NiTi合金表面微弧氧化改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高医用NiTi合金的耐腐蚀、耐磨性能和抑制Ni离子释放,增强合金的使用安全性和生物相容性,本文采用双向脉冲微弧氧化电源在医用NiTi合金表面制备了低Ni含量的氧化铝陶瓷膜层。采用SEM、XRD、EDS、XPS等手段系统研究了陶瓷膜层的显微组织结构,并对微弧氧化陶瓷膜层的形成机制进行探讨;采用拉伸试验、球-盘摩擦磨损试验、电化学测试技术、体外测试等研究了膜层的结合强度、耐磨性能、耐腐蚀性能和体外生物学性能。
     在NaAlO_2和NaAlO_2-NaH_2PO_2电解液体系中制备的微弧氧化陶瓷膜主要由γ-Al_2O_3组成,其衍射峰强度随着电解液浓度的增加、处理电压的提高和处理时间的延长而增强。在NaAlO_2电解液体系中制备的陶瓷膜层表面Ni含量只有0.7~3at.%,NaAlO_2浓度对膜层表面形貌和粗糙度影响较大,结合强度随NaAlO_2浓度的增加而增加,最大为28MPa。在NaAlO_2-NaH_2PO_2体系中制备的陶瓷膜层表面呈现出典型的微弧氧化多孔形貌,Ni含量为3~7at.%,且微孔数量和孔径及表面粗糙度随着处理时间、NaH_2PO_2浓度和正负向处理电压的变化呈规律性变化;在0.15mol/L NaAlO_2、0.01mol/L NaH_2PO_2的电解液中,正向电压为400V,处理2~90min所得膜层结合强度均大于60MPa,过大的NaH_2PO_2浓度、过高的正向电压和加载负向电压均使膜层结合强度降低。
     NiTi合金微弧氧化初期通过电解液中的铝酸根离子在NiTi阳极试样表面沉积形成Al_2O_3绝缘膜,为后续的电击穿、等离子体放电创造条件。分析表明陶瓷膜层可分为三层,分别为过渡层、致密内层、多孔外层。过渡层主要由非晶的Ni_2O_3、TiO_2、磷酸盐和Al_2O_3组成,内层是Al_2O_3和少量的Ni_2O_3、TiO_2和磷酸盐,外层是Al_2O_3和极少量的Ni_2O_3、TiO_2。这种结构为膜层提供了优良的结合强度、耐腐蚀性能及耐磨性能。
     微弧氧化膜层显著地提高了NiTi合金的耐磨性能。NiTi合金与GCr15对磨的摩擦系数为0.75~0.85,磨损率为3.5μg/Nm,磨损机制主要为磨粒磨损;微弧氧化陶瓷膜层的摩擦系数因制备工艺的不同而在0.6~0.9之间变化,磨损机制主要为粘着磨损。在正向电压为400V,处理时间为90min条件下所得的膜层,磨损率只有0.4μg/Nm,与基体相比磨损率下降9倍。微弧氧化陶瓷膜层还显著提高了NiTi合金的耐腐蚀性能,有效地抑制了Ni离子的释放。在正向电压为400V,处理时间为90min条件下制备的膜层,与基体相比,其腐蚀性能可提高2个数量级,而Ni离子释放量可降低1个数量级。
     微弧氧化处理后的NiTi合金具有生物活性,在SBF溶液中浸泡后可诱导出缺钙的类骨磷灰石。通过溶血率、动态凝血时间和血小板黏附结果发现,微弧氧化处理后的NiTi合金血液相容性得到较大改善。体外成骨细胞培养试验发现经微弧氧化处理的NiTi合金表面成骨细胞铺展、繁殖能力增强,表明表面粗糙多孔的氧化陶瓷膜层有效地提高了NiTi合金的生物相容性。
The low Ni content Al_2O_3 ceramic coatings on biomedical NiTi alloy were prepared by micro-arc oxidation (MAO) pulsed bipolar power supply in order to improve the corrosion and wear resistance, suppress the release of Ni ions and enhance the use security and biocompatibility of biomedical NiTi alloy. Microstructure of the coatings was systematically observed by SEM, XRD, EDS and XPS, and the formation mechanism of the Al_2O_3 coatings was also analyzed. The bonding strength, corrosion resistance, wear resistance, in vitro biological performance of the coatings were studied by pull-off test, ball-disk friction and wear test, electrochemical test and in intro test, respectively.
