FSH锥齿轮传动啮合特性的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主减速器锥齿轮是汽车机械传动系统的重要组成部分,其传动质量及可靠性直接影响整车质量。目前,我国商用重型载货汽车主减速器锥齿轮,在恶劣工况下的传动齿轮副存在使用寿命短、不能满足使用要求的问题。本文基于FSH锥齿轮(分阶式双圆弧弧齿锥齿轮)的接触强度高于现在广泛应用的弧齿锥齿轮,提出将其应用于我国商用重型载货汽车驱动桥以解决目前寿命短的问题。
     FSH锥齿轮是将圆弧齿廓应用于弧齿锥齿轮的一种新型传动形式,其承载能力与啮合特性紧密相关,接触点初始位置的确定以及之后由点接触向区域接触的发展是影响承载能力的关键,机床调整参数实现对初始接触点的控制,齿形设计与跑合决定了齿面接触由点到面的发展,本文的研究目的是通过对虚拟制造核心技术LTCA(齿面承载接触分析)开展研究,实现合理机床调整参数快速获取,探索针对FSH锥齿轮的跑合方法。
     论文围绕FSH锥齿轮啮合特性开展相关工作,在虚拟设计制造系统、跑合、动态特性等方面进行研究,论文的主要内容及结论如下:
     (1)应用微分几何与齿轮啮合原理等理论,针对FSH锥齿轮齿形参数灵活设计的特点,提出基于跑合特性的齿形参数设计方法,从理论上推导了FSH锥齿轮的圆弧齿廓合理曲率半径计算公式,根据FSH锥齿轮的圆弧齿廓特点提出合理曲率半径的确定方法。
     (2)根据FSH锥齿轮加工原理,推导大、小轮的啮合方程和齿面方程;并对适合分析跑合的啮合方程进行推导,分析其诱导法曲率和啮合过程,确立了跑合速率与齿面磨损率的数学关系。
     (3)以空间啮合原理和TCA分析(轮齿接触分析)为基础,对FSH锥齿轮进行LTCA分析(加载轮齿接触分析);根据TCA原理和LTCA原理,分析FSH锥齿轮的啮合特性,明确了影响齿面接触区的具体因素,完善了FSH锥齿轮的虚拟仿真加工方法,提出了考虑齿面加工特征的齿面接触应力有限元计算方法,完成了FSH锥齿轮的LTCA(加载轮齿接触分析)。
     (4)进行FSH锥齿轮的跑合理论研究,对影响跑合的因素进行分析,建立FSH锥齿轮跑合数学模型,探索针对FSH锥齿轮的跑合方法,提出了SLH(乏油、低速、重载)跑合方法。
     (5)设计了锥齿轮动态特性测试实验台,对FSH锥齿轮与Gleason弧齿锥齿轮的动态特性进行测试,对比FSH锥齿轮跑合前后的振动与噪声特征信号,并将FSH锥齿轮跑合后的噪声振动信号与Gleason弧齿锥齿轮进行对比。
     本文的研究得到了国家自然科学基金项目“超高速大能流密度非稳态润滑空间曲面啮合特征实验提取方法”(批准号:50875009)的资助。
As important part of automotive mechanical transmission, the transmission quality and reliability of spiral bevel gear of the main reducer will determine the quality of vehicle. At present, the service life of bevel gears in heavy truck main reducer working in the complex and harsh condition is too short, which because of low contact strength and can not meet the requirement, therefore, FSH bevel gear, which is also called double circular arc spiral bevel gear, comparing with the spherical involutes bevel gear, has the advantages of high load capacity, long service life, high contact strength and bending strength. On the base of these, it is suggested that the FSH bevel can be applied to the main reducer of heavy truck.
     The FSH bevel gear is a new technology which applied double arc tooth to the spiral bevel gear and its load capacity is closely related the meshing characteristics. In the gear transmission, the initial location of contact area and the development of contact area may influence the gear meshing characteristics and drive quality. The initial location of contact is determined by the machine tool adjustment parameters, and the development of contact area is determined by the tooth profile design and running-in method. The purpose of this thesis is to put forward the LTCA(Load Tooth Contact Analysis), which is the core technology of the virtual manufacturing, with which reasonable machine tool adjustment parameters can be obtained at the least try-cut, and the method of running-in can be explored quickly and efficiently.
     The focus of this thesis is on the meshing characteristics of the FSH bevel. Some progress and accomplishment have been made on the key issues such as virtual design and manufacturing system, running-in, strength test and dynamic characteristics. The major works of this thesis are listed as follows:
     1) According to the differential geometry and meshing principle, the tooth profile design method, which is based on the running-in characteristics, is proposed, and in accordance with circular arc profile feature of FSH bevel gear, the proper method to find curvature radius is proposed.
