钛合金等离子体电解氧化过程中陶瓷膜阻抗特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体电解氧化(PEO)陶瓷膜层的生长过程存在着电阻以及电容等阻抗特性的变化,这种阻抗特性的变化与陶瓷膜的结构以及PEO过程中放电方式的变化密切相关,因此通过研究陶瓷膜层生长过程中阻抗特性的变化,特别是从微弧到弧放电阶段,就可以实现对PEO过程的各个阶段的监控,这对于制备和获得高质量高性能的膜层具有重要的指导意义。
     本文采用电化学阻抗(EIS)技术与扫描电镜等形貌观察相结合,对钛合金表面PEO陶瓷膜在各个生长阶段的阻抗特性进行了研究,最后通过对PEO反应过程中的电压电流响应的在线测量,获取反应过程中的等效电阻与等效电容等动态阻抗的相关信息并建立其与反应过程中各阶段的联系,通过动态阻抗特性的变化来实现对各个阶段的监控。同时本文还对陶瓷膜在不同溶液中进行了动电位极化测试,分别用于陶瓷膜的EIS拟合结果的验证以及陶瓷膜的耐蚀性能的研究。
     以TC4钛合金在3.5%NaCl溶液中的腐蚀行为为例,详细的分析了充电电流对极化曲线的形状以及动力学参数的影响。由于充电电流与扫描速率和扫描方向有关,对于Ti6Al4V与PEO陶瓷膜,可以分别在0.5mV/s和0.05mV/s的扫描速率下通过对正反向扫描过程中的外测电流取平均值的方法有效地减弱充电电流的干扰。
     通过对PEO陶瓷膜在铝酸钠工作液中直接进行电化学阻抗谱测试来研究膜层在生长过程中的阻抗特性的变化以及工艺参数的影响,结果表明:在火花阶段,随处理电压的升高,PEO陶瓷膜的致密程度增加,在工作液中的极化电阻值、电容值均增加,在微弧阶段,大火花放电对膜层具有一定的破坏作用,导致膜层的极化电阻值变小,但电容值明显增加。直流电源模式下,随电流密度的增加,陶瓷膜在工作液中的极化电阻值增加;火花阶段陶瓷膜疏松层的结构受电流密度的影响很小,陶瓷膜在工作液中的电容值也基本不变;微弧阶段陶瓷膜疏松层的结构受电流密度影响很大,电容值随电流密度的增加而增加。单向脉冲模式下很容易发生弧放电,严重的破坏了膜层的致密程度,使得陶瓷膜在工作液中的极化电阻值与电容值均减小;随电源峰值电流密度的增加、频率的提高以及占空比的减小,发生弧放电时的电压提高。
     单向脉冲模式下PEO反应过程电源波形的测试结果表明:在单个脉冲周期内,电压阶跃很快就能完成,但是电流随时间而成指数衰减至稳定的数值,电流衰减速度随处理电压的变化可以分为三个阶段,分别与PEO膜层生长过程中的火花阶段、微弧阶段以及弧放电阶段的电压范围相对应,据此可以对膜层的生长过程进行监测。对电流衰减曲线进行拟合,结果表明:在火花阶段,放电通道的底部非常接近或者直接与基体相接触,进入微弧阶段之后,放电通道的底部与基体之间被逐渐分隔开来;PEO反应过程中动态电阻的数值在发生弧放电之前随处理电压的升高而增加,弧放电的发生则使得动态电阻的数值减小,动态电容在火花阶段随处理电压的升高而减小,在微弧阶段则开始增加,进入弧放电之后又开始减小。
     本文还对Ti6Al4V经过PEO处理之后的耐蚀性能进行了研究,结果表明在3.5%的NaCl溶液中PEO陶瓷膜的腐蚀电流密度比基体合金降低了一个数量级。火花阶段的陶瓷膜的耐蚀性能随处理电压的提高而增强,但是发生大火花放点之后,陶瓷膜的耐蚀性能下降。对于单向脉冲模式下制备的陶瓷膜,随频率的增加、占空比的降低,陶瓷膜的耐蚀性能增加。电源参数对PEO陶瓷膜耐蚀性能的影响与陶瓷膜在工作液中EIS拟合结果的内层电阻的变化相一致。
The impedance characteristic of the plasma electrolytic oxidation (PEO) coating depends strongly on the coating structure. By studying the impedance characteristic, the growth process of the PEO coating can be well understood. During the PEO process, the response of the power source is affected by the impedance characteristic of the breakdown coating. By observing the response of the power source, i.e., the wave shape of the current or voltage, the growth process of the PEO coating can be controlled, especially for the transfer of micro-arc stage to arc stage. Doing so is very helpful for the preparation of the PEO coating of high performance.
     Based on the above purpose, electrochemical impedance spectroscopy, combined by SEM, EDS, XRD analysis, are adopted to study the impedance characteristic of the PEO coating prepared at different stages. The response of the single-pulse power during the PEO progress is recorded by the oscillograph, and analyzing the waves of the current and voltage presents the impedance characteristic of the breakdown coating, which includes the active resistance during the breakdown, Ra and the capacitance of the part where the breakdown does not occur, C. Moreover, the potentiodynamic polarization is also performed in different solutions to testify the fitting results of EIS and to study the corrosion resistance of the coating.