     In the electrolytes of NaAlO_2 and NaAlO_2-NaH_2PO_2, the coatings are both composed of onlyγ-Al_2O_3 crystal phase, and its crystallinity is increased with the increase of the electrolyte concentrations, treatment voltages and treatment times. In the electrolytes of NaAlO_2, the Ni content of the ceramic coatings is about 0.7~3 at.%. The surface morphologies and surface roughness of the coatings are greatly influenced by NaAlO_2 concentrations, and the bonding strength of the coatings is enhanced with the increase of the NaAlO_2 concentrations. The maximal value is 28 MPa. In the electrolyte of NaAlO_2-NaH_2PO_2, the surface of the coatings show the typical micro-arc oxidation porous structure, and Ni content is about 3~7 at.%. The number and size of micro-pores on the surface and the surface roughness of the coatings are varied with the treatment times, NaH_2PO_2 concentrations and treatment voltages. When the electrolyte is 0.15 mol/L NaAlO_2-0.01 mol/L NaH_2PO_2, anodic voltage is 400 V, and treatment times are 2~90 min, the bonding strength of the coatings can exceed 60 MPa. More NaH_2PO_2, higher anodic voltages and cathodic voltages addition have negative relation with the bonding strength of the coatings.
     At the initial stage of MAO process, the aluminate ions in the electrolyte are deposited on the surface of anodic NiTi sample, which promotes the formation of Al_2O_3 insulation film and creates the condition for the subsequent electrical breakdown and plasma discharge. According to combined analysis, the ceramic coatings prepared in NaAlO_2-NaH_2PO_2 electrolyte can be divided into three layers: transition layer, dense inner layer and porous outer layer. The transition layer contains amorphous Ni_2O_3, TiO_2, Al_2O_3 and phosphate. The dense inner layer is mainly composed of Al_2O_3 and a little Ni_2O_3, TiO_2 and phosphate. The porous outer layer also mainly contains Al_2O_3 and a less Ni_2O_3 and TiO_2. The three layers structure is beneficial to provide excellent bonding strength, corrosion and wear resistance for the ceramic coatings on NiTi alloy.
     Micro-arc oxidation coatings obviously improve the wear resistance of NiTi alloy. The friction coefficient and the wear rate of NiTi alloy against GCr15 steel ball is 0.75~0.85 and 3.5μg/Nm, respectively, and the wear mechanism is mainly abrasive wear. The friction coefficient of MAO coatings against GCr15 steel ball varies from 0.7 to 0.9 with the different coating preparation process. The friction coefficient of the coatings is more stable than that of NiTi alloy, and the wear mechanism of the coatings is adhesion wear. When the treatment voltage is 400 V and the treatment is 90 min, the wear rate of this coating is 0.4μg/Nm, which indicates that the wear resistance of the coating is 9 times higher than that of uncoated NiTi alloy. Micro-arc oxidation coatings significantly improve the corrosion resistance of NiTi alloy and suppress the release of Ni ions. When the treatment voltage is 400 V and the treatment is 90 min, the corrosion resistance of this coating is about two orders of magnitude higher than that of uncoated NiTi alloy, and the account of Ni ions release is one order of magnitude lower than that of uncoated NiTi alloy.
     After micro-arc oxidation treatment, the coated NiTi alloy can induce calcium deficiency HA, which indicates that the coated NiTi alloy presents bioactivity. According the results of hemolysis ratio, kinetic clotting time and platelet adherence, it can be concluded that the hemocompatibility of NiTi alloy can be markedly improved after MAO treatment. The in vitro osteoblast culture tests indicate that the coated NiTi alloy has a better cell propagation ability compared to uncoated NiTi alloy, which illustrates that the rough and porous Al_2O_3 coatings can effectively improve the biocompatibility of NiTi alloy.
