微弧氧化膜层形成及其表面粗糙度的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微弧氧化技术具有工艺灵活、操作简单、表面改性效果显著以及工艺过程绿色环保等诸多优点,其工业应用前景十分广阔。随着微弧氧化技术工业化应用的深入,工业应用对膜层表面质量要求越来越高。而表面粗糙度作为表征膜层表面质量的性能指标之一,也越来越受到重视。膜层表面粗度在火花放电生成膜层的过程中同步形成,因此探讨火花放电过程和膜层形成机制是研究膜层表面粗糙度的基础。
     首先本文根据放电火花变化特征将整个微弧氧化处理过程分成不同的处理阶段,分析不同阶段放电火花特征、膜层表面形貌、电流电压变化规律以及它们之间的关系。在分析单个火花放电过程中,根据单个火花放电产生到消失的时序,将单个火花放电过程分为四个连续的阶段,即火花放电等离子源形成、等离子体放电击穿膜层、构成膜层的物质生成、等离子体放电火花熄灭。利用时序分段法对单个火花放电从形成到消失整个过程的机制进行研究,进一步探讨微弧氧化过程中的火花演化和膜层形成机理。
     通过对白色火花放电阶段和红色火花放电阶段的宏观反应特点和生成膜层微观形貌特征进行分析,建立白色火花放电和红色火花放电等离子源形成模型。揭示了两个阶段的火花放电等离子体源形成过程。白色火花放电阶段的等离子体源是电子轰击膜层表面包裹的气泡层而形成;而在红色火花放电阶段多次放电后造成金属正电极、溶液等效负电极上的尖端凸起延伸到膜层内部,同膜层中封闭的气孔一起在电场中形成强电场区,当强电场中绝缘介质极化达到极限时就形成了放电等离子源。
     通过对膜层中不同位置产生等离子源形成放电通道的过程进行分析,建立三种膜层击穿过程火花放电通道模型,利用这三种火花放电通道模型能很好的解释微弧氧化过程中相同时刻放电火花大小不同的现象、膜层生长形成机制以及抑弧氧化的形成机理等微弧氧化问题。
     利用单个火花放电分析理论可以清楚地阐明火花放电自动产生和消失的机制,以及单向脉冲输出和双向脉冲输出微弧氧化处理过程中火花放电状态在时空上的变化问题。
     然后通过分析处理铝合金LD10和LY12试验过程中的火花变化状态和膜层形貌,验证利用单个火花放电相关理论分析的膜层生长形成过程和膜层表面形貌形成机制,及火花放电与膜层生长演变之间的关系,其演变过程依次为:绝缘非晶向膜层形成→尖端大火花放电引起相变→大火花转移使膜层整体逐步相变→下一轮尖端放电和膜层生长→膜层生长结束。
     最后,将支持向量机数据回归分析方法与正交试验设计方法相结合,建立基于正交试验的支持向量机数据回归分析的微弧氧化参数溶液温度、频率、占空比、处理时间与膜层表面粗糙度之间关系的工艺模型,利用工艺模型生成处理铝合金LD10和镁合金AZ91D的工艺参数值。以优化参数为基础进行单因素试验,分析处理方式和基体材料对溶液温度、频率、占空比、处理时间的影响,以及微弧氧化参数对膜层表面粗糙度影响的工艺规律。
Micro-arc oxidation with the remarkable effect of surface modification, the environmentaly friendly technology, simple process and easy operation etc., has a very good prospect for industrial applications. With the industrial application development, the quality of coating surface is higher and higher that industrial application requestes. And the surface roughness, one of the indicators that evaluate the coating surface performance, attracts more and more attertion. During micro-arc oxidation processing, the coating surface forms that accompanies the spark discharge genertates the coating. And it is importmant to the surface roughness that spark discharge and coating formation are researched.
