双周疲劳载荷下焊接接头的疲劳行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的疲劳极限定义为107周次,使用常规疲劳试验技术可以满足要求。但是随着现代工业技术的发展,许多工业部门(目前对焊接接头和结构所进行的疲劳设计与评定均是建立在单周疲劳载荷试验的数据基础上)。事实上一些重要焊接工程结构,如飞机、核反应堆、水轮机、汽车、燃气轮机以及涡轮发动机等,在承受低频高幅的交变载荷过程中,还不时地发生不同程度的高频低幅振动。这些振动频率可达数千赫兹,循环数常常可达108~109次。现有规范在估算实际工程结构疲劳寿命时经常不考虑高频振动的有害作用,仅将高频分量叠加在主交变载荷上,按单周化处理或干脆将其彻底忽略。如果这种振动仅仅是依附于平均载荷之上,由于其振幅较小,对结构产生的破坏相对较轻。然而如果是叠加在低频率循环载荷之上,它对材料所造成的复合损伤将大大地加速工程结构尤其是焊接结构的损坏和失效,严重地威胁到整个设备或结构的安全可靠性和使用寿命。
     在双周疲劳试验中,疲劳试件必须满足谐振条件,所以试件通常设计为狗骨形,这样不仅使试件获得很大的应力放大系数,还使其中部产生最大应力。本文中对双周疲劳试件的设计,主要有共振长度的设计及不同几何外形试件的位移、应力分布情况。
     使用带超声频载荷分量的双周实验装置分别进行了16Mn焊接接头在纯低周(LCF)、纯高周(HCF)以及双周循环(CCF)加载条件下的疲劳试验,研究了焊接接头在双周疲劳载荷作用下的疲劳性能。研究发现,焊接接头的双周疲劳性能低于纯低周而高于纯高周。叠加于大幅低周载荷上的小幅高周载荷及叠加于大幅高周载荷上的小幅低周载荷都显著降低焊接接头的疲劳强度。随着高低周振幅比的增大,疲劳强度也迅速降低。模拟含高值焊接残余应力的焊接接头双周疲劳试验结果表明,高周分量载荷相对高的情况下,焊接残余应力显著降低焊接接头的疲劳性能。
The traditional definition of fatigue limit for 107 cycles, and the use of conventional technology to meet the requirements of fatigue test。However, with modern industrial and technological development, many of the industrial sector (the current structure of welded joints and the fatigue design and evaluation are based on low-cycle fatigue load test on the basis of the data) In fact a number of important structural welding works, such as aircraft, nuclear reactors, turbine, automotive, gas turbine engines and turbines, and so on, to bear in the high rate of low-frequency alternating load process, from time to time in varying degrees to the low rate of high-frequency vibration. Existing norms in the project estimate the actual structure of fatigue life, often do not consider the harmful effects of high-frequency vibration, the only high-frequency components in the main stacking alternating load, according to single-cycle treatment, or simply be completely ignored. If the vibration is only dependent on the load on the average, because of its smaller amplitude of the structure of the relatively minor damage. If, however, is superimposed on low-frequency load on the cycle, and its material injury caused by the complex will greatly speed up the project structure in particular, welded structure damage and failure, a serious threat to the entire structure of the equipment or the use of reliability and safety Life.
     Since performing experiments of the ultra-high-cycle regime in the range of 109~1010 cycles using a conventional fatigue testing method is very time consuming and expensive, so we studied and developed the ultrasonic fatigue testing system to accelerate fatigue test. In this paper, based on the ultrasonic fatigue testing system, the fatigue behavior of 16Mn including smooth and welding joint specimen was studied, and the fracture surface of fatigue specimen was examined by scanning electron microscopy (SEM).
     Specimen design is critical for optimum ultrasonic fatigue testing, dog-bone-shaped specimen is usually designed in ultrasonic fatigue testing. An analysis was carried out to calculate the resonance length, strain and displacement along the length of fatigue specimen with different geometries and for various resonant frequencies.
     Fatigue test of 16Mn steel welded joints has been carried out under low cycle fatigue(LCF), high cycle fatigue(HCF) and combined cycle fatigue(CCF) respectively, in order to investigate the fatigue properties of welded joints being subjected to CCF loading. The stress ratio was 0.5 and the ratio of HCF cycles to LCF cycles was about 260:1. The loading frequency of HCF was about 20kHz and performed by an ultrasonic fatigue testing system. The results indicate that fatigue strength of welded joints has been decreased further under CCF. HCF is detrimental to fatigue life of welded joints under CCF loading. With the increasing of the ratio of HCF loading to LCF loading, fatigue life of welded joints becomes shorter.