引文
1 E.T. Chau, C.M. Friend, D.M. Allen, J. Hora, J.R. Webster. A Technical and Econmic Appraisal of Shape Memory Alloys for Aerospace Applications. Mater. Sci. Eng. A. 2006, 438-440:589-592
    2 E.S Mohammed, E.S. Martha and F.B. Helge. Assessing the Biocompatibility of NiTi Shape Memory Alloys Used for Medical Applications. Anal. Bioanal. Chem. 2005, 381:557-567
    3 S. Shabalovskaya, J. Anderegg and H.V. Humbeeck. Critical Overview of Nitinol Surfaces and Their Modifications for Medical applications. Acta Biomater. 2008, 4:447-467
    4徐祖耀.形状记忆材料.上海交通大学出版社. 2000:401-437
    5 D.H. Kohn. Metal in Medical Applications. Curr. Opin. Solid St. M. 1998, 3:309-316
    6 K. Otsuka, C.M. Wayman. Shape Memory Materials. Cambridge University Press. 1994: 220-239
    7杨大智,吴明雄. Ni-Ti形状记忆合金在生物医学领域的应用.冶金工业出版社. 2003:57-60
    8 T. Duerig, A. Pelton and D. St?ckel. An Overview of Nitinol Medical Applications. Mater. Sci. Eng. A. 1999, 273-275:149-160
    9郑玉峰,赵连城.生物医用镍钛合金.科学出版社. 2004:319-393
    10 G. Rondelli, B. Vicentini and A. Cigada. The Corrosion Behavior of Nickel Titanium Shape Memory Alloys. Corrosion Science, 1990, 30(8-9):805-812
    11 D. Starosvetsky, I. Gotman. Corrosion Behavior of Titanium Nitride Coated Ni-Ti Shape Memory Surgical Alloy. Biomaterials, 2001, 22(13):1853-1859
    12 P. Filip, J. Lausmaa, J. Musialek, K. Mazanec. Structure and Surface of TiNi Human Implants. Biomaterials, 2001, 22(15):2131-2138
    13 G. Rondelli. Corrosion Resistance Tests on NiTi Shape Memory Alloy. Biomaterials.1996, 17:2003-2008
    14 G. Rondelli, B.Vicentini. Localized Corrosion Behaviour in Simulated Human Body Fluids of Commercial Ni-Ti Orthodontic Wires. Biomaterials. 1999, 20: 785-792
    15薛淼,陈希贤,李一鸣.镍钛记忆合金的基础研究—模拟腐蚀试验及组织学观察.中华医学杂志. 1982, 62(12):758-762
    16梁成浩,隋洪艳.在人工模拟体液中TiNi形状记忆合金的耐蚀性.中国生物医学工程学报. 2001, 20(5):463-466
    17 C.C. Shih, S.H. Lin, Y.L. Chen, Y.Y. Su, S.T. Lai, G.J. Wu, C.F. Kwok. The Cytotoxicity of Corrosion Products of Nitinol Stent Wire on Cultured Smooth Muscle Cells. J. Biomed. Mater. Res. 2000, 52:395-403
    18 T. Peitsch, A. Klocke and B.K. Nieke. The Release of Nickel from Orthodontic NiTi Wires is Increased by Dynamic Mechanical Loading but not Constrained by Surface Nitridation. J. Biomed. Mater. Res. 2007, 82A:731-739
    19 S.A. Esenwein, D. Bogdanshi, T. Habijan, M. Pohlm, M. Epple, G. Muhr, M. K?ller. Influence of Nickel Ion Release on Leukocyte Activation: a Study with Coated and Non-Coated NiTi Shape Memory Alloys. Mater. Sci. Eng. A. 2008, 482-482:612-615
    20 W.Y. Jia, M.W. Beatty, R.A. Reinhardt, T.M. Petro, D.M. Cohen, C.R.Maze, E.A. Strom, M. Hoffman. Nickel Release from Orthodontic Arch Wires and Cellular Immune Response to Verious Nickel Concentrations. J. Biomed. Mater. Res. 1999, 48(4):488-495
    21 L.S. Castleman, S.M. Motzkin, P.F. Alicandri, V.L. Bonawit. Biocompatibility of Nitinol Alloy as an Implant Material. J. Biomed. Mater. Res. 1976, 10:695-731
    22 J. Ryh?nen, E. Niemi, S. Serlo, E. Niemel?, P. Sandvik, H. Pernu, T. Salo. Biocompatibility of Nickel-titanium Shape Memory Metal and its Corrosion Behavior in Human Cell Cultures. Journal of Biomedical Materials Research. 1997, 6:451-457
    23 J .Ryh?nen. Biocompatibility Evaluation of Nickel-Titanium Shape Memory Metal Alloy. Dissertation of Oulu University. 1999, 28-29
    24 S. Shabalovskaya. On the Nature of the Biocompatibility and Medical Applications of NiTi Shape Memory and Superelastic Alloys. Bio-Medical Mater. Eng. 1996, 6: 267-289
