变频器中PWM整流的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,它在工业上得到了重要而广泛的应用,如变频调速在家电、机床上等的应用。目前变频器产品较多,如欧美的西门子、ABB,日本的富士、安川、三菱、台湾的台安、台达等。
     我们现在使用的变频器主要采用交—直—交方式,先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。
     整流是变频器的重要组成部分,其作用是把工频交流电通过整流器转换成直流电,目前变频器的整流技术主要是采用二极管桥式电路进行不控整流。二极管整流的主要缺点是:产生谐波和不可控制性。谐波对电网造成了严重的“污染”;不可控制性不仅使能量只能从交流到直流进行单向流动,而且所得直流电大小不可调节。治理这种电网“污染”最根本的措施就是将PWM技术引入整流器的控制,实现网侧电流正弦化,且运行于单位功率因数。
     本文从PWM基本原理、PWM整流器原理研究了PWM整流器的拓扑结构及其控制策略,介绍了矢量控制,通过仿真验证了其正确性。
     本文的主要工作有以下几点:
     (1)阐述PWM整流的作用及重要性,从主电路拓扑结构研究、电压型PWM整流器的电流控制策略研究、PWM整流器的建模与分析、电流型PWM整流器研究、智能型及模糊型控制实现研究,介绍国内外PWM整流器研究现状。
     (2)阐述变频器基本原理和变频调速原理,研究目前变频器的主电路,分析了变频器中二极管整流有两个缺点:一是产生谐波,二是不可控制性。简述了谐波的危害性。
     (3)阐述PWM基本原理:用一系列等幅不等宽的脉冲来代替一个正弦半波,其效果相同;介绍了PWM整流器工作机理,研究了PWM整流器的四象限运行及其控制;介绍了PWM整流器分类及拓扑结构,阐述了PWM整流器优点;通过单极性PWM控制方式(单相桥逆变)、双极性PWM控制方式(单相桥逆变)、双极性PWM控制方式(三相桥逆变)研究如何通过调制法获得PWM波形,探讨了工程上应用较多的方法:规则采样法。
     (4)介绍了三相VSR拓扑结构,研究了三相VSR空间电压矢量分布及其矢量合成,根据三相PWM可逆整流器的矢量变换关系和控制方程,得到了高功率因数整流器控制结构。
     (5)介绍了MATLAB及其基本界面,介绍了SIMULINK及其基本界面,介绍了POWERLIB及其基本界面,给出了三相VSR仿真模型,并使用MATLAB进行仿真,验证了三相VSR高功率因数的能量双向流动的正确性。
     (6)通过对电力电子技术的展望,PWM整流器控制向无电网电动势传感器及无网侧电流传感器控制、基于Lyapunov稳定性理论的PWM整流器控制、电网不平衡条件下的PWM整流器控制、智能控制等方向发展。
     本文所做的研究,对电力电子、变频器和PWM的研究具有一定的理论意义和实际应用价值。
Transducer is device that converts one frequency of a radio signal to another power with electronic devices, it is already widely used in industry, for example,application of frequency conversion speed control on household electrical appliances and machine tool. Now there are many transducer types, such as Siemens and ABB in America and Europe, Fuji and Mitsubishi in Japan, Delta and Taian in Taiwan.
     Now Transducer mainly adopt ways of AC-DC-AC, which first will convert AC at 50 cycles per second into direct current, then will convert DC into AC that frequency and voltage can be regulated. Transducer consists of four parts that rectifier, intermediate links, inverting circuit and controlled circuit, rectifier is uncontrolled rectifying circuit, inverting circuit is IGBT three-phase inverting circuit of bridge, and output PWM wave shape, intermediate links can filter, store DC energy and buffer reactive power, circuit of Transducer may generally be divided into two kinds: voltage source inverting circuit will voltage DC sources invert AC, filter in DC is capacitance, current source inverting circuit will current DC sources invert AC, filter in DC is inductance.
     rectifier is an important part of Transducer,its use is convert AC at 50 cycles per second into direct current, and now rectifier technique is mainly uncontrollable with rectifier diode. Main weakness of rectifier with diode is harmonic and uncontrollable, power grids are seriously polluted with harmonic. Uncontrolling bring one-way energy flow from AC to DC and may not be adjusted for fitting Great and small. Most basic measure is that PWM is led to rectifier to bring about current of electric networks side Sine operating unit power factor to delete from this pollution.