     For the corrosion system of very low corrosion rate, the potentiodynamic polarization is more readily disturbed by the charging current. In this paper, the corrosion behavior of TC4 in 3.5% NaCl solution is taken as an example to illustrate how the potentiodynamic polarization curve and the obtained kinetics parameters are affected by the charging current. Based on the relation of the charging current with the scan direction, the disturbance of the charging current can be eliminated or reduced greatly by averaging the two current densities measured by positive and negative scan, respectively.
     The EIS spectra measured in the working solution can reflect well the growth character of the coating during the PEO process. In spark stage, the equivalent resistance and capacitance of the coating increase with the treatment voltage. In micro-arc stage, the equivalent resistance and capacitance decreases and increases, respectively. For the coating prepared by DC power, the outer and inner layers are nearly not affect by the current density in spark and micro-arc stage, respectively. For the coating prepared by single-pulse power source, the arc discharge is easily to happen, which causes great damage to the coating and makes the equivalent resistance and capacitance both decrease. With the increase of the frequency and the peak current density, the voltage where the arc discharge occurs increases, and the decrease of the duty ratio also makes the arc discharge voltage increase.
     During the PEO process, the real wave shape of the output of the power was very different from its theoretical shape. At the initial stage of the pulse, about within 1μs, the voltage and the current reached a maximal value at the same time, afterward, the voltage fall down to a stable value quickly, but the current decayed exponentially in a long period to the stable value, which was exactly like the behavior of the parallel component of a resistor and a capacitor. The variation of the decay rate of the current with the treatment voltage can be divided into three stages, which corresponded to the spark stage, micro-arc stage and arc stage of the PEO process. The fitting results of the current decay curve showed that at the early stage of the PEO process, the bottom of the discharge channel was very close or contacted directly with the substrate, but at the later stage of the PEO process, the discharge channel was separated from the substrate by coating. With the increase of the treatment voltage, the active resistance Ra increases before arc stage; the capacitance C decreases in spark stage, then increases in micro-arc stage, and it decreases again in arc stage.
     This paper also deals with the corrosion resistance of the PEO coating. After PEO treatment, the corrosion current density of TC4 decreases by more than one orders. The corrosion resistance of the PEO coating increases with the treatment voltage in spark stage, and gets worse when the PEO process comes into micro-arc stage. For the coating prepared by single-pulse power source, the increase of the frequency and decrease of the duty ratio can lead to the improvement of the corrosion resistance of the PEO coating. The influence of the technical parameters on the corrosion resistance is exactly in the same way as their influence on the resistance value of the inner layer in the equivalent circuit established to the fit the EIS spectra.
引文
1徐增华.金属耐蚀材料.腐蚀与防护. 2002, 23 (1):42-45
    2赵树萍,吕双坤,郝文杰.钛合金及其表面处理.哈尔滨工业大学出版社. 2003: 29-89.
    3 H. Y. Yu, Z. B. Cai, Z. R. Zhou, et al. Fretting Behavior of Cortical Bone Against Titanium and its Alloy. Wear. 2005, 259: 910-918.
    4 Nadia M. Taher, Abed S. Galvanic Corrosion Behavior of Implant Super Structure Dental Alloy. Den. Mater. 2003, 19: 54-59.
    5刘建华,吴昊,李松梅等.高强合金与钛合金的电偶腐蚀行为.北京航空航天大学学报. 2003, 29(2): 124-128.