    25 H.H. Huang, Y.H. Chiu, T.H. Lee, S.C. Wu, H.W. Yang, K.H. Su, C.C. Hsu. Ion Release from NiTi Orthodontic Wires in Artificial Saliva with Various Acidities. Biomaterials. 2003, 24: 3585-3592
    26王小祥,曹征旺,毛志远. TiNi和317L合金Ni离子释放速度的原子吸收谱法测定.生物医学工程杂志.1995, 12(2):95-97
    27苏向东,郝伟昌,王天民,韩峰,张波,何力.医用NiTi形状记忆合金的腐蚀特性.材料研究学报. 2007, 21(5):454-458
    28母红,苏向东,陈竹,李兰珍.生理环境中NiTi记忆合金腐蚀释放Ni离子的研究.贵州医药. 2008, 32(5):394-399
    29 W.Y. Yan. Theoretical Investigation of Wear-Resistance Mechanism of Superelastic Shape Memory Alloy NiTi. Mater. Sci. Eng. A. 2006,427(1-2):348-355
    30 D.Y. Li, R. Liu. The Mechanism Responsible for High Wear Resistance of Pseudo-Elastic TiNi Alloy-a Novel Tribo-Material. Wear. 1999, 225-229:777-783
    31卢启明,王海忠,薛群基,薛群基.骨科固定用镍钛形状记忆合金的摩擦磨损性能研究.摩擦学学报. 2005, 25(2):164-168
    32徐仰涛.模拟人体环境中NiTi SMA/人骨微动磨损、微动腐蚀研究.兰州理工大学硕士学位论文. 2007:32-41
    33 S. Nag, R. Banerjee and H.L. Fraser. Microstructural Evolution and Strengthening Mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo Biocompatible Alloys. Mater. Sci. Eng. C, 2005, 25(3): 357-362
    34 J.I. Kim, H.Y. Kim and S. Miyazaki. Shape Memory Characteristics of Ti-22Nb-(2-8)Zr (at.%) Biomedical Alloys. Mater. Sci. Eng. A. 2005, 403(1-2): 334-339
    35 Y. Nagai, T. Toyama and Z. Tang. Quenched-in Vacancies in aβTi-Nb-Sn Alloy Studied by Positron Lifetime Spectroscopy. Scripta Materialia, 2006, 54(10):1751-1753
    36 T. Zhou, M. Aindow and S.P. Alpay. Pseudo-Elastic Deformation Behavior in a Ti/Mo-Based Alloy. Scripta Materialia. 2004, 50(3): 343-348.
    37 T. Inamura, Y. Fukui, H. Hosoda, K. Wakashima, S. Miyazaki. Mechanical Properties of Ti-Nb Biomedical Shape Memory Alloys Containing Ge or Ga. Mater. Sci. Eng. C. 2005, 25(3):426-432
    38 F.T. Cheng, P. Shi and H.C. Man. A Preliminary Study of TiO2 Deposition on NiTi by a Hydrothermal Method. Surf. Coat. Technol. 2004, 187: 26-32
    39 H.G. Lee. Chemical Thermodynamics for Metals and Materials. Imperial College Press. 1999:41-49
    40 G.S. Firstov, R.G. Vitchev, H. Kumar, B. Blanpain, J.V. Humbeeck. Surface Oxidation of NiTi Shape Memory Alloy. Biomaterials. 2002, 23:4863-4871
    41 W.D. Miao, X.J. Mi, M.N. Zhu. Surface Oxidation Behavior of a TiNi Alloy. Rare Metals. 2000, 19(3):654-658
    42 Y.W. Gu, B.Y. Tay, C.S. Lim, et al. Biomimetic Deposition of Apatite Coating on Surface-Modified NiTi Alloy. Biomaterials. 2005, 26: 6916~6923
    43 Y.W. Gu, B.Y. Tay, C.S. Lim, M.S. Yong. Characterization of Bioactive Surface Oxidation Layer on NiTi Alloy. Appl. Surf. Sci. 2005, 252:2038-2049
    44 D.Z. Cui, H.C. Man and X.J. Yang. The Corrosion and Nickel Release Behavior of Laser Surface-Melted NiTi Shape Memory Alloy in Hanks’s Solution. Surf. Coat. Technol. 2005, 192:347-352
    45崔振铎,杨贤金,朱胜利,文效忠.激光表面重熔NiTi形状记忆合金组织及腐蚀性能.材料热处理学报. 2003, 24(3):66-69
    46 H.C. Man, D.Z. Cui and T.M. Yue. Corrision Properties of Laser Surface Melted NiTi Shape Memory Alloy. Scripta Materialia. 2001, 45:1447-1453
    47 Z.D. Cui, H.C. Man and X.J. Yang. Characterization of the Laser Gas Nitrided Surface of TiNi Shape Memory Alloy. Appl. Surf. Sci. 2003, 208:388-393
    48 H.C. Man, S. Zhang, F.T. Cheng, X. Guo. In Situ Formation of a TiN/Ti Metal Matrix Composite Gradient Coating on NiTi by Laser Cladding and Nitriding. Surf. Coat. Technol. 2006, 200:4961-4966
