23] Arabi K and Sawan M A. Electronic design of a multichannel programmable implant forneuromuscular electrical stimulation[J]. IEEE Transactions on rehabilitation engineering,1999,7(2):204-214.
    [24] Wu J and Bernstein G H. An inlaid electroplated copper coil for on-chip powering ofmicroelectromechanical systems devices[J]. Jouranl of Vacuum Science&Technology B,2004,22(2):611-618.
    [25] Wu J and Bernstein G H. Inductive generation of arbitrary waveforms for electricalstimulation using implantable microcoils[J]. Journal of Micromechanics andMicroengineering,2004,14:1012-1021.
    [26] Wu J, Quinn V and Bernstein G H. Powering efficiency of inductive links with inlaidelectroplated microcoils[J]. Journal of Micromechanics and Microengineering,2004,14:576-586.
    [27] Wu J, Dubhashi S and Bernstein G H. Inductive pulse transmission by amplitude modulationusing thin-film and electroplated microcoils[J]. Journal of Microlithography, Microfabrication,and Microsystems,2005,4(1):000.
    [28] Wu J, Quinn V and Bernstein G H. An inductive link with integrated receiving coil—couplingcoefficient and link efficiency[J]. Journal of Computational Electronics,2005,4:221-230.
    [29] Wu J and Bernstein G H. A microfabricated transduction coil for inductive deep brainstimulation[J]. Sensors&Transducers,2006.69(7):615-621.
    [30] Ghovanloo M, Najafi K. A wireless implantable multichannel microstimulatingsystem-on-a-chip with modular architecture[J]. IEEE Transactions on neural systems andrehabilitation engineering,2007,15(3):449-457.
    [31] Sauer C, Stanacevic M, Cauwenberghs G, et al. Power Harvesting and telemetry in CMOS forimplanted devices[J]. IEEE Transactions on Circuits and Systems I,2005,52(12):2605-2613.
    [32] Mollazadeh M, Murari K K, Cauwenberghs G, et al. Micropower CMOS low noiseamplification, filtering and digitization of multimodal neuropotentials[J]. IEEE Trans BiomedCircuits and Sys,2005,3(1)1-10.
    [33] Wang C, Lee T, ChioT, et al. A570-kbps ASK demodulator without external capacitors forlow-frequency wireless bio-implants[J]. Microelectronics Journal,2008,(39):130–136.
    [34] Troyk P R, Brown I E, Moore W H. Development of BION (TM) technology for functionalelectrical stimulation: Bidirectional telemetry[C]. In Proceedings of the23rd AnnualInternational Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society,2001,ISTANBUL, TURKEY.
    [35] Clements M, Vichienchom K, Liu W, et al., An implantable neuro-stimulator device for aretinal prosthesis[J]. IEEE international solid-state circuits conference,1999, TP12.7.
    [36] Liu W, Vichienchom K, Clements M, et al., A neuro-stimulus chip with telemetry unit forretinal prosthetic device[J]. IEEE Journal of Solid-State Circuits,2000,35(10):1487-1497.
    [37] Wang G, Liu W, Bashirullah R, et al., A closed loop transcutaneous power transfer system forimplantable devices with enhanced stability[C]. In Proceedings of ISCAS (4)'2004:17-20.
    [38] Kendir G A, Liu W, Wang G, et al., An optimal design methodology for inductive power linkwith class-E amplifier[J]. IEEE Transactions on Circuits and System-I: Regular Papers,2005,52(10):857-865.
    [39] Wang G, Liu W, Bashirullah R, et al., Design and analysis of an adaptive transcutaneouspower telemetry for biomedical implants[J]. IEEE Transactions on Circuits and System-I:Regular Papers,2005,52(10):2109-2117.
    [40] Yang Z, Liu W and Basham E. Inductor modeling in wireless links for implantableelectronics[J]. IEEE Transactions on Magnetics,2007,43(10):3851-3860.
    [41] Wang G, Liu W and Mohanasankar S. A dual band wireless power and data telemetry forretinal prosthesis[C]. In Proceedings of the28th IEEE EMBS Annual InternationalConference2006, New York City, USA.4392-4395.