     The paper studies the topological structure and control strategy of PWM rectifier from PWM basic principle, PWM rectifier basic principle. It introduces vector control and is demonstrated the validity by simulation.
     Major work of The paper can be summarized as follows:
     (1) Elaborates the PWM rectification function and the importance, From the main circuit topology research, the voltage PWM rectifierelectric current control strategy research, the PWM rectifiermodelling and the analysis, the electric current PWM rectifierresearch, the intelligence and the fuzzy control realization research,briefs the domestic and foreign PWM rectifier research presentsituation.
     (2) Elaborated the frequency changer basic principle and the frequencyconversion velocity modulation principle, studyed thefrequency changer main circuit at present, analyzed two shortcomings in the frequency changer thediode rectification: first, producing theovertone, second, uncontrolling. It has summarized the overtone hazardousnature.
     (3) It elaborates the PWM basic principle: With a series of the same scope pulse that hasn't same width to replace a sine half-wave, its effect is same; Introduced the PWM rectifier principle of work, studied thePWM rectifier four quadrants movement and its the control; Introducedthe PWM rectifier classification and the topology, elaborated the PWMrectifier merit;studied how obtains the PWM profile using Modulation by single pole PWM controlling(single-phase bridge inversion), double pole PWM controlling(single-phase bridge inversion), double pole PWM controlling(three-phase bridge inversion), studied the methods used widely in the project: ways of regular sampling.
     (4) Introduced the three-phase VSR topology, studied the three-phaseVSR space voltage vector distribution and its the vectorial resultant,according to the three-phase PWM reversible rectifier vector transformation relations and the controlling equation, obtained control structure of the power factor rectifier.
     (5) Introduced MATLAB and its the basic contact surface, introducedSIMULINK and its the basic contact surface, introduced POWERLIB andits the basic contact surface, have produced the three-phase VSRsimulation model, and uses MATLAB to carry on the simulation, hasconfirmed the three-phase VSR power factor energy two-way flowaccuracy.
     (6) Through to the electric power electronic technology forecast, the PWMrectifier control towards the non- electrical network electromotive sensor and the non- net side electric current sensor control, PWM rectifier control based on Lyapunov stability theory and so on undercontrol, PWM rectifier control under electrical network equilibrium condition, Intelligent control.
     The research of this article has the certain theorysignificance and the practical application value to the electric power electron, thefrequency changer and the PWM research.
引文
[1] 张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2005,1
    [2] 李传奇,盛义发,邹其洪.电力电子技术计算机仿真实验.电子工业出版社,2006,9
    [3] 罗悦华,伍小杰.三相PWM整流器及其控制策略的现状与展望,电气传动,2006,5
    [4] 邱涛,陈林康.变频器中PWM整流器的设计及仿真,微特电机,2006,5
    [5] 王兆安,黄俊.电力电子技术,机械工业出版社,2000
    [6] 陈伯时.电力拖动自动控制系统.北京:机械工业出版社.1991
    [7] 姚骞,舒朝君,孙强.变频器谐波的产生和危害及其解决方法探讨.2006,1
    [8] 黄忠霖.控制系统MATMAB计算及仿真,2004,9
    [9] 刘文良.MATLAB在电力电子技术仿真中的应用[J].电气自动化,2001,21(3),53~54
    [10] 孙文焕.基于MATLAB的交流变频调速系统的仿真[J].电气自动化,2001,21(3),49~51
    [11] 黄成玉,王成员.基于MATLAB的PWM控制系统仿真[J].防灾技术高等专科学校学报,2005,7(1),104~106
    [12] Rusong Wu, et al. Analysis of a PWM AC to DC Voltage Source Converter under the Predicted Control with a Fixed Switching Frequency [J]. IEEE Trans. On IA, 1991, 27(4): 756-764.