    49 M.H. Wong, F.T. Cheng and H.C. Man. Laser Oxidation of NiTi for Improving Corrosion Resistance in Hanks’Solution. Mater. Lett. 2007, 61:3391-3394
    50 M.H. Wong, F.T. Cheng, G.K.H. Pang, H.C. Man. Characterization of Oxide Film Formed on NiTi by Laser Oxidation. Mater. Sci. Eng. A. 2007, 448:97-103
    51 X.J. Yang, R.X. Hu, S.L. Zhu, C.Y. Li, M.F. Chen, L.Y. Zhang, Z.D. Cui.Accelerating the Formation of a Calcium Phosphate Layer on NiTi Alloy by Chemical Treatments. Scripta Materialia. 2006, 54:1457-1462
    52 M. F. Chen, X. J. Yang and Y. Liu, Study on the Formation of an Ppatite Layer on NiTi Shape Memory Alloy Using a Chemical Treatment Method. Surf. Coat. Technol. 2003, 173:229-234
    53朱胜利,杨贤金,崔振铎,郭光伟,姚康德.化学表面处理对NiTi形状记忆合金耐蚀性的影响.功能材料. 2002, 33(2):172-175
    54 J. Choi, D. Bogdanski, M. ?ller, S.A. Esenwein, D. Müller, G. Muhr, M. Epple. Calcium Phosphate Coating of Nickel-Ttitanium Shape Memory Alloys. Coating Procedure and Adherence of Leukocytes and Platelets. Biomaterials. 2003, 24:3689-3696
    55 C.L. Chu, C.Y. Chung and P.K. Chu. Surface Oxidation of NiTi Shape Memory Alloy in a Boiling Qqueous Solution Containing Hydrogen Peroxide. Mater. Sci. Eng. A. 2006, 417:104-109
    56 C. L. Chu, C.Y. Chung. Bioactive NiTi Shape Memory Alloy Fabricated by Oxidizing in H2O2 Solution and Subsequent NaOH Treatment. J. Mater. Sci. 2006, 41:1671-1674
    57 C.L. Chu, C.Y. Chung, J. Zhou, Y.P. Pu, P.H. Lin. Fabrication and Characteristics of Bioactive Sodium Titanate/Titania Graded Film on NiTi Shape Memory Alloy. J. Biomed. Mater. Res. 2005, 75A:595-602
    58 P. Shi, F. Geng and F.T. Cheng. Preparation of Titania-Hydroxyapatite Coating on NiTi via a Low-Temperature Route. Mater. Lett. 2006, 60:1996-1999
    59刘敬肖. 316L不锈钢和NiTi合金表面薄膜的制备、结构及其生物相容性研究.大连理工大学博士论文. 2001:30-63
    60刘敬肖,杨大智,蔡英骥.医用NiTi合金表面溶胶-凝胶法制备TiO2-SiO2薄膜.无机材料学报, 2001, 16(1):75-80
    61 J.X. Liu, D.Z. Yang, F. Shia, Y.J. Cai. Sol-Gel Deposited TiO2 Film on NiTi Surgical Alloy for Biocompatibility Improvement. Thin Solid Films. 2003, 429:225-230
    62 F.T. Cheng, P. Shi and H.C. Man. Anatase Coating on NiTi via a Low-Temperature Sol-Gel Route for Improving Corrosion Resistance. Scripta Materialia. 2004, 51:1041-1045
    63 K.Y. Chiu, M.H. Wong, F.T. Cheng, H.C. Man. Characterization and Corrosion Studies of Titania-Coated NiTi Prepared by Sol-Gel Technique and Steam Crystallization. Appl. Surf. Sci. 2007, 253:6762-6768
    64 C.L. Yang, F.L. Chen and S.W. Chen. Anodization of the Dental Arch Wires. Mater. Chem. and Phys. 2006, 100:268-274
    65 F.T. Cheng, T.P. Shi and H.C. Man. Nature of Oxide Layer Formed on NiTi by Anodic Oxidation in Methanol. Mater. Lett. 2005, 59:1516-1520
    66 F.T. Cheng, P. Shi, G.K.H. Pang, M.H. Wong, H.C. Man. Microstructural Characterization of Oxide Film Formed on NiTi by Anodization in Acetic Acid. J. Alloys Comp. 2007, 438:238-242
    67 P. Shi, F.T. Cheng and H.C. Man. Improvement in Corrosion Resistance of NiTi by Anodization in Acetic Acid. Mater. Lett. 2007, 61:2385-2388
    68 M.H. Wong, F.T. Cheng and H.C. Man. Characteristics, Apatite-Forming Ability and Corrosion Resistance of NiTi Surface Modified by AC Anodization. Appl. Surf. Sci. 2007, 253:7527-7534
    69 F.T. Cheng, P. Shi and H.C. Man. A Preliminary Study of TiO2 Deposition on NiTi by a Hydrothermal Method. Surf. Coat. Technol. 2004, 187:26-32
    70 M.H. Wong, F.T. Cheng and H.C. Man. In Situ Hydrothermal Synthesis of Oxide Film on NiTi for Improving Corrosion Resistance in Hanks’Solution. Scripta Materialia. 2007, 56:205-208