    [42] Zhou M, Liu W, Wang G, et al., A transcutaneous data telemetry system tolerant to powertelemetry interference[C]. In Proceedings of the28th IEEE EMBS Annual InternationalConference,2006, New York City, USA.5884-5887.
    [43] Kato K, Sakamaki T, Sato T, et al., Bidirectional communication system for magnetic directfeeding FES[J]. IEEE Transactions on Magnetics,2011,47(10):3056-3059.
    [44] Shiba K, Nukaya M, Tsuji T, et al. Analysis of current density and specific absorption rate inbiological tissue surrounding an air-core type of transcutaneous transformer for an artificialheart[C]. Proceedings of the28th IEEE EMBS Annual International Conference,2006, NewYork City, USA.5392~5395.
    [45] Troyk P R. Multi-Channel transcutaneous cortical stimulation system[J]. NIH GUIDE,1996,25(10).
    [46] Chen K F, Yang Z, Hoang L, et al., An integrated256-channel epiretinal prosthesis[J]. IEEEjournal of solid-state circuits,2010,45(9):1946-1956.
    [47]吴开杰,柴新禹,李丽明,等.基于视神经的视觉假体研究与设计[J].中国科学G辑,2007,37:146-152.
    [48]牛金海,刘易非,任秋实,等.视觉假体:带给盲人光明的电子设备[J].中国科学E辑,2007,37(10):1354-1362.
    [49]黄华.射频供能植入式神经电刺激器关键技术的研究[D].重庆,第三军医大学,2008.
    [50]郝红伟,李路明,马伯志等.一种可编程植入式神经刺激系统[J].航天医学与医学工程,2008,21(2):147-151.
    [51]李路明,郝红伟.植入式神经刺激器的现状与发展趋势[J].中国医疗器械杂志,2009,33(2):107-111.
    [52] Wenzel G. I., Balster S, Zhang K, et al., Green laser light activates the inner ear[J]. Journal ofBiomedical Optics,2009,14(4):044007.
    [53] Wenzel G I, Balster S, Lim H H, et al., Stimulation of the cochlea using green laser light[C].Proceedings of the SPIE,2009,7161:71611Z-71611Z-7.
    [54] Harris D M, Bierer S M, Well J D, et al., Optical nerve stimulation for a vestibularprosthesis[C]. Proceedings of the SPIE,2009,7180.
    [55] Fried N M, Lagoda G A, Scott N J, et al., Laser stimulation of the cavernous nerves in the ratprostate, in vivo: optimization of wavelength, pulse energy, and pulse repetition rate[C].30thAnnual International IEEE EMBS Conference,2008, August20-24, Vancouver, BritishColumbia, Canada.2777-2780.
    [56]沈强,蒋大宗.选择性神经电刺激方法的仿真研究[J].西安交通大学学报,1997,31(9):102-108.
    [57]沈强,邰常峰,蒋大宗.神经纤维双向选择性刺激方法仿真研究[J].生物医学工程学杂志,1998,15(1):17-21.
    [58]沈强,邰常峰,蒋大宗.哺乳动物神经纤维的双向脉冲选择性刺激研究[J].西安交通大学学报,2000,34(2):52-57.
    [59]沈强,刘雪良,蒋大宗等.利用双向方波脉冲刺激实现神经纤维选择性兴奋的双电极方法[J].中国生物医学工程学报,2001,20(6):533-540.
    [60]郭继鸿.人工心脏起搏技术[M].辽宁,辽宁科学技术出版社,2008.
    [61] Sanders R S and Lee M T. Implantable pacemakers[C]. proceedings of the IEEE,1996,84:480-486.
    [62] Warren J A, Dreher R D, Jaworski R V, et al., Russie, Implantable cardioverterdefibrillators[C]. proceedings of the IEEE,1996,84:468-479.
    [63] Spelman F A. the past, present, and future of cochlear prostheses[J]. IEEE Engineering inMedicine and Biology Magazine,1999,18:27-33.