    [13] 李浩光,张加胜.基于矢量控制的三相PWM可逆整流器的研究,2006,3,11~13
    [14] 张加胜.双向AC/DC变换器的坐标变换控制[J].石油大学学报,1998(1):82-84.
    [15] Rockwell Automation Appl. Note. Braking and regenerative energy With ac drives [EB/oL]. http ://www.reliance.com/prodserv /standriv /appnotes, 1999.
    [16] Ye Zhihong.Modeling and Control of Parallel Three-Phase PWM Converts[D]. Virginia Polytechnic Institute and State University,2000.
    [17] ROLF OTTERSTEN. Vector Control of a Double-Sided PWM Converter and Induction Machine Drive [D]. CHALMERS UNIVERSITY OF TECHNOLOGY, 2000.
    [18] Ye Y, Kazerani M, Quintana V. H. A novel modeling and control method for three-phase PWM converters[C]. IEEE 32th Annual, 2001: 102~107.
    [19] 薛定宇,陈阳泉.基于MATLAB/SIMULINK的系统仿真技术与应用[M]. 北京:清华大学出版社,2002.
    [20] 熊健,张凯,陈坚.PWM整流器的控制工程化设计方法[J].电工电能新技术,2002,21(2):44~48.
    [21] 赵金,徐金榜,罗冷,等.新可逆PWM整流器主电路参数设计仿真[J].华中科技大学学报:自然科学版,2004(2):2-4.
    [22] MARIAN P. Current control techniques for three phase voltage-source PWM converters: A Surrey [J]. IEEE Trans Ind Electronics, 1998,45(5): 691-703.
    [23] Pan C T, Shieh J J, A family of closed-form duty cycle control laws for three-phase boost AC/DC converter [J], IEEE Trans, on IE, 1998,45(4): 530-542.
    [24] Green A W. Boys J T. Three-phase voltage sourced reversible rectifier [J], IEEE Proceedings, 1988,135(6): 362-370.
    [25] 张兴,张崇巍.PWM可逆变流器空间电压矢量控制技术的研究[J].中国电机工程学报,2001,21(1):102-109.
    [26] 毛鸿,吴兆麟.基于三相PWM整流器的无死区空间矢量调制策略[J].中国电机工程学报,2001,21(1):100-104.
    [27] 张纯江,顾和荣,王宝诚.基于新型相位幅值控制PWM整流器的数学模型[J],中国电机工程学报,2003,23(7):28-31.
    [28] 毛鸿,沈琦,吴兆麟.PWM整流器的电压控制策略研究[J].电气传动,2000,30(3):21-23.
    [29] 魏学森,刘志强.基于空间电压矢量脉宽调制的单位功率因数整流器[J].电气传动,2003(4):40—43.
    [30] 屈丽丽,杨振坤.三相电压型PWM整流器空间矢量脉宽调制研究[J].电工技术杂志,2002,21(7):7—9.
    [31] 邓宏贵,罗安,曹建.具有整功率因数的PWM变流器控制[il.电气应用,2005,24(1):73—77.
    [32] 黄守道,张铁军,陈颖等.一种三相PWM整流器控制方法研究[il.电气应用,2005,24(3):106—109.
    [33] 王久和,李华德,李正熙.电压型PWM整流器直接功率控制技术.电工电能新技术,2004,23(3):264-267.
    [34] 熊健,康勇等.电压空间矢量调制与常规SPWM得比较研究[J].电力电子技术,1999,(2):25~28.
    [35] 杨贵杰,孙力.空间矢量脉宽调制方法的研究[J].中国电机工程学报,2001,(5):79~83.
    [36] 郭贵莲,崔志强,盛光中.空间矢量PWM算法及波形分析[J].三峡大学学报:自然科学版,2003,25(1):74-76.
    [37] 张纯江,张金泉,孙孝峰.空间矢量PWM波形的谐波仿真研究[J].燕山大学 学报,2000,24(2):141-144.
    [38] 程善美,姜向龙,孙文焕等.空间矢量PWM逆变器的仿真[J].微电机,2002,35(4):30-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700