     At first, this paper has summarized the phenomenon such as coating surface morphology, current, voltage in the different spark stages. According to the sequence of a single spark discharge from gengerating to disappearing, a single spark diacharge was divided into four consecutive phases, namely the plasma soruceof the spark discharge formed, coating breakdown, the coating material generated, and the spark disappearing. The mechanism of a single spark discharge process was researched by use of the sub-timing method. Further the mechanism of coating formation and spark discharge variation were explored.
     According to analysis of the discharge phenomenon and coating microstructure in the stages of white spark and red spark, the mechanism of the plasma source formation is different in two stages. It causes the plasma soruce formation that the electron bombards the bubble wrapping the coating in the white spark stage. And in the red spark stage, the area of strong electric field generates the plasma source where the coating of excessive polarization turns out easily. Focusing on the two mechanism of plasma source formation the two models were established that white and red spark discharge plasma source form.
     During analysis of the discharge channel formation from plasma source in different locations of coating, three kinds of discharge channel models were obtained. The models successfully explain the phenomenon that the different sizes spark exist in the same moment during micro-arc oxidation process, the mechanism of the coating formation, and the mechanism of suppressing arc oxidation.
     The theory of a single spark discharge successfully explained the spark discharge mechanism of auto-generating and disappearing, and revealed the spark discharge mechanism of auto-evolution processed by the single-pulse output and double-pulse output.
     Then, the mechanisms of the coating and the surface topography formation were researched by using the theory of a single spark discharge, and were verified by the experiments performenced on LD10 and LY12. At the same time, the relationship between spark discharge and the evolution of coating formation was obtained, as follow: the coating formation of insulating amorphous→large spark turning out in cutting-edge position and phase change→large spark and phase change moving to specimen center→scan completing and a new round of discharge and coating growth→the end of the coating growth.