引文
[1] Stanzl-Tschegg S E, Mayer H, Variable amplitude loading in the very high cycle regime, Fatigue Fract, Engng, Mater, Struct, 2002, 25: 887~896
    [2] Murakami Y, Yokoyama N N, et al. Mechanism of fatigue failure in ultralong life regime, Fatigue Fract, Engng, Mater, Struct, 2002, 25: 735~746
    [3] Furuya Y, Matsuoka S, Abe T, et al. Gigacycle fatigue properties for high strength low-alloy steel at 100Hz, 600Hz, and 20KHz. Scripta Materialia, 2002, 46(2):157~162
    [4] Stanzl-tschegg, S E. Fracture mechanisms and fracture mechanics at ultrasonic frequencies [J]. Fatigue and Fracture of Engineering Materials and Structures, 1999, 22: 567~579
    [5] Zettl B, Mayer H, Stanzl-tschegg S E. Fatigue properties of Al-1Mg-0.6Si foam at low and ultrasonic frequencies [J]. International Journal of Fatigue, 2001, 23: 565~573
    [6] Stanzl-tschegg S E, Mayer H R, Tschegg E K. High frequency method for torsion fatigue testing [J]. Ultrasonic, 1993, 31:275~280
    [7] Ishii K, Ebara R, et al. Ultrasonic fatigue behavior of Ti-6Al-4V alloy [J]. J Soc Mat Sci Japan, 1993, 42: 1218~1223
    [8] Danninger H, Spoljaric D, Weiss B, et al. High cycle fatigue behavior of Mo alloyed sintered steel [J]. Zeitschrift Fuer Metallkunde, 1998, 89: 135~141
    [9]王清远.,超声加速疲劳实验研究,四川大学学报,2002,34(3): 6~11
    [10] Wang Q Y, SUN Z D, Bathias C, Fatigue crack initiation & growth behavior of a thin steel sheet [A]. FATIGUE’99 (7th international fatigue congress), Beijing, China, 1999, 169~174
    [11] Umezawa O, Nagai K, Defomation structure and subsurface fatigue crack generation in austenitic steels at low temperature [J]. Metallurgical and Materials Transactions, 1998, 29A: 809~822
    [12] Glbert J, Piehler H R. On the nature and crystallographic orientation of subsurface cracks in high cycle fatigue of Ti-6Al-4V [J]. Metallurgical Transaction , 1993, 24A: 669~680
    [13] W. P. Mason, Piezoelectric Crystals and Their Applications, Van Nostrand, New York USA, 1950, 61
    [14] Stanzl S, Czegley M, Mayer H R, et al. Fatigue crack growth under combined modeⅠand modeⅡloading, In: Wei R P, Gangloff R P, eds, Fracture Mechanics: Perspectives and Directions, ASTM STP 1020, ASTM, Philadephia, 1989, 479~496
    [15] Stanzl S, A new experimental method for measuring life time and crack growth of materials under multi-stage and random loadings, Ultrasonic, 1981, 19: 269~272
    [16] Stanzl S, Tschegg E, Influence of environment on fatigue crack growth in the threshold region, Acta Metallurgica, 1981, 29(1): 21~32
    [17] Ebara R, Yamada Y, Ultrasonic corrosion fatigue testing of 13Cr stainless steel and Ti-6Al-4V alloys, In: Toda K ed, Ultrasonic Technology, My Research, Tokyo, 1987, 329~342
    [18] Wang, Q. Y et al. Gigacycle fatigue of ferrous alloys [J]. Fatigue Fract. Engng. Mater. Struct.1999. 22: 667~672
    [19] Wang, Q. Y. et al. High-cycle fatigue crack initiation and propagation behavior of high-strength spring steel wiers [J]. Fatigue Fract. Engng. Mater. Struct.1999.22: 673~677
    [20] Wang Q Y, Bathias C, et al. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength [J]. International Journal of Fatigue, 2002, 24: 1269~1274
    [21] Shiozawa K, Lu L, Ishihara S. S-N curve Characteristics and subsurface crack initiation behavior in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue Fract Engng Mater Struct. 2001,24:781~790
    [22] Lu L, Shiozawa K, Ishihara S. Characteristics of S-N curve and subsurface crack initiation behavior of high strength bearing steel in gigacycle fatigue. Mat. Sic. Res. Int. STP-1.2001:35~40