    [64]“Prospects of the neurology devices market to2016-market forecasts, competitive landscapeand pipeline analysis.” Retrieved on24February,2011from http://www. prlog.org/10544597-prospects-of-the-neurology-devices-market-to-2016. html, Feb.2010.
    [65]道格拉斯·塞西尔·加尔布雷思.多通道可植入的神经刺激器.中国,86103049[P].1986.10.08.
    [66]吴宝明,冯正权,黄华等.植入式无线肢体运动控制神经刺激网络系统及控制方法.中国,200710093244.9[P].2008.08.06.
    [67]郑小林,牟宗霞,侯文生等.基于微线圈阵列的多道神经电刺激信号透皮传输的初步实验研究[J].仪器仪表学报,2009,30(5):1110-1116.
    [68]牟宗霞,侯文生,郑小林等.多道电刺激信号透皮传输的微线圈阵列[J].重庆大学学报,2011,34(8):18-23.
    [69] Zongxia M, Wensheng H, Xiaolin Z, et al. Microcoil-array based multichannel transcutaneoustransmission for implantable neural electrical stimulation[J]. Journal of Medical andBiological Engineering. In press.2011
    [70] Troyk P R,邓泽岩.用于对植人电子装置进行经皮功率传输和数据通讯的E类驱动器[J].国际生物医学工程杂志,1992,15(5):291-294.
    [71]方涌.射频电路中的电感[J].舰船电子对抗,2003,26(5):46-48.
    [72] Mohan S, Hershenson M, Boyd S, et al, Simple accurate expressions for planar spiralinductances[J]. IEEE J. Solid-State Circuits,1999,34(10):1419-1424.
    [73] Takeuchi S, Shimoyama I. Selective drive of electrostatic actuators using remote inductivepowering[J]. Sensors and Actuators,2002, A95:269-273.
    [74] Grover F W. Inductance calculations, working formulas and tables[M].2nded. New York:Van Nostrand,1946.
    [75] Terman F. Radio Engineers Handbook[M]. New York: McGraw-Hill,1943.
    [76] Ramo S, Whinnery J R and VanDuzer T. Fields and waves in communication Electronics[M].3rd ed. New York: Wiley,1994.
    [77] MA G, YAN G, HE X. Study on wireless power transmission for gastrointestinalmicrosystems based on inductive coupling[J]. Chin. J. Biomed. Eng.(Engl. Ed.),2007,16,(2).
    [78] Jow U and Ghovanloo M. Design and optimization of printed spiral coils for efficienttranscutaneous inductive power transmission[J]. IEEE T Biomed Circ S,2007,1(3):193-202.
    [79] Li Y T, Chang C H, Chen J, et al., Development of implantable wireless biomicrosystem formeasuring electrode-tissue impedance[J]. J. Med. Biol. Eng.,2005,25:99-105.
    [80] Tahry R. E., Raedt R, Mollet L, et al, A novel implantable vagus nerve stimulation system(ADNS-300) for combined stimulation and recording of the vagus nerve: Pilot trial at GhentUniversity Hospital[J]. Epilepsy Research,2010,92:231-23.
    [81] Ahuja A K, Behrend M R, Kuroda M, et al., An In Vitro Model of a Retinal Prosthesis[J].IEEE Transaction on Biomedical Engineering,2008,55:1744-1753.
    [82] Margalit E, Maia M, Weiland J D, et al, Retinal prosthesis for the blind[J]. Survery ofOphthalmology,2002,47:335-356.
    [83]王开颜,吕传真,洪震,等.戊四氮点燃猫癫痫形成过程中行为和脑电的动态研究[J].中国临床神经科学,2003,11(4):370-372
    [84]黄劲柏,徐海波,孔庆霞,等.适于磁共振功能成像研究的急性癫痫猫模型的建立[J].上海医学影像,2007,16(1):61-62
    [85] Chelvanayagam D K, Vickery R M, Kirkcaldie M T, et al, Multichannel surface recordings onthe visual cortex: implications for a neuroprosthesis[J]. J Neural Eng.,2008,5:125-32.