     Finally, the support vector machine regression analysis was introduced for the micro-arc oxidation process data analysis, and combined with the orthogonal experimental design. It is first created the model of the support vector machine regression analysis on orthogonal design basis for micro-arc oxidation process data analysis, and the processing parameters were successfully predict to treat LD10 and AZ91D by the model. In order to analysis influence of the process approach and substrate material on the frequency, duty ratio, time, and working solution temperature, and variation of the coating surface roughness with these parameters, the experiments were performanced according to the predictive parameters.
引文
1 Gerasimov M V, Nikolaev V A, Scherbakov A N. Mrcroplasma oxidation of metals and alloys. Metallurgist. 1994, 38(7~8):179
    2 Rudnev V S, Vasileva M S, Lukiyanchuk IV. On the Surface Structure of Coatings Formed by Anodic Spark Method. Protection of Metal. 2004, 40(4): 352~357
    3 Voevodin A, Yerokhin A L, Lyubimov V. Characterization of wear protective Al-Si-O coatings formed on Al-based alloys by micro-arc discharge treatment. Surface and Coatings Technology. 1996, 86~87: 516~521
    4张文华,胡正前,马晋.俄罗斯微弧氧化技术研究进展.轻合金加工技术. 2004, 32(1): 25~29
    5 Yerokhin A L, Nie X, Leyland A. Plasma electrolysis for surface engineering. Surface and Coatings Technology. 1999, 122: 73~93
    6 Wang Y K, Sheng L, Xiong R Z. Study of Ceramic Coatings Formed by Microarc Oxidation on Al Matrix Composite Surface. Surface Engineering. 1999, 15(2): 112~113
    7石玉龙,茹凤虎,彭红端.铝材表面的等离子微弧氧化技术研究.电镀与涂饰. 2000, 19(1): 17~18
    8左洪波,孔庆山,尚文琦.等离子体增强电化学表面陶瓷化技术.材料保护. 1995, 28 (7): 33~35
    9左洪波,郝相君,孔庆山,李欣.一种新型表面改性技术——等离子体增强电化学表面陶瓷化(PECC).中国表面工程. 1999, 2:38~40
    10 Van T. B., Brown S. D., Wirtz G. P. Mechanism of Anodic Spark Deposition. Am. Ceram. Soc. Bull.. 1977, 56(6): 563~566
    11 Wirtz G. P. , Brown S. D., Kriven W. M.. Ceramic Coatings by Anodic Spark Depostion. Mater. Manuf. Process.. 1991, 6(1): 87~115
    12 Krysmann W., Kurze P., Dittrich K. H., Schneider H. G.. Process Characteristics and Parameters of Anodic Oxidation by Spark Discharge (ANOF). Cryst. Res. Technol.. 1984, 19(7): 973~979
    13 Kurze P., Krysmann W., Schreckenbach J., et al.. Coloured ANOF Layers on Aluminium. Cryst. Res. Technol.. 1987, 22(1): 53~58
    14 Kurze P.. Magnesium legierungen elektrochemisch beschichten. Metall ober flache. 1994, 48(2):104~105
    15薛文斌,邓志威,来永春等.有色金属表面微弧氧化技术评述.金属热处理. 2000, 1:1~3
    16李淑华,尹玉军,程金生等.微弧氧化技术与材料表面陶瓷化.特种铸造及有色合金. 2001, 1:35~36
    17 Mamaev A I, Chekanova Y Y. Produetion of Anodie-oxide Deeorative Coatings on Aluminium Alloys by Micro-arc Oxidation Method. Fizika I Khimiya Obrabotki Materialov (Russia). 1999, 4: 4~44
    18薛文斌,邓志威,来永春等.铝合金微弧氧化陶瓷膜的形成过程及其特性.电镀与精饰. 1996, 18(5): 3~6
    19邓志威,薛文斌,汪新福等.铝合金表面微弧氧化技术.材料保护. 1996, 29(2): 15~16
    20薛文斌,邓志威,张通和等.铸造镁合金微弧氧化机理.稀有金属材料与工程. 1999, 28(6): 353~356
    21薛文斌,来永春等.镁合金微弧等离子体氧化膜的特性.材料科学与工艺. 1997, 5(2): 89~92
    22薛文斌,邓志威等. ZM5镁合金微弧氧化膜的生长规律.金属热处理学报. 1998, 19(3): 42~45
    23顾伟超,沈德久,王玉林,何大川.铝及其合金微弧氧化技术的研究与进展.金属热处理. 2004, 29(1): 53~57
    24钟涛生,蒋百灵,李均明.微弧氧化技术的特点、应用前景及其研究方向.电镀与涂饰. 2005, 24(6): 47