    6 E. N. Codaro, R. Z. Nakazatoa, A. L. Horovistiz, et al. An Image Analysis Study of Pit Formation on Ti-6Al-4V. Mater. Sci. Eng. 2003, A341: 202-210
    7 M. Eashwar, S. Maruthamuthu, S. Sathiyanarayanan, et al. The Ennoblement of Stainless Alloys by Marine Biofilms: The Neutral PH and Passivity Enhancement Model. Corrison Science. 1995, 37: 1169-1176
    8 F. Mansfeld, R. Tsai, H. Shih, et al. An Electrochemical and Surface Analytical Study of Stainless Steels and Titanium Exposed to Natural Seawater. Corrison Science. 1992, 33: 445-456
    9 Z. Mohammadi, A. A. Ziaei-Moayyed, A. S. M. Mesgar. Adhesive and Cohesive Properties by Indentation Method of Plasma-Sprayed Hydroxyapatite Coatings. Applied Surface Science. 2007, 253(11): 4960-4965
    10 C. T. Wu, Y. Ramaswamy, X. Y. Liu. Plasma-Sprayed CaTiSiO5 Ceramic Coating on Ti-6Al-4V with Excellent Bonding Strength, Stability and Cellular Bioactivity. Journal of the Royal Society Interface. 2009, 6(31): 159-168
    11 M. F. Morks, N. F. Fahim, A. Kobayashi. Structure, Mechanical Performance and Electrochemical Characterization of Plasma Sprayed SiO2/Ti-Reinforced Hydroxyapatite Biomedical Coatings. Applied Surface Science. 2008, 255(5): 3426-3433
    12 X. B. Zhao, X. Y. Liu, Z. G. Chen. Study on Bioactivity of Plasma-Sprayed Titania Coating. Journal of Inorganic Materials. 2008, 23(5): 1021-1026
    13 H. C. Wu, H. F. Zhang, G. J. Ma, et al. A Biasing Method for PlasmaImmersion Ion Implantation and Deposition Process to Enhance Coating Adhesion. Surf. Coat. Technol. 2007, 201(15): 6611-6614
    14 L. Y. Zheng, L. X. Zhao, W. H. Xiong. Tribological Properties of TiAlN-Coated Cermets. Rare Metals. 2009, 28(1): 57-62
    15 X. H. Wang, S. Y. Qu, B. S Du, et al. In Situ Synthesised TiC Particles Reinforced Fe Based Composite Coating Produced by laser Cladding. Materials Science and Technology. 2009, 25(3): 388-392
    16 X. H. Wang, L. Cheng, M. Zhang, et al. Reaction Synthesis of (Ti,V) C Carbide Reinforced Fe Based Surface Composite Coating by Laser Cladding. Surface Engineering. 2009, 25(3): 211-217
    17 X. J. Zhang, S. Y. Zhao, C. X. Gao, et al. Amorphous Sol-Gel SiO2 Film for Protection of an Orthorhombic Phase Alloy Against High Temperature Oxidation. Journal of Sol-Gel Science and Technology. 2009, 49(2): 221-227
    18 W. G. Zhang, W. M. Liu, Y. Liu, et al. Tribological Behaviors of Single and Dual Sol-Gel Ceramic Films on Ti-6Al-4V. Ceramics International. 2009, 35(4): 1513-1520
    19 G. Y. Xiao, Y. P. Lu, R. F Zhu. Effect of Heat Treatment on Performance of Hydroxyapatite Coatings Immersed in Simulated Body Fluid. Surface Engineering. 2009, 25(2): 136-140
    20 F. Jaspard-Mecuson, T. Czerwiec, G. Henrion, et al. Tailored Aluminium Oxide Layers by Bipolar Current Adjustment in the Plasma Electrolytic Oxidation (PEO) Process. Surf. Coat. Technol. 2007, 201(21): 8677-8682
    21 A. L. Yerokhin, X. Nie, A. Leyland, et al. Plasma Electrolysis for Surface Engineering. Surf. Coat. Technol. 1999, 122: 73-93
    22 N. P. Sluginov. J.Russ.Phys.Chem.Soc.1880, 12:193, in Russian
    23 A. Guntherschlze, H. Betz. Die Electronenstromung in Isolatoren Bei Extremen Feldstarken. Z. Phys. 1934, 91: 70-96
    24 W. McNiell, G. F. Nordbloom. US Patent 2854390. September 30.1958.
    25 W. McNiell, L. L. Gruss. US Patent 3 293 158,1966
    26 A. A. Petrosyants, V. N. Malyshev, V. A.Fyedorov, et al. Trenie Iznos. 1984, 5(2): 350, in Russian
    27 L. A. Snezhko, L. A. Beskrovnyj, Y. M. Nevkrytyj, et al. Zashch. Met. 1980, 16(3): 365, in Russian.
    28 L. A. Snezhko,V. I. Tchernenko. Elektron. Obrab. Mater. 1983, 2: 25, in Russian.
    29 P. Kurze, W. krysmann, G.. Marx, Z. Swiss. Tech. Hochsch. Karl-Marx-Stadt. 1982, 24: 139-145
    30聂学渊.快速表面技术研究.金属热处理. 1997, 22(3): 19-22
    31 E. I. Teletis, X. Nie, F. L. Wang, J. C. Jiang. Electrolitic Plasma Processing for Cleaning and Metal-Coating of Steel Surface. Surf. Coating. Technol. 2002, 150: 246-256.