    [86] Tang Z N, Peckham P H, Multichannel implantable stimulation and telemetry system forneuromuscular control[C], Proc.16th Annual Int. Conf. IEEE,1994:442–443,
    [87] Sawan M. Wireless smart implants dedicated to multichannel monitoring andmicrostimulation[C]. IEEE/ACS Int. Conf. on Pervasive Services (ICPS'04),2004:21-26.
    [88]“About VNS therapy” Retrieved on24February,2011from http://us.cyberonics.com/en/vns-therapy-for-epilepsy/healthcare-professionals/vns-therapy/about-vns-therapy.
    [89] Alonso-Vanegas M, Austria-Velasquez J, Lopez-Gomez M, et al, Chronic intermittent vagalnerve stimulation in the treatment of refractory epilepsy: experience in Mexico with35cases[J]. Cirugia y cirujanos.2010,78:15–23.
    [90] Sackeim H, Rush A, George M, et al, Vagus nerve stimulation (VNS) for treatmentresistantdepression efficacy, side effects, and predictors of outcome[J]. Neuropsychopharmacology,2001,25(5):713–728.
    [91] Deep brain stimulation. Retrieved on26May,2011from http://psychology.wikia. com/wiki/Deep_brain_stimulation, Sep2010.
    [92] Grill W M and Mortimer J T. Stimulus waveforms for selective neural stimulation[J]. IEEEEng Med Biol Mag,1995,14(4):375–385.
    [93] Sahin M and Tie Y, Non-rectangular waveforms for neural stimulation with practicalelectrodes[J]. Journal of Neural Engineering,2007,4:227.
    [94] Vuckovic A and Rijkhoff N, Different pulse shapes for selective large fibre block in sacralnerve roots using a technique of anodal block: an experimental study[J]. Medical andBiological Engineering and Computing,2004,42(6):817–824.
    [95] Vuckovic A, Struijk J, and Rijkhoff N, Diameter selective nerve fiber stimulation in the vagalnerve using anodal block, depolarising prepulses and long exponentially rising pulses[C]. inProceedings of the9th Annual Conference of the International Functional ElectricalStimulation Society,2004.
    [96] Baratta R, Ichie M, Hwang SK, et al. Ordery st imulat ion of sk elet al m uscle mot or un itsw ith tripolar nerve cuff electrode[J]. IEEE Trans on Biomed Eng,1989,36(8).
    [97] Fang Z P,Mortimer J T. Selective activations of small motor axons by quasitrapezoidalcurrent pulses[J]. IEEE Transactions on Biomed Eng,1991,38(2):168-174.
    [98] Freeman D K, Eddington D K, Rizzo J F. Selective activation of neuronal targets withsinusoidal electric stimulation[J]. Journal of Neurophysiology,2010,104(5):2778-2791.
    [99] Fallon J. Current waveforms for neural stimulation-charge delivery with reduced maximumelectrode voltage[J]. IEEE Transactions on Biomedical Engineering,2010,57(9):2304–2312.
    [100] Grill W, Norman S and Bellamkonda R. Implanted neural interfaces: biochallenges andengineered solutions[J]. Biomedical Engineering,2009,11(1):1.
    [101] Veraart C, Grill W and Mortimer J. Selective control of muscle activation with a multipolarnerve cuff electrode[J]. IEEE Transactions on Biomedical Engineering,1993,40(7):640–653.
    [102] Zariffa J, Nagai M, Daskalakis Z, et al, Influence of the number and location of recordingcontacts on the selectivity of a nerve cuff electrode[J]. IEEE Transactions on RehabilitationEngineering,2009,17(5):420–427.
    [103] Butson C R, Miller I O, Normann R A, et al. Selective neural activation in a histologicallyderived model of peripheral nerve[J]. Journal of Neural Eng,2011,8(3).