    25旷亚非,许岩,李国希.铝及其合金材料表面处理研究进展.电镀与精饰. 2000, 22(1): 16
    26 Voevodin A A , Yerokhin A L. Characterization of wear protective Al-Si-O coating formed on Al-based alloys by micro-arc discharge treatment. Surf Coatings Techn. 1996, 86~87: 516
    27 Yerokhin A L , Voerodin A. Plasma electrolytic fabrication of oxide ceramic surace layers for tribo technical purpose on Al alloys. Surf Coatings Techn. 1998, 110: 140
    28 Nie X, Leyand A, Song H W. Thickness effect s on the mechanical properties of micro-arc discharge oxide coatings on Al alloys. Surf Coatings Techn. 1999, 116~119: 1055
    29尹衍升,张景德.氧化铝陶瓷及其复合材料.北京化学工业出版社, 2001:23~27
    30 Timoskenko A V, Para B K. Formation of protective Wear-resistant OxideCoatings on Alummum Alloys by the Micro Plasma Methods Form Aqueous Electrolyte Solutions. Proc International Corrosion Congress. 1993, l(12): 280~293
    31李克杰,李安全.合金微弧氧化技术研究及应用进展.稀有金属材料与工程. 2007, 9(36): 199~203
    32张欣宇,石玉龙,阎凤英.铝及其合金等离子微弧氧化技术.电镀与涂饰. 2001, 20(6): 24
    33李学静,鞠治刚,杨大壮.铝合金表面微弧氧化原位生长Al2O3陶瓷层技术.特种铸造及有色合金. 2002, (4):34
    34 J.A.Curran, H.Kalkanc, Yu. Magnrova, et al. Mullite-rich plasma electrolytic oxide coatings for thermal barrier application. Surface and Coatings Teehnology. 2007, 201(21): 8683~8687
    35 B. Lonnyuk, I.Apachitei, J. Duszczyk. The effect of oxide coatings on fatigue properties of 747-T6 alummumalloy. Surface and Coatings Technology. 2007, 201(21): 8688~8694
    36 Wenbin Xue, Chao Wang, HuaTian, et al. Corrosion behaviors and galvanic studies of micro arc oxidation films on Al-Zn-Mg-Cu alloy. Surface and Coatings Technology. 2007, 201(21): 8695~8701
    37 F. Monfort, A.Berkani, E.Matykina, et al. Development of anodic coatings on aluminum under sparking conditions in silicate electrolyte. Corrosion Science. 2007, 49(2): 672~693
    38 JIANG Zhaohua, ZENGXiaobin,YAO ZhongPing. Preoaration of micro-arc oxidation coating magnesium alloy and its thermal shock resistance property. Rare Metals. 2006, 25(3): 270~273
    39徐勇.国内铝和铝合金微弧氧化技术研究动态.腐蚀与防护. 2003, 24(4): 154
    40李建中,邵忠财,田彦文等.微弧氧化技术在Al、Mg、Ti及其合金中的应用.腐蚀科学与防护技术. 2004, 16(4): 218
    41薛文斌,邓志威,来永春等. LY12铝合金微弧氧化的尺寸变化规律.中国有色金属学报. 1997, 7(3): 140
    42贺子凯,唐培松.不同基体材料微弧氧化生成陶瓷膜的研究.材料保护. 2002, 35(4): 31
    43 X. Nie, L. Wang, E. Konca, A.T. Alpas. Tribological behaviour of oxide/graphite composite coatings deposited using electrolytic plasma process. Surface and Coatings Technology. 2004, 188–189: 207~213
    44梁戈,赵仁兵,蒋百灵.电解液参数对铝合金微弧氧化黑色陶瓷膜性能的影响.材料热处理学报. 2006, 27(5): 92~94
    45王卫锋,蒋百,李均明,时惠英.工艺参数对镁合金微弧氧化陶瓷膜色度的影响.新技术新工艺. 2006, 3: 87~89
    46王卫锋,蒋百灵,时惠英.镁合金微弧氧化深色陶瓷膜制备及耐蚀性研究.腐蚀科学与防护技术. 2007, 27(1): 51~53
    47高引慧,李文芳,杜军等.镁合金微弧氧化黄色陶瓷膜的制备和结构研究.材料科学与工程学报. 2005, 23(4): 542~545
    48高引慧,李文芳,张启礼,杜军.镁合金微弧氧化膜陶瓷层性能的研究.广东有色金属学报. 2006, 16(1) 27~30
    49黄京浩,张永君.镁合金微弧氧化新型电解液配方研究. 2007, 40(2):30~37