    32 G. P. Wirtz, S. D. Brown, W. M. Kriven. Cremic Coatings by Anodic Spark Deposition. Materials and Manufacturing Processes. 1991, 6(1): 87-115
    33 V. S. Rudnev, T. P. Yarovaya, D. L. Boguta. Anodic Spark Deposition of P,Me(Ⅱ) or Me(Ⅲ) Containing Coatings on Aluminium and Titanium Alloys in Electrolytes with Polyphosphate Complexes. Journal of Electrosnslytical Chemistry. 2001, 497: 150-158
    34 F. Patcas, W. Krysmannb, F. C. Buciuman. Preparation of Structured Eggshell Catalysts for Selective Oxidations by the ANOF Technique. Catalysis Today. 2001, 69: 379-383
    35 W. Krysmann, P. Kurze, K. H. Dittrich, et al. Process Characteristics and Parameters of Anodic Oxidation by Spark Discharge(ANOF). Cryst. Res. Technol. 1984, 19(7): 973-979
    36 K. L. Rama, K. R. C. Somaraju, G. Sundarajan. The Tribological Performance of Ultra-hard Ceramic Composite Coatings Obtained Through Micro-arc Oxidation. Surf. Coat Technol. 2003, 163-164: 484-490
    37 W. B. Xue, Z. W. Deng, R. Y. Chen, et al. Growth Regularity of Ceramic Coatings Formed by Microarc Oxidation on Al-Cu-Mg Alloy. Thin solid films. 2000, 372: 114-117
    38辛世刚. LY12铝合金表面微等离子体氧化陶瓷膜的结构与性能.哈尔滨工业大学工学博士论文. 2003, 4
    39 J. L. Patel, N. Saka. Microplasmic Ceramic Coating. International Ceramic Review. 2001, 50(5):398-401
    40张文华,胡正前,马晋.俄罗斯微弧氧化技术的研究进展.有色金属. 2004, 1: 43-46
    41 L. V. Lukiyanchuk, V. S. Rudnev, Kuryavyi, et al. Composition and ThermalBehavior of Anodic Spark Coatings Tungsten Containing Morphology on Aluminium Alloy. Thin Solid Films. 2004, 446: 54-60
    42 G. P. Wirtz, S.D. Brown, W. M. Kriven. Ceramic Coatings by Anodic Spark Deposition. Mater. Manuf. Process. 1991, 6(1): 87-115
    43 J. L. Patel. Advances in Ceramic Coating. Mater. Technol. 2001, 16 (1): 19-22
    44 P. Kurze, J. Schreckenbach, T. Schwarz, et al. Coating by Anodic Oxidation with Spark Discharge. Metalloberflaeche. 1986, 40(12): 539-540
    45 S. Meyer, R. Gorges, G. Kreisel. Preparation and Characterisation of Titanium Dioxide Films for Catalytic Applications Generated by Anodic Spark Deposition. Thin Solid Films. 2004, 450(2): 276-281
    46 A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, et al. Spatial Characteristics of Discharge Phenomena in Plasma Electrolytic Oxidation of Aluminium Alloy Surf. Coat. Technol. 2004, 177-178: 779-783
    47 T. H. Teh, A. Berkania, S. Mato, et al. Initial Stages of Plasma Electrolytic Oxidation of Titanium. Corros. Sci. 2003, 45 (12): 2757-2768
    48 S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya. Composition and Adhesion of Protection Coatings on Aluminum. Surf. Coat. Technol. 2001, 145(1-3): 146-151
    49 X. L. Zhu, K. H. Kim, Y. S. Jeong. Anodic Oxide Films Containing Ca and P of Titanium Biomaterial. Biomaterials. 2001, 22(16): 2199-2206
    50 L. H. Lia, Y. M. Konga, H. W. Kima. Improved Biological Performance of Ti Implants due to Surface Modification by Micro-arc Oxidation. Biomaterials 2004, 25(14):2867-2875
    51 G. Sundararajan, L. Rama Krishna. Mechanisms Underlying the Formation of Thick Alumina Coatings through the MAO Coating Technology. Surf. Coat. Technol. 2003, 167(2-3): 269-277
    52 L .R. Krishna, K. R. C. Somaraju, G.. Sundararajan. The Tribological Performance of Ultra-hard Ceramic Composite Coatings Obtained through Microarc Oxidation. Surf. Coat. Technol. 2003, 163-164: 484-490
    53 W. B. Xue, C. Wang, R. Y. Chen. Structure and Properties Characterization of Ceramic Coatings Produced on Ti-6Al-4V Alloy by Microarc Oxidation in Aluminate Solution. Mater. Lett. 2002, 52 (6): 435-441
    54 Y. Han, S. H. Hong, K. W. Xu. Porous Nanocrystalline Titania Films by PlasmaElectrolytic Oxidation. Surf. Coat.Technol. 2002, 154(2-3): 314-318
    55蒋百灵,张菊梅,时惠英.钛合金微弧氧化膜表面形貌对膜/环氧树脂结合强度的影响.中国有色金属学报.2004, 14(4): 539-542