    [23] Murakami Y, Nomoto T, Ueda T. Factors influencing the mechanism of superlong fatigue failure in steels[J]. Fatigue Fract Eng Mater Strut. 1999,22:581~590
    [24] Bathias C, Drouillac L, Francois P Le. How and why the fatigue S-N curve does not approach ahorizontal asymptote[J]. Intenrational Jounral of Fatigue, 2001, 23:S143-S151
    [25]束德林,工程材料力学性能[M],北京:机械工业出版社,2003:11 2--138
    [26] Papakyriacou M, Marey H, Pypen C, et al. Influence of loading frequency on the high cycle fatigue properties of b.c.c and h.c.p metal[J]. Materials science and Engineering, 2001, A308:1 43-152
    [27]王弘,40Cr、50车轴钢超高周疲劳性能研究及疲劳断裂机理讨论[A],西南交通大学博士论文集[C],西南交通大学,2004
    [28] Naito, T. and Asami, K. Fatigue Behavior of Carburized Steel with Internal Oxides and Nonmartensitic Microstructure near the Surface [J]. Metallurgical Transactions. 1984.15A:1431~1436
    [29] Emura, H. and Asami, K. Fatigue Strength Characteristics of High Strength Steel [J]. Transactions of the Japan Society of Mechanical Engineers. 1989. A55: 45-50
    [30] Murakami, Y et al., Super-long life tension-compression fatigue properties of quenched and tempered 0.46% carbon steel [J], Int. J. Fatigue, 1998, 16: 661~667
    [31] Kanazawa, K. Fatigue fracture of low alloy steel at ultra-high-cycle region under elevated temperature condition[J], Jounral of the Society of Materials Science, Japan, 1997, 46: 1396~1401
    [32] Nishijima S, Kanazawa K. Stepwise S-N curve and fish-eye failure in gigacycle fatigue, Fatigue Fract, Engng, Mater, Struct, 1999, 22: 601~607
    [33] Roth, L. D. Ultrasonic fatigue testing [M], in Metals Handbook, ninth edition, Volume 8: Mechanical testing, American Society for Metals, Ohio, USA, 1995, 240~258
    [34] Bathias C, There is no infinite fatigue life in metallic materials, Fatigue Fract. Engng. Mater, Struct, 1999, 22: 559~565
    [35] Tanaka, K. Fatigue crack propagation behavior derived from S-N data in very high cycle regime [M]. Proceeding of the International Conference On Fatigue in the Very High Cycle Regime. Vienna, Austria. 2- 4, July, 2001, 61
    [36] T. E. MATIKAS. A high-cycle fatigue apparatus at 20 KHz for low-cycle fatigue/high-cycle fatigue interaction testing, Greek Atomic Energy Commission, Atbens, Greece, Received in final form 6 April 2001
    [37]闫桂玲,王弘,高庆,超声疲劳试验方法及其应用,力学与实践,2004,26(6): 25~29
    [38] Marines, G. Dominguez, G. Baudry, Ultrasonic fatigue tests on bearing steel AISI-SAE 52100 at frequency of 20 and 30 kHz, International Journal of Fatigue 25(2003): 1037-1046
    [39]林书玉,超声换能器的原理及设计,北京:科学出版社[M],2004
    [40]林仲茂,超声变幅杆的原理和设计,北京:科学出版社[M],1987
    [41]张立,赵永健,现代电力电子技术,北京:科学出版社[M],1992
    [42]陈桂生,超声换能器设计,北京:海洋出版社[M],1984
    [43]王东坡,改善焊接头疲劳强度双周冲击方法的研究,天津大学博士学位论文,天津大学,2000
    [44] T. E. MATIKAS, Specimen design for fatigue testing at very high frequencies, Journal of Sound and Vibration, 2001, 247(4): 673~681
    [45] McMurry, Selection of Snubber and Clamps to Optimize the Design of Transister Switching Converter, IEEE, 1980, IA-16(4): 513~523
    [46] Drossis, J, The design, development and commissioning of a test facility for HCF/LCF interactive tests, Master’s Thesis, University of Toronto, Canada, 1991
    [47] Miller K J, A historical perspective of the important parameters of metal fatigue; and problems for the next century, In: Wu X R, Wang Z G, eds. Proceedings of the 7th International Fatigue Congress, Beijing, 1999, 15~39