    50 C. Blawert, V. Heitmann, W. Dietzel, H. et al. Influence of process parameters on the corrosion properties of electrolytic conversion plasma coated magnesium alloys. Surface and Coatings Technology. 2005, 200: 68~72
    51 C. Blawert, V. Heitmann, W. Dietzel, et al.. Influence of electrolyte on corrosion properties of plasma electrolytic conversion coated magnesium alloys. Surface and Coatings Technology. 2006
    52郭洪飞,安茂忠,霍慧彬,徐莘.工艺条件对镁合金微弧氧化的影响.材料科学与工艺. 2006, 14(6): 616~621
    53郭洪飞,安茂忠,徐莘,霍慧彬.电流密度对镁合金微弧氧化过程及氧化陶瓷膜性能的影响.稀有金属材料与工程. 2005, 34(10): 1554~1557
    54郭洪飞,安茂忠,徐莘,霍慧彬.镁合金微弧氧化工艺条件对陶瓷膜耐蚀性的影响.材料工程. 2006, 3: 29~36
    55杨培霞,郭洪飞,安茂忠,吴丽军.镁合金表面微弧氧化陶瓷膜耐蚀性能评价.航空材料学报. 2007. 27(3): 33~37
    56郭洪飞,安茂忠,霍慧彬,徐莘.电解液组成对AZ91D镁合金微弧氧化的影响.材料科学与工艺. 2006, 14(2): 116~119
    57蒋百灵,张淑芬.氧化镁陶瓷层的组织结构及耐蚀性能.西安理工大学学报. 2000, 16(4): 327~329
    58蒋百灵,吴国建,等.镁合金微弧氧化陶瓷层生长过程及其微观结构的研究.材料热处理学报. 2002 , 23(1): 5~7
    59蒋百灵,张淑芬,等.镁合金微弧氧化陶瓷层显微缺陷与相组成及其耐蚀性.中国有色金属学报. 2002 , 12(3):454~457
    60蒋百灵,张先锋.不同电导率溶液中镁合金微弧氧化陶瓷层的生长规律及耐蚀性.稀有金属材料与工程. 2005, 34(3): 393~396
    61张先锋,蒋百灵.能量参数对镁合金微弧氧化陶瓷层耐蚀性的影响.腐蚀科学与防护技术. 2005, 17(3): 141~143
    62蒋百灵,夏天,时惠英,雷念民.镁合金微弧氧化陶瓷层的绝缘强度及耐蚀性的研究.材料热处理学报. 2005, 26(2): 82~85
    63 A.L. Yerokhin, A. Shatrov, V. Samsonov, et al.. Fatigue properties of Keronite coatings on a magnesium alloy. Surface and Coatings Technology. 2004, 182: 78~84
    64于凤荣,吴汉华,龙北玉等.处理液浓度对铝合金微弧氧化陶瓷膜成膜速率和硬度的影响.吉林大学学报(理学版). 2005, 43(6): 825~829
    65龙北玉,吴汉华,龙北红,汪剑波.电解液对铝合金微弧氧化陶瓷膜相组成和元素成分的影响.吉林大学学报(理学版). 2005, 43(1): 68~72
    66吴汉华,汪剑波,龙北玉等.电流密度对铝合金微弧氧化膜物理化学特性的影响.物理学报. 2005, 54(12): 5743~5749
    67吕宪义,金曾孙,吴汉华等.阴/阳极电流密度对铝合金微弧氧化陶瓷膜特性的影响.吉林大学学报. 2005, 43(1): 65~67
    68龙北玉,吴汉华,王乃丹等.恒定电流密度下铝合金微弧氧化陶瓷膜生长特性的研究.云南大学学报(自然科学版). 2005, 27(5A): 542~547
    69吴汉华,龙北红,吕宪义等.铝合金微弧氧化过程中电学参量的特性研究.物理学报. 2005, 54(4): 1697~1701
    70王乃丹,龙北玉,吴汉华等.单极性脉冲电流密度对铝合金MAO膜相结构和微结构的影响.吉林大学学报(理学版). 2005, 43(5): 645~649
    71 A.V. Timoshenko, Yu.V. Magurova. Investigation of plasma electrolytic oxidation processes of magnesium alloy MA2-1 under pulse polarisation modes. Surface and Coatings Technology. 2005, 199: 135~140
    72 A.L. Yerokhin, T, A. Shatrov, V. Samsonov, et al.. Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process. Surface and Coatings Technology. 2005, 199: 150~157
    73 D.T. Asquith, A.L. Yerokhin, J.R. Yates, A. Matthews. The effect of combined shot-peening and PEO treatment on the corrosion performance of 2024 Al alloy. Thin Solid Films. 2007
    74 I.V. Lukiyanchuk, V.S. Rudnev, V.G. Kuryavyi, et al. Surface morphology, composition and thermal behavior of tungstencontaining anodic spark coatings on aluminium alloy. Thin Solid Films. 2004, 446: 54~60
    75 R.H.U. Khan, A.L. Yerokhin, T. Pilkington, A. Leyland, A. Matthews. Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current. Surface and Coatings Technology. 2005, 200: 1580~1586