    56 T. Wei, F. Yan, J. Tian. Characterization and Wear- and Corrosion-resistance of Microarc Oxidation Ceramic Coatings on Aluminum Alloy. J. Alloy. Compd. 2005, 389 (1-2): 169-176
    57 J. Liang, B. Guo, J. Tian, et al. Effect of Potassium Fluoride in Electrolytic Solution on the Structure and Properties of Microarc Oxidation Coatings onMagnesium Alloy. Appl.Surf .Sci. 2005, 252(2): 345-351
    58 F. Liu, F.P. Wang, T. Shimizu, et al. Formation of Hydroxyapatite on Ti-6A1-4V Alloy by Microarc Oxidation and Hydrothermal Treatment. Surf. Coat. Technol. 2005, 199(2-3): 220-224
    59 X. T. Sun, Z. H. Jiang, Z. P. Yao, et al. The Effects of Anodic and Cathodic Processes on the Characteristics of Ceramic Coatings Formed on Titanium Alloy through the MAO Coating Technology. Appl. Surf. Sci. 2005, 252 (2): 441-447
    60 Y. M. Wang, B. L. Jiang, T. Q. Lei, et al. Microarc Oxidation and Spraying Graphite Duplex Coating Formed on Ttitanium Alloy for Antifriction Purpose. Appl. Surf. Sci. 2005, 246(1-3): 214-221
    61 S. G. Xin, L. X. Song, R. G. Zhao, et al. Properties of Aluminium Oxide Coating on Aluminium Alloy Produced by Micro-arc Oxidation. Surf. Coat. Technol. 2005, 199(2-3): 184-188
    62 C. T. Wu, F. H. Lu. Synthesis of Barium Titanate Films by Plasma Electrolytic Oxidation at Room Electrolyte Temperature. Surf. Coat Technol. 2005, 199(2-3): 225-230
    63 T. B. Van, S. D. Brown, G. P. Wirtz. Mechanism of anodic spark deposition. Ceramic Bulletin. 1997, 56(6): 563-566
    64旷亚非,侯朝辉,刘建平.阳极氧化过程中电击穿理论的研究进展.电镀液涂饰.2000,19(3):38-45
    65徐勇.国内铝和铝合金微弧氧化技术研究动态.腐蚀与防护. 2003, 24 (4): 154-157
    66 R. F. Zhang, D. Y. Shan, E. H. Han, et al. Effects of Electric Parameters on Properties of Anodic Coatings Formed on Magnesium Alloys. Mater. Chem.Phys. 2008, 107(2-3): 356-363
    67 Z. P. Yao, Z. H. Jiang, X. T. Sun, et al. Influence of Frequency on the Structure and Corrosion Resistance of Ceramic Coatings on Ti-6Al-4V Alloy Produced by Micro-Plasma Oxidation. Mater. Chem. Phys. 2005, 92: 408-412
    68 Y. M. Wang, D. C. Jia, L. X. Guo, et al. Effect of Discharge Pulsating on Microarc Oxidation Coatings Formed on Ti6Al4V Alloy. Mater. Chem. Phys. 2005, 90: 128-133
    69И.В.Лукиянчук,В.С.Руднев,Н.А.Анденко,Т.А.Кайдалова,Е.С.Панин,П.С.Гордиенко.Анодно-искровоеОксидированиеСплаваАлюминиявВольфраматныхЭлектролитах.ЖурналПрикладнойХимии. 2002, 75(4): 587-591
    70孙南海,危立辉.等离子体微弧氧化双向脉冲电源稳流稳压控制.中南民族大学学报(自然科学版). 2004, 23(6): 47-49.
    71А.И.Слонова.,О.И.Терлеева,Е.К.Шуленко.НекоторыеЗакономер-ностиФормированияМикродуговыхПокрытий.Электрохимия. 1992, 28 (9):1280-1285
    72 A. L. Yerokhin, X. Nie, A. Leyland, et al. Plasma Electrolysis for Surface Engineering. Surf. Coat. Technol. 1999, 122: 73-93
    73 X. T. Sun, Z. H. JIang, S. G. Xin, et al. Composition and Mechanical Properties of Hard Ceramic Coating Containingα-Al2O3 Produced by Microarc Oxidation on Ti-6Al-4V Alloy. Thin Solid Films. 2005, 471: 194-199
    74 J. Liang, L. T. Hu, J. C. Hao. Preparation and Characterization of Oxide Films Containing Crystalline TiO2 on Magnesium Alloy by Plasma Electrolytic Oxidation. Electrochi. Acta. 2007, 52: 4836-4840
    75 Z. D. Wu, Z. P. Yao, Z. H. Jiang. Preparation and Structure of Microarc Oxidation Ceramic Coatings Containing ZrO2 Grown on LY12 Al Alloy. Rare Metals. 2008, 27(1): 55-58
    76 A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews. Characterization of Oxide Films Produced by Plasma Electrolytic Oxidation of a Ti-6A1-4V Alloy. Surf. Coat. Technol. 2000, 130: 195-206
    77 Y. M. Wang, B. L. Jiang, T. Q. Lei, et al. Microarc Oxidation and Spraying Graphite Duplex Coating Formed on Ttitanium Alloy for Antifriction Purpose. Appl. Surf. Sci. 2005, 246(1-3 ): 214-221
    78孙学通.钛合金微离子体氧化陶瓷膜的结构及摩擦学行为.哈尔滨工业大学工学博士论文.2005年10月
    79王亚明,蒋百灵,雷廷权等.Ti6A14V表面微弧氧化陶瓷涂层的结构和摩擦学特性.摩擦学学报.2003, 23(5): 371-375.