    [104] Dufour A, Guergova S, Pebayle T, et al. On the selective activation of unmyelinated C-fibersusing sinusoidal electrical stimulation: An ERP study[J]. Clinical Neurophysioligy,2011,122(5):1042-1047
    [105] Vuckovic A, Tosato M, Struijk J J, et al. A comparative study of three techniques for diameterselective fiber activation in the vagal nerve: anodal block, depolarizing prepulses and slowlyrising pulses[J],2008,5(3):275-286.
    [106] Frankenhaeuser B and Huxley AF. The action potential in the myelinated nerve fibre ofXenopus laevis as computed on the basis of voltage clamp data[J]. J. Physiol.,1964,171(2):302-315.
    [107] Butikofer R and Lawrence P D. Electrocutaneous nerve stimulation-I: model andexperiment[J]. IEEE Trans. Biomed. Eng,1978,25(6):526-531.
    [108] Dean D and Lawrence P D. Application of phase analysis of the Frankenhaeuser-Huxleyequations to determine threshold stimulus amplitudes[J]. IEEE Trans. Biomed. Eng.,1983.30(12):810-818.
    [109] McNeal D R. Analysis of a model for excitation of myelinated nerve[J]. IEEE Trans. Biomed.Eng.,1976.23(4):329-337.
    [110] Fitzhugh R. Computation of impulse initiation and saltatory conduction in a myelinated nervefiber[J]. Biophys. J.,1962,2(1):11-21.
    [111] Bostock H. The strength-duration relationship for excitation of myelinated nerve: computeddependence on membrane parameters[J]. J. Physiol.,1983.341(1):59-74.
    [112] Rattay F. Analysis of Models for Extracellular Fiber Stimulation[J]. IEEE Trans. Biomed.Eng.,1989.36(7):676-682.
    [113] Carnevale N T and Hines M L. The NEURON book.2006: Cambridge Univ Press.
    [114] Zarifi M H, Frounchi J, Jahed N, et al. Finite-element analysis of platinum-based conemicroelectrodes for implantable neural recording[C]. in4th Int. Conf. IEEE EMBS NeuralEng.2009, IEEE: Antalya, Turkey.395-398.
    [115] Raspopovic S, Carpaneto J, Micera S, et al. Comparison of intraneural electrode geometries:Preliminary guidelines for electrode design[C]. in4th Ann. Int. Conf. IEEE EMBS NeuralEng.2009, IEEE: Antaly, Turkey.64-67.
    [116] Jacquir S, Fruitet J, Guiraud D, et al. Computation of the electrical potential inside the nerveinduced by an electrical stimulus[C]. in29th Ann. Int. Conf. IEEE EMBS.2007.
    [117] Frankenhaeuser B and Moore L E. The effect of temperature on the sodium and potassiumpermeability changes in myelinated nerve fibres of Xenopus laevis[J]. J. Physiol.,1963,169(2):431-437.
    [118] Wijesinghe R, Gielen F and Wikswo J. A model for compound action potentials and currentsin a nerve bundle I: The forward calculation[J]. Ann. Biomed. Eng.,1991,19(1):43-72.
    [119] Goldman L and Albus J S. Computation of impulse conduction in myelinated fibers;theoretical basis of the velocity-diameter relation[J]. Biophys. J.,1968,8(5):596-607.
    [120] Dodge F A and Frankenhaeuser B. Sodium currents in the myelinated nerve fibre of Xenopuslaevis investigated with the voltage clamp technique[J]. J. Physiol.,1959,148(1):188-200.
    [121] Moore J W, Joyner R W, Brill M H, et al., Simulations of conduction in uniform myelinatedfibers. Relative sensitivity to changes in nodal and internodal parameters[J]. Biophys. J.,1978,21(2):147-160.
    [122] Zeng S, Tang Y and Jung P, Spiking synchronization of ion channel clusters on an axon[J].Phys. Rev. E,2007,76(1):011905.
    [123] Hutchinson N A, Koles Z J and Smith R S. Conduction velocity in myelinated nerve fibres ofXenopus laevis[J]. J. Physiol.,1970,208(2):279-289.
    [124] Warman E N, Grill W N and Durand D. Modeling the effects of electric fields on nerve fibres:Determination of excitation thresholds[J]. IEEE Trans. Biomed. Eng.,1992,39(12):1244-1254.