    71隋解和. TiNi合金表面DLC膜的组织结构与腐蚀行为和血液相容性.哈尔滨工业大学博士论文. 2006:27-93
    72 J.H. Sui, W. Cai. Effect of Diamond-Like Carbon (DLC) on the Properties of the NiTi Alloys. Diamond & Related Materials. 2006, 15:1720-1726
    73 J.H. Sui, Wei Cai. Mechanical Properties and Anti-corrosion Behavior of the Diamond-Like Carbon Films. Surf. Coat. Technol. 2006, 201:1323-1327
    74 J.H. Sui, W. Cai. Effect of Working Pressure on the Structure and the Electrochemical Corrosion Behavior of Diamond-Like Carbon (DLC) Coatings on the NiTi Alloys. Surf. Coat. Technol. 2007, 201:5194-5197
    75 Y. Cheng, Y.F. Zheng. Depsition of TiN Coatings on Shape Memory NiTi Alloy by Plasma Immersion Ion Implantation and Deposition. Thin Solid Films. 2006, 515:1358-1363
    76 Y. Cheng, Y.F. Zheng. Surface Characterization and Electrochemical Studies of Biomedical NiTi Alloy Coated with TiN by PIIID. Mater. Sci. Eng. A. 2006, 438-440:1146-1149
    77 Y. Cheng, Y.F. Zheng. Suface Characterization and Mechanical Property of TiN/Ti-Coated NiTi Alloy by PIIID. Surf. Coat. Technol. 2007, 201(15): 6869-6873
    78 R.W.Y. Poon, J.P.Y. Ho, X.Y. Liu, C.Y. Chung, P.K. Chu, W.K. Yeung. Formation of Titanium Nitride Barrier Layer in Nickel-Titanium Shape Memory Alloys by Nitrogen Plasma Immersion Ion Implantation for Better Corrosion Resistance. Thin Solid Films. 2005,488:20-25
    79 P.K. Chu. Plasma Surface Treatment of Artificial Orthopedic and Caradiovascular Biomaterials. Surf. Coat. Technol. 2007, 201:5601-5606
    80 K.W.K. Yeung, R.W.Y. Poon, P.K. Chu. Investigation of Nickel Suppression and Cytocompatibility of Surface-treated Nickel-Titanium Shape Memory Alloys by Using Plasma Immersion Ion Implantation. J. Biomed. Mater. Res. 2005, 72A:238-245.
    81 S. M?ndl. PIII Treatment of Ti Tlloys and NiTi for Medical Applications. Surf. Coat. Technol. 2006, 201: 6833-6838
    82 S. M?ndl, A. Fleischer, D. Manova, B. Rauschenbach. Wear Behaviour of NiTi Shape Memory Alloy after Oxygen-PIII Treatment. Surf. Coat. Technol. 2006, 200: 6225-6229
    83 S. M?ndl, D. Krause, G. Thorwarth, R. Sader, F. Zeihofer, H.H. Horch, B.Rauschenbach. Plasma Immersion Ion Implantation Treatment of Medical Implants. Surf. Coat. Technol. 2001, 142-144:1046-1050
    84 L. Tan, R.A. Dodd and W.C. Crone. Corrosion and Wear-Corrosion Behavior of NiTi Modified by Pplasma Source Ion Implantation. Biomaterials. 2003, 24(22):3931-3939
    85 L. Tan, G. Shaw, K. Sridharan, W.C. Crone. Effects of Oxygen Ion Implantation on Wear Behavior of NiTi Shape Memory Alloy. Mech. Mater. 2005, 37:1059-1068
    86 A. Günterschulze, H Betz. Neue Untersuchungenüber die elektrolytische Ventilwirkung. Z. Phys. 1932, 78:196-210
    87 A. Günterschulze, H Betz. Die Elektronenstromung in Isolatoren bei extre men Feldstarken. Phys. 1934, 91:70-96
    88 A.L. Yerokhin, X.Nie, A. Leyland, A. Matthews, S.J. Dowey. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999, 122:73-93
    89 T.B. Van, S.D. Brown and G.P. Wirlz. Mechanism of Anodic Spark Deposition. American Ceramic Society Bulletin. 1977, 56(6):563-566
    90 W. Krysmann, P. Kurze, K.H. Dittrich, H.G. Schneider. Process Chatacteristics and Parameters of Anodic Oxidation by Spark Discharge (ANOF). Cryst. Res. Technol. 1984, 19(7):973-979
    91 P. Kurze, W. Krysmann, J. Schreckenbach, T. Schwarz, K. Rabending. Coloured ANOF Layers on Aluminium. Cryst. Res. Technol. 1987, 22(1):53-58