    76 A.L.Yerokhin, L.O. Snizhko, N.L. Gurevina, et al.. Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy. Surface and Coatings Technology. 2004, 177–178: 779~783
    77郝建民,丁毅.铝合金微弧氧化陶瓷层生长过程研究.电镀与精饰. 2005, 27(1): 8~10
    78蒋百灵,赵仁兵,梁戈等. Na2WO4对铝合金微弧氧化陶瓷层形成过程及耐磨性的影响.材料导报. 2006, 20(9): 156~157
    79陈宏,冯忠绪,郝建民,李波.负脉冲队铝合金微弧氧化的影响.长安大学学报. 2007, 27(1): 96~98
    80 H. Kalkanc, S.C. Kurnaz. The effect of process parameters on mullite-based plasma electrolytic oxide coatings. Surface and Coatings Technology. 2008, 203: 15~22
    81吴汉华.铝、钛合金微弧氧化陶瓷膜的制备表征及其特性研究.吉林大学博士论文. 2004: 63
    82 Jun Tian, Zhuangzi Luo, Shangkui Qi, Xiaojun Sun. Structure and antiwear behavior of micro-arc oxidized coatings on aluminum alloy. Surface and Coatings Technology. 2002, 154: 1~7
    83 L. Rama Krishna, K.R.C. Somaraju, G. Sundararajan. The tribological performance of ultra~hard ceramic composite coatings obtained through microarc oxidation. Surface and Coatings Technology. 2003, 163-164: 484~490
    84 G. Sundararajan, L. Rama Krishna. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surface and Coatings Technology. 2003, 167: 269~277
    85 E.V. Parfenov, A.L. Yerokhin, A. Matthews. Frequency response studies for the plasma electrolytic oxidation process. Surface and Coatings Technology. 2007, 201: 8661~8670
    86 J.A. Curran, T.W. Clyne. Thermo-physical properties of plasma electrolytic oxide coatings on aluminium. Surface and Coatings Technology. 2005, 199: 168~176
    87陈显明,罗承萍,刘江文.镁合金微弧氧化表面层多孔结构的形成机制.材料保护. 2009, 42(1): 1~4
    88刘杰.低能耗铝合金微弧氧化技术研究.大连海事大学硕士论文. 2008: 59
    89 L.Young. Space charge in formation of anodic oxide films. Acta Metallurgica. 1956, 4(1): 100~101
    90 J.Yahalom, J.Zahavi. Electrolytic breakdown crystallization of anodic oxide films on A1, Ta and Ti. Electrochim. Acta. 1970, 15(9):1429~1435
    91 J.Yahalom. Experimental evaluation of some electrolytic breakdown hypotheses. Zahavi, J.Electrochim.Acta. 1971, 16(5): 603~607
    92 A.V.Nikolaev, G.A.Markov, B.I.Peshchevitskii, A new phenomenon electrolysis. Izv Sib Otd Akad Nauk SSSR, Ser Khim. 1977, (5): 22
    93 G.C.Wood, C.Pearson. The theory of avalanche breakdown in solid dielectrics. Corros. Sci.. 1967, 7(2): 119~125
    94 A.K.Vijh. Sparking voltages and side reactions during anodization of valuemetals in terms of electron tunneling. Corros. Sci.. 1971, 11(6): 411~417
    95 R.S.Alwitt, A.K.Vijh. Statistics of electron avalanches in the proportional counter. Electrochem. Soc.. 1969, 116(3): 388~390
    96 S.Ikonopisov. Electronic conduction of anodized aluminium electrodes. Electrochim Acta. 1969, 14(8): 716~771
    97 S.Ikonopisov, L.Andreeva. Anodization of molybdenum in glycol-borate electrolyte peculiar kinetics of insulating film formation. Electrochem. Soc.. 1973, 120(10): 1361~1368