    [125] Goodall E V, Kosterman L M, Holsheiner J, et al., Modeling study of activation andpropagation delays during stimulation of peripheral nerve fibers with a tripolar cuffelectrode[J]. IEEE Trans. Rehabil. Eng.,1995,3(3):272-282.
    [126] Marghescu, D. The McGill Physiology Virtual Laboratory.2011.
    [127] Troy J, Cantrell D, Taflove A, et al, Modeling the electrode-electrolyte interface for recordingand stimulating electrodes[C]. in Proc. of28th Annual Conference of the IEEE Eng. Med.Biol. Soc. Conference,2006:879–881,.
    [128] Andreasen L and Struijk J. Signal strength versus cuff length in nerve cuff electroderecordings[J]. IEEE Trans. Biomed. Eng.,2002,49(9):1045–1050.
    [129] Yoshida K and Struijk J. The theory of peripheral nerve recording[M], in NeuroprostheticsTheory and Practice (K. W. Horch and G. S. Dhillon, eds.), pp.475–516, Singapore: WorldScientific Publishing,2004.
    [130] Dymond A M, Characteristics of the metal-tissue interface of stimulation electrodes[J]. IEEETrans. Biomed. Eng.,1976,23(4):274–280.
    [131] Rose T L and Robblee L S. Electrical stimulation with Pt electrodes. VIII. Electrochemicallysafe charge injection limits with0.2ms pulses[J]. IEEE Trans. Biomed.Eng.,1990,37(11):1118–1120.
    [132] McHardy J, Geller D,and Brummer S B. An approach to corrosion control during electricalstimulation[J]. Ann. Biomed. Eng.,1977,5(2):144–149.
    [133] Scheiner A, Mortimer J T, and Roessmann U, Imbalanced biphasic electrical stimulation:muscle tissue damage[J]. Ann. Biomed. Eng.,1990,18(4):407–425.
    [134] Merrill D R, Bikson M and Jefferys J. Electrical stimulation of excitable tissue: design ofefficacious and safe protocols[J]. J. Neurosci. Meth.,2005,141(2):171–198.
    [135] Halpern M and Fallon J. Current waveforms for neural stimulation-charge delivery withreduced maximum electrode voltage[J]. IEEE Trans. Biomed. Eng.,2010,57(9):2304–2312.
    [136] Rajguru S M, Izzo A M, Robinson A M, et al., Optical cochlear implants: Evaluation ofsurgical approach and laser parameters in cats [J]. Hearing Research,2010,269(1-2):102-111.
    [137] McCaughey R G, Chlebicki C and Wong B J, Novel wavelengths for laser nervestimulation[J]. Lasers Surg. Med.2010,42:69-75.
    [138] Berson E L. Retinitis pigmentosa, The friedenwald lecture. Invest Ophthalmol [J]. Vis.Sci.,1993,34(5):1659–1676.
    [139] Curcio C A, Medeiros N E, Millican C L. Photoreceptor loss in agerelated maculardegeneration [J]. Invest Ophthalmol Vis Sci,1996,37:1236-1249.
    [140] Foerster O. Beitrage zur Pathophysiologie der Sehbahn und der Spehsphare[J]. PsycholNeurol (Lpz),1929,39:435-463
    [141] Dobelle W H, Mladejovsky M G. Phosphenesproduced by electrical stimulation of humanoccipital cortex, and their application to the development of a prosthesis for the blind[J]. JPhysiol,1974,243(5):553-576.
    [142] Dobelle W H. Artificial vision for the blind by connecting a television camera to the visualcortex[J]. ASAIO J,2000,46(1):3-9.
    [143] Normann R A, Maynard E M, Rousche P J, et al. A neural interface for a cortical visionprosthesis [J]. Vision Research,1999,39:2577-2587.
    [144] Normann R A, Greger B, House P, et al. Toward the development of a cortically basedvisualneuroprosthesis[J]. J Neural Eng,2009,6(1):35.