    80 Z. P. Yao, Z. H. Jiang, X. H. Wu, et al. Effects of Ceramic Coating by Micro-Plasma Oxidation on the Corrosion Resistance of Ti–6Al–4V Alloy. Surf. Coat. Technol. 2005, 200: 2445-2450
    81 J. S Lu,C. Lu. The Enhancement of Corrosion Resistance of Titanium in High Temperature Acidic Solutions by Microarc Oxidation.Advances in Fracture and Damage Mechanics Vii. 2008, 385-387: 777-780
    82 X. Nie, A. Leyland, A. Matthews. Deposition of Layered Bioceramic Hydroxyapatite/TiO2 Coatings on Titanium Alloys Using a Hybrid Technique of Micro-arc Oxidation and Electrophoresis. Surface and Coatings Technology. 2000, 125: 407-414
    83 L. H. Li, Y. M. Kong, H. W. Kim, et al. Improved Biological Performance of Ti Implants duo to Surface Modification by Micro-arc Oxidation. Biomaterials. 2004, 25: 2867-2875
    84 P. Huang, K. W. Xu, Y. Han. Preparation and Apatite Layer Formation of Plasma Electrolytic Oxidation Film on Titanium for Biomedical Application. Mater. Lett. 2005, 59: 185-189
    85 J. F. Sun, Y. Han, X. Huang. Hydroxyapatite Coatings Prepared by Micro-arc Oxidation in Ca- and P- Containing Electrolyte. Surf. Coat. Technol. 2007, 201: 5655-5658
    86 Ishizawa, M. Ogino. Characterization of Thin Hydroxyapatite Layers Formed on Anodic Titanium Oxide Films Containing Ca and P by Hydrothermal Treatment. Journal of Biomedical Materials Research. 1995, 29: 1071-1079
    87 H. C. Yang, M. Uchida, H. M. Kim, X. D. Zhang, T. Kokubo. Preparation of Bioactive Titanium Metal via Anodic Oxidation Treatment. Biomaterials. 2004, 25: 1003-1010
    88马威,刘宝林,王新木,董文波,魏建华.微弧氧化处理后纯钛材料不同形貌特点对细胞在其表面附着和增值的影响.中国临床康复. 2004, 8(14): 2618-2620
    89张玉梅,赵铱民,黄平,憨勇.钛表面处理后表面能分析及对细胞附着的影响.稀有金属材料及工程. 2004, 33(5): 518-521
    90 P. S. Gordienko, S. V. Gnedenkov,O. A. Khrisanfova, et al. Fizika i khimiya obrab. mater.1995, 3: 77-83
    91 V. S. Rundev,T. P. Yarovaya, et al. Anodic Spark Deposition of P,Me(Ⅱ) or Me(Ⅲ) Containing Coatings on Aluminium and Titanium Alloys in Electrolytes with Polyphosphate Complexes. Journal of Electroanalytical Chemistry. 2001, 497: 150-158
    92 P. S. Gordienko, S.V. Gnedenkov, Khrisanfova, et al. Fizika ikhimiya obrab mater. 1995, 3: 77-83
    93 A. L. Yerokhin, L. O. Snizhko, N. L. Curevina, et al. Discharge Characterization in Plasma Electrolytic Oxidation of Aluminium. J Phys. D: APPI. Phys. 2003, 36: 2110-2120
    94 L. O. Snizhko, A. L. Yerokhin, A. Pilkington, et al. Anodic Processes in Plasma Electrolytic Oxidation of Aluminium in Alkaline Solutions. Electrochimica Acta. 2004, 49: 2085–2095
    95王立世,潘春旭,蔡启舟,等.等离子体电解氧化过程中单个稳态微放电的热效应研究.物理学报. 2007, 56 (9): 5341-5346
    96 E. Matykina, A. Berkani, P. Skeldon, et al. Tracing Locations of New Coating Material during Spark Anodizing of Titanium. Philosophical Magazine. 2007, 86: 49-66
    97 E. Matykina, A. Berkani, P. Skeldon, et al. Real-time Imaging of Coating Growth during Plasma Electrolytic Oxidation of Titanium. Electrochimica Acta, 2007, 53(4): 1987-1994
    98 Z. P. Yao, Z. H. Jiang, F. P. Wang, et al. Growth Characteristics of Micro-Plasma Oxidation Ceramic Coatings on Ti Alloy by Inductively Coupled Plasma-Atomic Emission Spectrometer Technique. Applied Surface Science. 2007, 253(9): 4267-4272
    99 Z. P. Yao, Y. L. Jiang, F. Z. Jia, et al. Growth Characteristics of Plasma Electrolytic Oxidation Ceramic Coatings on Ti–6Al–4V Alloy. Applied Surface Science. 2008, 254(13):4084-4091
    100 E. V. Parfenov, A. L. Yerokhin, A. Matthews, et al. Frequency Response Studies for the Plasma Electrolytic Oxidation Process. Surf. Coat. Technol. 2007, 201(21): 8661–8670
    101 E. V. Parfenov, A. L. Yerokhin, A. Matthews. Impedance Spectroscopy Characterisation of PEO Process and Coatings on Aluminium. Thin Solid Films. 2007, 516(2-4): 428-432
    102 G. W. Walter. A Review of Impedance Plot Methods Used for Corrosion Performance Analysis of Painted Metals. Corrosion Science. 1986, 26(9): 681-703
    103 J. N. Murray. Electrochemical Test Methods for Evaluating Organic Coatings on Metals: an Update. Part I. Introduction and Generalities Regarding Electrochemical Testing of Organic Coatings. Prog. Org. Coat. 1997, 30(4): 225-233
    104 F. Mansfeld. Models for the Impedance Behavior of Protective Coatings and Cases of Localized Corrosion. Electrochim Acta. 1993, 38(14): 1891-1897
    105孙秋霞,张鉴清,林昌建.阻抗谱定量分析金属/有机涂层界面粘结力.物理化学学报. 2004, 20(11): 1297-1302
    106 A. Yagan, N. O. Pekmez, A. Y?ld?z. Poly (N-ethylaniline) Coatings on 304 Stainless Steel for Corrosion Protection in Aqueous HCl and NaCl Solutions. Electrochimica Acta. 2008, 53: 2474-2482
    107 S. Sathiyanarayanan, R. Jeyaram, S. Muthukrishnan, et al. Corrosion Protection Mechanism of Polyaniline Blended Organic Coating on Steel. Journal of the Electrochemical Society. 2009, 156(4): C127-C134