    98 S.Ikonopisov, Process characteristics and Parameters of Anodic Oxidation by Spark Discharge. Electrochem Acta. 1977, (22): 1077~1082
    99 A.K.Vijh. Electrical properties of non-metallic deposits. Surf. Coat. Technol.. 1976, 4(1): 7~30
    100 T.B. Van, S.D. Brun, G.P. Write. Anodic spark reaction products in aluminum, tungstate andsilicate. Bulletions America society. 1977, 56(6): 563
    101 V.Kadary, N.Klein. Reverse avalanche breakdown in gated diodes. Electrochem. Soc.. 1980, 127(1): 139~151
    102 V.Kadary, N.Klein. Experimental determination of the electron-avalanche and the electron-ion recombination coefficient. Electrochem. Soc.. 1980, 127(1): 152~155
    103 J.M.Albella, I.Montero. Electron injection sand avalanche during the anoxic oxidation of tantalum. Electrochem. Soc.. 1984, 131: 1101~1104
    104 I.Montero, J.M.Albella, J.M.Martinez Duart. Anodization and breakdown model of Ta2O5 films. Electrochem. Soc.. 1985, 132(4): 814~818
    105 J.M.Albella, I.Montero, J.M.Martinez-Duart. A theory of avalanche breakdownduring anodic oxidation. J.Electrochim Acta. 1987, 32(2): 255~258
    106旷亚非,侯朝辉,刘建平.阳极氧化过程中电击穿理论的研究进展.电镀与涂饰. 2000, 19(3): 38
    107 M. Boinet, S. Verdier, S. Maximovitch, F. Dalard. Plasma electrolytic oxidation of AM60 magnesium alloy: Monitoring by acoustic emission technique. Electrochemical properties of coatings. Surface and Coatings Technology. 2005, 199: 141~149
    108 E.V. Parfenov, A.L. Yerokhin, A. Matthews. Impedance spectroscopy characterisation of PEO process and coatings on aluminium. Thin Solid Films. 2007
    109 F. Me′cuson, T. Czerwiec, T. Belmonte, et al.. Diagnostics of an electrolytic microarc process for aluminium alloy oxidation. Surface and Coatings Technology. 2005, 200: 804~808
    110 L.O. Snizhko, A.L. Yerokhin, A. Pilkington, et al.. Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochimica Acta. 2004, 49: 2085~2095
    111 L.O. Snizhko, A.L. Yerokhin, N.L. Gurevina, et al.. A model for galvanostatic anodising of Al in alkaline solutions. Electrochimica Acta. 2005, 50: 5458~5464
    112 L.O. Snizhko, A.L. Yerokhin, N.L. Gurevina, et al. Excessive oxygen evolution during plasma electrolytic oxidation of aluminium. Thin Solid Films. 2007
    113蒋百灵,张先锋.镁合金微弧氧化陶瓷层的生长过程及其耐蚀性.中国腐蚀与防护学报. 2005, 25(2): 97~101
    114陈显明,罗承萍,刘江文,李文芳.镁合金微弧氧化膜层形成过程探讨.中国表面工程. 2006, 19(5): 14~21
    115陈显明,罗承萍,刘江文,李文芳.镁合金微弧氧化热力学和动力学分析.兵器材料科学与工程. 2006, 29(3): 17~19
    116李文芳,黄京浩,张永君,杜军.镁合金微弧氧化过程中参数对成膜效果的影响和优化.材料工程. 2006 , 2: 51~55
    117蒋百灵,李均明.铝镁合金微弧氧化处理技术的工程应用.新技术新工艺. 2009, 2: 16~18
    118 www.china.keronite.com
    119 http://www.techplate.com.tw/main_e.htm
    120朱祖芳.镁合金部件(制品)的表面保护和装饰工艺.材料保护. 2002, 35(6): 4~5
    121 http://www.aimt-group.com/files/mag-kepla-coat_gb.pdf
    122 http://www.tagnite.com