    [48] Schijve J, Fatigue of structures and materials in the the 20th Century and the state of the art, International Journal of Fatigue, 2003, 25 :679~702
    [49] Miller K J, O’Donnell W J. The Fatigue limit and its elimination, Fatigue Fract. Engng. Mater. Struct.1999, 22: 545~557
    [50] Mughrabi H, On the life-controlling micro-structural fatigue mechanisms in ductile metals and alloys in the gigacycle regime, Fatigue Fract. Engng. Mater. Struct,1999, 22: 633~641
    [51]周承恩,谢季佳,洪友士,超高周疲劳研究现状,机械强度,2004,26(5): 526~533
    [52]王清远,超高强度钢十亿周疲劳研究,机械强度,2002,24(1):081~083
    [53] Wei R P, Environmental considerations for fatigue cracking. In: Stanzl-Tschegg S E, Mayer H, eds. International Conference 2001: Fatigue in Very High Cycle Regime, Vienna, 2001, 255~266
    [54] Mayer H, Stanzl-Tschegg S, Environmental influences at very high frequency, In: Stanzl-Tschegg S E, Mayer H, eds, International Conference 2001: Fatigue in Very High Cycle Regime, Vienna, 2001, 267~274
    [55] Mayer H, Larid C, Influence of cyclic frequency on strain localization and cyclic deformation in fatigue, Mater, Sci. Eng., 1994, A187: 23~25
    [56] Mughrabi H, Herz K, Stark X, Cyclic deformation and fatigue behavior of alpha-iron mono and polycrystals, International Journal of Fatigue, 1981, 17(2): 193~220
    [57] Meininger J M, Gibelling J C, Low-cycle fatigue of niobium-1 pct zirconium alloys. Metall. Trans., 1992, 23A: 3077~3084
    [58] Sakai T, Takeda M, Shiozawa K, et al. Experimental evidence of duplex S-N characteristics in wide life region for high strength steels. In: Wu X R, Wang Z G, eds. Proceeding of the 7th International Fatigue Congress, Beijing,1999, 573~578
    [59] Stanzl S E, Tschegg E K, Fatigue crack growth and threshold behavior at ultrasonic frequencies, ASTM Special Technical Publication, 1983, 3~18
    [60] Furaya Y, Abe T, Matsuoka S, 1010-cycle fatigue properties of 1800 MPa-class JIS-SUP7 spring steel, Fatigue Fract, Engng, Mater, Struct., 2000, 23(11): 893~902
    [61] Murakami Y, Nomoto T, Ueda T, et al. On the mechanism of fatigue failure in the superlong life regime(N>107 cycles), PartⅠ:influence of hydrogen trapped by inclusions. Fatigue Fract. Engng. Mater. Struct. 2000, 23(11): 893~902
    [62] Ochi Y, Matsumura T, Masaki K, et al., High-cycle rotating bending fatigue property in very long-life regime of high-strength steels. Fatigue Fract. Engng, Mater, Struct., 2002, 25: 823~830
    [63]鲁连涛,张卫华,金属材料超高周疲劳研究综述,机械强度,2005,27(3): 388~394
    [64] Furuya Y, Matsuoka S. Improvement of gigacycle fatigue properties for high-strength low-alloy steel at 100Hz, 600Hz, and 20KHz. Scripta Mater. 2002, 46(2): 157~162
    [65] Furuya Y, Matsuoka S, Abe T.A novel inclusion inspection method employing 20KHz fatigue testing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34(11): 2517~2526
    [66]张建峰,42CrMo钢的超长寿命疲劳性能与最大夹杂的评估,东北大学硕士学位论文,东北大学,2005
    [67] Mayer H, Fatigue crack growth and threshold measurements at very high frequencies, International Materials Reviews, 1999, 44(1): 1~33
    [68] Papakyriacou M, Marey H, et al, Influence of loading frequency on the fatigue properties in the very high cycle regime, In: Stanzl-Tschegg S E, eds, International Conference 2001: Fatigue in Very High Cycle Regime, Vienna, 2001, 73~80
    [69] Sun Z D, Wang Q Y, Bathias C. Experimental investigation on fretting fatigue a high strength steel at ultrasonic frequency [A]. FATIGUE’99 (7th international fatigue congress), Beijing, China, 1999, 1365~1370

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700