    92薛文斌,王超,马辉,谢孟峡,陈如意,邓志威. TA2纯钛表面微弧氧化膜的成分和相结构分析.稀有金属材料与工程, 2002, 5(31): 345-348
    93 W.B. Xue, X.L. Wu, X.J. Li, H. Tian. Anti-Corrosion Film on 2024/SiC Aluminum Matrix Composite Frabricated by Microarc Oxidation in Silicate Electrolyte. J. Alloys Comp. 2006, 425:302-306
    94 K. Wu, Y.Q. Wang and M.Y. Zheng. Effects of Microarc Oxidation Surface Treatment on Mechanical Properties of Mg Alloy and Mg Matrix Composites. Mater. Sci Eng. A. 2007, 447:227-232
    95 L. Liu, Z. Liu, K.C. Chan, H.H. Luo, Q.Z. Cai, S.M. Zhang. Surface Modification and Biocompatibility of Ni-Free Zr-Based Bulk Metallic Glass. Scripta Materialia. 2008, 58:231-234
    96何继全.钢铁表面微弧氧化技术的研究.哈尔滨工业大学硕士论文. 2006:21-36
    97 X.T. Sun, Z.H. JIang, S.G. Xin, et al. Composition and Mechanical Properties of Hard Ceramic Coating Containingα-Al2O3 Produced by Microarc Oxidation on Ti-6Al-4V Alloy. Thin Solid Films. 2005, 471:194-199
    98 J. Liang, L.T. Hu and J.C. Hao. Preparation and Characterization of Oxide Films Containing Crystalline TiO2 on Magnesium Alloy by Plasma Electrolytic Oxidation. Electrochi. Acta. 2007, 52:4836-4840
    99 Z.D. Wu, Z.P. Yao and Z.H. Jiang. Preparation and Structure of Microarc Oxidation Ceramic Coatings Containing ZrO2 Grown on LY12 Al Alloy. Rare Metals. 2008, 27(1):55-58
    100贺子凯,唐培松.电流密度对微弧氧化膜层厚度和硬度的影响.表面技术, 2003, 32(3):21-24
    101 R.F. Zhang, D.Y. Shan, R.S. Chen, E.H. Han. Effects of Electric Parameters on Properties of Anodic Coatings Formed on Magnesium Alloys. Mater. Chem. Phys. 2008, 107(2-3):356-363
    102 Z.P. Yao, Z.H. Jiang, X.T. Sun, S.G. Xin, Z.D. Wu. Influence of Frequency on theStructure and Corrosion Resistance of Ceramic Coatings on Ti-6Al-4V Alloy Produced by Micro-Plasma Oxidation. Mater. Chem. Phys. 2005, 92:408-412
    103 Y.M. Wang, D.C. Jia, L.X. Guo, T.Q. Lei, B.L. Jiang. Effect of Discharge Pulsating on Microarc Oxidation Coatings Formed on Ti6Al4V Alloy. Mater. Chem. Phys. 2005, 90:128-133
    104 B.C. Yang, M. Uchida, H.Y. Kim, X.D. Zhang, T. Kokubo. Preparation of Bioactive Titanium Metal via Anodic Oxidation Treatment. Biomaterials. 2004, 25:1003-1010
    105 L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, J.Y. Koak. Improved Biological Performance of Ti Implants duo to Surface Modification by Micro-arc Oxidation. Biomaterials. 2004, 25:2867-2875
    106马威,刘宝林,王新木,董文波,魏建华.微弧氧化处理后纯钛材料不同形貌特点对细胞在其表面附着和增值的影响.中国临床康复. 2004, 8(14): 2618-2620
    107张玉梅,赵铱民,黄平,憨勇, P. Bataillon-linez, H.F. Hildebrand, M. Traisnel.钛表面处理后表面能分析及对细胞附着的影响.稀有金属材料及工程. 2004, 33(5):518-521
    108 P. Huang, K.W. Xu and Y. Han. Preparation and Apatite Layer Formation of Plasma Electrolytic Oxidation Film on Titanium for Biomedical Application. Mater. Lett. 2005, 59:185-189
    109 F. Liu, Y. Song, F.P. Wang, T. Shimizu, K. Igarashi, L.C. Zhao. Formation Characterization of Hydroxyapatite on Titanium by Microarc Oxidation and Hydrothermal Treatment. J. Biosci. Bioeng. 2005, 100(1):100-104
    110 F. Liu, F.P. Wang, T. Shimizu, K. Igarashi, L.C. Zhao. Formation of Hydroxyapatite on Ti-6Al-4V Alloy by Microarc Oxidation and Hydrothermal Treatment. Surf. Coat. Technol. 2005, 199:220-224
    111 F. Liu, F.P. Wang, T. Shimizu K. Igarashi, L.C. Zhao. Hydroxyapatite Formation on Oxide Films Containing Ca and P by Hydrothermal Treatment. Ceram. Int. 2006, 32(5):527-531