    123 http://www.microplasmic.com
    124 http://www.ihccorp.com/IHC-Anomag.htm
    125 http://www.aimt-group.com/files/mag-kepla-coat_gb.pdf
    126徐学基,诸定昌.气体放电物理.复旦大学出版社, 1996: 31~94
    127张积之.固体电解质的击穿(第二版).杭州大学出版社, 1994: 39~42
    128 Guan YJ, Xia Y, Li G. Growth mechanism and corrosion behavior of ceramic coatings on aluminum produced by autocontrol AC pulse PEO. Surface and Coatings Technology. 2008, 202(19): 4602~4612
    129赵树萍,吕双坤,郝文杰.钛合金及其表面处理.哈尔滨:哈尔滨工业大学出版社, 2003. 184~200
    130赵树萍.微弧氧化时电流、声信号和光信号与涂层形成电压的关系.材料保护. 2006, 39(2): 70~72
    131蒋百灵,吴国建,张淑芬等.镁合金维护氧化陶瓷层生长过程及微观结构的研究.材料热处理学报. 2002, 23(1): 5~7
    132张淑芬,张先锋,将百灵.镁合金微弧氧化陶瓷层形成及生长过程的研究.中国表面工程. 2004, (1):35~37
    133唐培松.铝合金表面微弧氧化工艺条件研究.昆明理工大学硕士论文. 2001: 10~12
    134马晋.铝合金微弧氧化工艺研究.武汉理工大学硕士论文. 2003: 11~13
    135蒋永锋,李均名,蒋百灵等.铝合金微弧氧化陶瓷层形成因素的分析.表面技术. 2001, 4
    136 James A. Curran, Thermal and Mechanical Properties of Plasma Electrolytic Oxide Coatings. The article for the degree of doctor of University of Cambridge. 2005, 66~70
    137王亚明. Ti6Al4V合金微弧氧化涂层的形成机制与摩擦学行为.哈尔滨工业大学博士论文. 2006: 69
    138关振铎,张中太,焦金生.无机材料物理性能.北京清华大学出版社, 1992: 340~350
    139 Yerokhin, A.L., X. Nie, A. Leyland, and A. Matthews, Characterisation of Oxide Films produced by Plasma Electrolytic Oxidation of a Ti-6Al-4V alloy. Surf. and Coat. Techn.. 2000. 130(2~3): 195~206
    140 Naugil nykh, K.A. and N.A. Roj. Electrical Discharges in Water (ElectricheskieRazrjady v vode). in Russian. 1971, Moscow: Nauka
    141蒋百灵,张先锋,朱静.铝合金镁合金微弧氧化陶瓷层的形成机理及性能.西安理工大学学报. 2003, 19(4): 297~298
    142 Shawkat Ali, Kate A. Amith miles. Ameta-learning approach to automatic kernel selection for support vector machines. Neurocomputing. 2006, 70: 173~186
    143王华忠,俞金寿.核函数方法及其模型选择.江南大学学报(自然科学版). 2006, 5(4): 500~504
    144 D. S. Broomhead, D. Lowe. Multivariable functional interpolation and adaptive networks. Complex Systems. 1988, 2: 321-355
    145 Roman Rosipal, Leonard J. Trejo. Kernel partial least squares regression in reproducing kernel Hilbert space. Journal of Machine Learning Research. 2001, 2: 97-123
    146 Wenjian Wang, Zongben Xuan, Weizhen Lu, Xiaoyun Zhang. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing. 2003, 55: 643~663
    147 M.Vladimi. Mikrolich bogen oxidation. J.Ober flchen technik. 1995, 49(8): 606~610
    148 G.A.Markov, V.I.Belevantsev, L.Slonova, et al. Phases in anode-cathode micro plasma processes. Elektrokhimiya. 1989, 25(11): 1473~1479
    149 G.A.Markov, A.L.Slonova, O.P.Terleeva. Chemical composion, structure and morphology of micro plasma coating. Zaschita Metallov. 1997, 33(3): 289~294
    150 Y.K.Wang, L.Sheng, R.E.Xiong, et al. Effects of additives in electrolyte on characteristic of ceramic coatings formed by micro-arc oxidation. Surface Engineering. 1999, 15(2): 109~111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700