    108 F. Mansfeld, M W. Kending. ASTM STP 866, 1985, 122.
    109 M F. Mansfeld, M W. Kending, S. Tsi. Evalvation of Corrosion Behavior of Coated Metals with AC impedence measurements. Corrosion. 1982, 38: 478-486.
    110张鉴清,孙国庆,曹楚南.评价有机涂层防护性能的EIS数据处理.腐蚀科学与防护技术. 1994, 6(4): 318–325.
    111 J. D. Scantlebury, K. Gali. The Application of AC Impedance to Study the Performance of Lacquered Aluminium Specimens in Acetic Acid Solution. Prog. Org. Coat. 1997, 3l(3): 201-207
    112 N. Scharnagl, C. Blawert, W. Dietzel. Corrosion Protection of Magnesium Alloy AZ31 by Coating with Poly (ether imides) (PEI). Surf. Coat. Technol. 2009, 203(10-11): 1423-1428
    113 Haruyama, R. Hirayara, S. Haruyama. Electrochemical Impedance for DegradedCoated Steel Having Pores. Corrosion. 1991, 47(12): 952-960
    114 F. Mansfeld. Determination of Coating Deterioration with EIS. Part 1: Basic Relationships. Corrosion. 1991, 47: 958-964.
    115 F. Mansfeld, C. H. Tsai. Determination of Coating Deterioration with EIS.Part 2: Development of a Method for Field Testing of Protective Coatings. Corrosion. 1993, 49: 726-733
    116 A. M Fekry. The Influence of Chloride and Sulphate Ions on the Corrosion Behavior of Ti and Ti-6Al-4V Alloy in Oxalic Acid. Electrochimica Acta. 2009, 54 (12): 3480-3489.
    117 M. Schneider, S. Schroth, J. Schilm, et al. Micro-EIS of Anodic Thin Oxide Films on Titanium for Capacitor Applications. Electrochimica Acta. 2009, 54(9): 2663-2671
    118 Z. P. Yao, Z. H. Jiang, S. G Xin, et al. Electrochemical Impedance Spectroscopy of Ceramic Coatings on Ti–6Al–4V by Micro-Plasma Oxidation.Electrochimica Acta. 2005, 50(16-17): 3273–3279
    119 Z. P Yao, Z. H Jiang, F. P. Wang. Study on Corrosion Resistance and Roughness of Micro-Plasma Oxidation Ceramic Coatings on Ti alloy by EIS Technique. Electrochimica Acta. 2007, 52(13): 4539-4546
    120 H. P. Duana, K. Q. Duc, C. W. Yan, et al. Electrochemical Corrosion Behavior of Composite Coatings of Sealed MAO Film on Magnesium Alloy AZ91D. Electrochimica Acta. 2006, 51(14): 2898–2908
    121 H. P. Duan, C. W. Yan, F. H. Wang. Effect of Electrolyte Additives on Performance of Plasma Electrolytic Oxidation Films Formed on Magnesium Alloy AZ91D. Electrochimica Acta. 2007, 52(11):3785-3793
    122 J. L. Xu, F. Liu, F. P. Wang, et al. Alumina Coating Formed on Medical NiTi Alloy by Micro-arc Oxidation. Materials Letters. 2008, 62(25): 4112-4114
    123 J. L. Xu, F. Liu, F. P. Wang, et al. The Corrosion Resistance Behavior of Al2O3 Coating Prepared on NiTi Alloy by Micro-arc Oxidation. Journal of Alloys and Compounds. 2008, 472(1-2): 276-280
    124 H. H. Luo, Q. H. Cai, B. K. Wei, et al. Effect of (NaPO3)6 Concentrations on Corrosion Resistance of Plasma Electrolytic Oxidation Coatings Formed on AZ91D Magnesium Alloy. Journal of Alloys and Compounds. 2008, 464(1-2): 537-543
    125 H. H. Luo, Q. Z. Cai, B. K. Wei, et al. Effect of (NaPO3)6 on Electrochemical Corrosion Characteristic of Micro-arc Oxidation Ceramic Coatings Formed on AZ91D Mg Alloy. Acta Physico-Chimica Sinica. 2008, 24(3): 481-486
    126 W. L. Lue, T. J. Chen, Y. Ma. Effects of Increase Extent of Voltage on Wear and Corrosion Resistance of Micro-arc Oxidation Coatings on AZ91D Alloy. Transactions of Nonferrous Metals Society of China. 2008, 18: S354-S360