    112 X. Nie, A. Leyland and A. Matthews. Deposition of Layered Bioceramic Hydroxyapatite/TiO2 Coatings on Titanium Alloys Using a Hybrid Technique of Micro-arc Oxidation and Electrophoresis. Surf. Coat. Technol. 2000, 125: 407-414
    113 L.H. Li, H.W. Kim, S.H. Lee, Y.M. Kong, H.E. Kim. Biocompatibility of Titanium Implants Modified by Microarc Oxidation and Hydroxyapatite Coating. J. Biomed. Mater. Res. 2005, 73A:48-54
    114 J.F. Sun, Y. Han and X. Huang. Hydroxyapatite Coatings Prepared by Micro-arcOxidation in Ca- and P- Containing Electrolyte. Surf. Coat. Technol. 2007, 201:5655-5658
    115 J.H. Ni, Y.L. Shi, F.Y. Yan, J.Z. Chen. Preparation of Hydroxyapatite-Containing Titania Coating on Titanium Substrate by Micro-Arc Oxidation. Mater. Res. Bull. 2008, 43(1):45-53
    116 J.Z. Chen, Y.Y. Shi, L. Wang, F.Y. Yan, F.Q. Zhang. Preparation and Properties of Hydroxyapatite-Containing Titania Coating by Micro-Arc Oxidation. Mater. Lett. 2006, 60:2538-2543
    117 M.O. Oji. J.V. Wood. Effects of Surface-Treated Cp Ti and Ti6Al4V Alloy on the Initial Attachment of Human Osteoblast Cells. J. Mater. Sci: Mater. Med. 1999, 10:869-872
    118 A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina, A. Leyland, A. Pilkington, A. Matthews. Discharge Characterization in Plasma Electrolytic Oxidation of Aluminum. J. Phys D: Appl. Phys. 2003, 36:2110-2120
    119辛世刚. LY12铝合金微等离子体氧化陶瓷膜的制备工艺与性能研究.哈尔滨工业大学博士论文. 2003:60-62
    120 X. Nie, A. Leyland, H.W. Song, A.L. Yerokhin, S.J. Dowey, A. Matthews. Thickness Effects on the Mechanical Properties of Micro-Arc Discharge Oxide Coatings on Aluminium Alloys. Surf. Coat. Technol. 1999, 116-119:1055-1060
    121 C.X. Wang, M. Wang and X. Zhou. Nucleation and Growth of Apatite on Chemically Treated Pure Titanium: An Electrochemical Impedance Spectroscopy Study. Biomaterials. 2003, 24:3069-3077
    122 J. Pan. D. Thierry and C. Leygraf. Electrochemical Impedance Spectroscopy Study of the Passive Film on Titanium for Implant Application. Electrochi. Acta. 1996, 41(7/8):1143-1153
    123曹楚南.腐蚀电化学原理.化学工业出版社. 2004:45-69
    124 C. Liu, Q. Bi, A. Leyland, A. Matthews. An Electrochemical Impedance Spectroscopy Study of the Corrosion Behavior of PVD Coated Steels in 0.5 M NaCl Aqueous Solution: Part I. Establishment of Eqivalent Circuits for EIS Data Modeling. Corros. Sci. 2003, 45:1243-1256
    125 D.R. Annett, C. Schurer, G. Irmer, E. Muller. Electrochemical Corrosion Behaviour of Uncoated and DLC Coated Medical Grade Co28Cr6Mo. Surf. Coat. Technol.2004, 177-178:830-837
    126 C. Trepanier, M. Tabrizian, L.H. Yahia, L. Bilodeau, D.L. Piron. Effect of the Modification of the Oxide Layer on NiTi Stent Corrsion. J. Biomed. Mater. Res. 1998, 43:433-440
    127 F.A. Müller, L. Müller, D. Caillard, E. Conforto. Preferred Growth Orientation ofBiomimetic Apatite Crystals. J. Cryst. Growth. 2007, 304:464-471
    128 E. Milella, F. Cosentino, A. Licciulli, C. Massaro. Preparation and Characterisation of Titania/Hydroxyapatite Composite Coatings Obtained by Sol-Gel Process. Biomaterials. 2001, 22:1425-1431
    129 L. Müller, F.A. Müller. Preparation of SBF with Different HCO3? Content and Its Influence on the Composition of Biomimetic Apatites. Acta Biomater. 2006, 2: 181-189
    130 S. Koutsopoulos. Synthesis and Characterization of Hydroxyapatite Crystals: A Review Study on the Analytical Methods. J. Biomed. Mater. Res. 2002, 62: 600-612

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700