    [145] Odom J V, Bach M, Barber C, et al. Visual evoked potentials standard [J]. Ophthalmologica,2004,108:115-123
    [146]陈燕,牛燕雄,唐芳等.激光辐照活体皮肤层状组织的光热作用数值模拟研究[J].应用激光,2007,27(5):382-386.
    [147]谢树森,杨洪钦,李步洪.激光与皮肤层状组织的光热作用及其传热模型[J].光电子﹒激光,2001,12(7):746-750.
    [148]李晓霞.激光照射下生物组织热效应的数值分析与实验研究[D],天津大学,2004.
    [149] Ammar A and Mesut S,Light penetration depth in the rat peripheral nerve and brain cortex[J].Proceedings of the29th Annual International Conference of the IEEE EMBS CitéInternationale, Lyon, France August23-26,2007.
    [150] Lu G, Tsuyoshi M, Hidenori K. an integrated model ofthermodynamic-hemodynamic-pharmacokinetic system and its application on decouplingcontrol of intracranial temperature[J]. Journal of Theoretical Biology,2006,242:16-31.
    [151] Xu F, Sefen K A, Lu T J. Non-Fourier analysis of skin biothermomechanics[J]. InternationalJournal of Heat and Mass Transfer,2008,51:2237–2259.
    [152] Shuhei E and Eiji O,Monte carlo analysis of near-infrared light propagation in a neonatalhead model[J]. Systems and Computers in Japan,2004,35(9).
    [153] Feng H J, Kao C, Gallagher M J,et al., Alteration of GABAergic neurotransmission by pulsedinfrared laser stimulation[J]. J. Neurosci. Methods,2010,192,110–114.
    [154] Thut G, Northoff G, Ives J R, et al, Effects of single-pulse transcranial magnetic stimulation(TMS) on functional brain activity: a combined event-related TMS and evoked potentialstudy[J]. Clin. Neurophysiol.2003,114:2071-2080.
    [155] Richter C P, Bayon R, Izzo A D, et al, Optical stimulation of auditory neurons: Effects ofacute and chronic deafening[J]. Hearing Res.2008:24242-51.
    [156] Bhadra B A, and Gustafson K, Bladder voiding by combined high frequency electricalpudendal nerve block and sacral root stimulation[J]. Neurourol Urodyn,2008,27(5):435-439.
    [157] Ackermann D M, Foldes E L, Bhadra N, et al. Conduction block of peripheral nerve usinghigh frequency alternating currents delivered through an intrafascicular electrode[J]. Muscle&nerve,2010,41(1):117-119.
    [158] Navarro X, Krueger T B, Lago N, et al. A critical review of interfaces with the peripheralnervous system for the control of neuroprostheses and hybrid bionic systems[J]. J PeripheralNerv Sys,2005.10(3):229-258.
    [159] Bhadra N and Kilgore K L. Direct current electrical conduction block of peripheral nerve[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2004,12(3):313-324.
    [160] Kilgore K L and Bhadra N. Nerve conduction block utilising high-frequency alternatingcurrent[J]. Med Biol Eng Comput,2004.42(3):394-406.
    [161] Joseph L. and Butera R J. High-frequency stimulation selectively blocks different types offibers in frog sciatic nerve[J]. IEEE Transactions on Neural Systems and RehabilitationEngineering,2011.19(5):550-557.
    [162] Gerges M, Foldes E L, Ackermann D M, et al., Frequency-and amplitude-transitionedwaveforms mitigate the onset response in high-frequency nerve block[J]. J. Neural. Eng.,2010.7(6):066003.
    [163] Huxley A.F. Ion movements during nerve activity[J]. Ann. NY Acad. Sci.,1959,81(2):221-246.
    [164] Rasminsky M. The Effects of Temperature on Conduction in Demyelinated Single NerveFibers[J]. Arch Neurol,1973,28(5):287-292.
    [165] Rattay F and Aberham M. Modeling Axon Membranes for Functional ElectricalStimulation[J]. IEEE Trans. Biomed. Eng.,1993,40(12):1201-1209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700