    127 C. Blawert, V. Heitmann, W. Dietzel, et al. Influence of Electrolyte on Corrosion Properties of Plasma Electrolytic Conversion Coated Magnesium Alloys. Surf. Coat. Technol. 2007, 201(21): 8709-8714
    128 A. Ghasemi, V. S. Raja, C. Blawert,et al. Study of the Structure and Corrosion Behavior of PEO Coatings on AM50 Magnesium Alloy by Electrochemical Impedance Spectroscopy. Surf. Coat. Technol. 2008, 202(15): 3513-3518
    129 E. V. Parfenov, A. L. Yerokhin, A. Matthews. Impedance Spectroscopy Characterisation of PEO Process and Coatings on Aluminium. Thin Solid Films. 2007, 516 (2-4): 428-432
    130 Allen J. Bard, Larry R. Faulkner, Electrochemical Methods-Fundamentals and Application, Second ed., Wiley, New York, 2001, p. 233
    131曹楚南.腐蚀电化学原理.第二版.化学工业出版社, 2004: 251-275.
    132 X. L. Cheng, Sharon G. Roscoe. Corrosion Behavior of Titanium in the Presence of Calcium Phosphate and Serum Proteins. Biomaterials. 2005, 26: 7350-7356
    133 C. H. Hsu, F. Mansfeld. Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance. Corros. 2001, 57: 747-748
    134 Neluta Ibris, Julia Claudia Mirza Rosca. EIS Study of Ti and its Alloys in Biological Media. J. Electroanal. Chem. 2002, 526: 53-62
    135曹楚南,张鉴清.电化学阻抗谱导论.第二版.科学出版社, 2004: 151-191.
    136 M. A. Hill, D. P.Butt, R. S. Lillard. The Passivity and Breakdown of Beryllium in Aqueous Solutions. J. Electrochem. Soc. 1998, 145: 27-99.
    137 Norman Hackerman, Colby D. Hall Jr. Electrochemical Polarization of Titanium in Aqueous Solutions of Sodium Chloride. J. Electrochem. Soc. 1954, 101: 321-327
    138 E. X. Sun, W. B. Nowak. Electrochemical Characteristics of Ti–6Al–4V Alloy in 0.2 N NaCl Solution: I. Tafel Slopes in Quasi-Passive State. Corros. Sci. 2001, 43: 1801-1816
    139 W. B. Nowak, E. X. Sun. Electrochemical Characteristics of Ti–6Al–4V Alloy in 0.2 N NaCl Solution: II. Kinetic Behaviors and Electric Field in Passive Film. Corros. Sci. 2001, 43: 1817-1838
    140 Sergio Luiz de Assis, Stephan Wolynec, Isolda Costa. Corrosion Characterization of Titanium Alloys by Electrochemical Techniques. Electrochim. Acta. 2006, 51: 1815-1819
    141 Gianni Rondelli. Corrosion Resistance Tests on NiTi Shape Memory Alloy Biomaterials. 1996, 17: 2003-2008
    142 Nicolas Schiff, Brigitte Grosgogeat, Michele Lissac, et al. Influence of Fluoridated Mouthwashes on Corrosion Resistance of Orthodontics Wires. Biomaterials. 2004, 25: 4535-4542
    143 John R. Scully, David W. Shoesmith, Rudolph G. Bucheit. Electrochemical Techniques in Corrosion Science and Engineering. Marcel Deker, Inc, New York, 2003: 46
    144 R. J. Moolenaar, J. C. Evans, L. D.McKeever. The Structure of the Aluminium Ion in Solutions at High Concentration. J. Phys.Chem. 1970, 74: 3629-3636
    145 S. Veesler, S. Rource, R. Boistelle. General Concept of Hydrargillite Al(OH)3 Agglomeration. J. Crystal. Growth. 1994, 135: 505-512
    146 F. Mansfeld. Electrochemical Impedance Spectroscopy (EIS) as a New Tool for Investigating Methods of Corrosion Protection. Electrochim. Acta. 1990, 35: 1533-1544
    147 V. López, M.J. Bartolomé, E. Escudero, et al. González. Comparison by SEM, TEM, and EIS of Hydrothermally Sealed and Cold Sealed Aluminum Anodic Oxides. J. Eletrochem. Soc. 2006, 153: B75-B82
    148史美伦.交流阻抗谱原理与应用,第一版.北京:国防工业出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700