     2) According to the conjugate gear tooth surface forming principle, gear processing principle and running-in principle, meshing equation that fitted running-in is deduced. In addition, the induced normal curvature and meshing process are analyzed. The meshing equation and the tooth surface equation of pinion and large wheel are deduced based on FSH bevel gear processing principle. The mathematical relation of running-in rate and tooth surface wear rate are determined.
     3) On the basis of the spatial engagement principle and TCA principle, the loading contact analysis is made. Based on the TCA and LTCA principle, the meshing characteristic of FSH bevel gear is analyzed, and the method of virtual simulation of machining is proposed. The tooth contact stress FEA is completed base on the machining of digitized gear-tooth surface. The LTCA of FSH bevel gear is completed.
     4) The running-in theory and test are carried on the meshing gear pairs, the factors that influenced running are analyzed, then, the mathematical model of running-in is established, and the running-in method for FSH bevel gear is proposed. The SLH(Starved-oil Low-speed Hard-load) running-in method is proposed.
     5) Dynamic testing tap of the bevel gear is designed and constructed to obtain the dynamic characteristic of the FSH and Gleason bevel gear system, and the vibration and noise of running-in pre and post are compared. What is more, the vibration and noise of FSH and Gleason bevel gear are compared.
     This thesis was supported by National Natural Science Foundation of China"Extraction method of maximum and average densities Unsteady Lubrication space surface meshing characteristics"(No.50875009).
引文
[1]张瑞亮,王铁,李纯明.双圆弧弧齿锥齿轮的研究现状[J].机械传动,2009,33(1):97-100.
    [2]朱景梓,邵家辉,李进宝.双圆弧弧齿锥齿轮啮合原理及其设计制造[M].太原工学院齿轮研究室,1982:59-61.
    [3]朱景梓,邵家辉,李军.双圆弧弧齿锥齿轮啮合原理及试验[M].太原工学院齿轮研究室,1982:34-40.
    [4]李进宝.双圆弧弧齿锥齿轮啮合分析[J].太原工业大学学报,1985,3(3):27-38.
    [5]李进宝.双圆弧弧齿锥齿轮制造工艺和试验研究[J].太原工业大学学报,1985,3(3):19-26.
    [6]施永乐,潘汝明,奚健勇.双圆弧齿廓弧齿锥齿轮的啮合重迭系数[J].东北工学院学报,1988,54(1):83-88.
    [7]邵家辉,王铁,李进宝,圆弧齿廓齿轮传动在工作刮板输送机上的应用研究[R],太原:煤炭科学研究总院太原分院,1991.
    [8]李进宝,王铁,邵家辉等.双圆弧弧齿锥齿轮传动特性及应用研究[C].中国机械工程学会生产工程分齿中国机械工程学会生产工程分会齿轮制造研究会.第二届齿轮制造研讨会论文集,重庆,1993:271-274.
    [9]董光荣.双圆弧弧齿锥齿轮的设计及强度分析[D].太原,太原理工大学,1998.
    [10]史长虹.双圆弧弧齿锥齿轮接触强度研究[D].太原,太原理工大学,1999.
    [11]白少先.双圆弧弧齿锥齿轮弯曲强度研究[D].太原,太原理工大学,1999.
    [12]姚俊红.双圆弧弧齿锥齿轮传动的三维建模及切齿啮合模拟与分析[D].天津,天津工业大学,2003.
    [13]盛云.双圆弧弧齿锥齿轮的实体建模及其弯曲应力的有限元分析[D].天津,天津工业大学,2005.
    [14]雷镭.双圆弧弧齿锥齿轮接触应力的有限元分析[D].天津,天津工业大学,2006.
    [15]李纯明.双圆弧弧齿锥齿轮啮合有限元仿真分析[D].太原,太原理工大学,2009.
    [16]李红渊.双圆弧弧齿锥齿轮的接触性能仿真及试验研究[D].太原,太原理工大学,2010.
    [17]张瑞亮.双圆弧弧齿锥齿轮传动啮合特性的研究[D].太原,太原理工大学,2010.
    [18]李红梅.双圆弧弧齿锥齿轮齿面接触分析[D].太原,太原理工大学,2011.
    [19]武志斐,王铁,张瑞亮.FSH型锥齿轮齿面接触分析[J].机械传动,2010,35(4):16-18.
    [20]武宝林,杨素君.双圆弧弧齿锥齿轮传动的切齿啮合分析[J].机械科学与技术,2002, 21(5):726-729.
    [21]张秀亲,李瑞斌,许恒伟.双圆弧弧齿锥齿轮齿根应力沿齿长分布的研究[J].工程设计学报,2002,9(4):215-218.
    [22]姚俊红,武宝林.双圆弧弧齿锥齿轮的实体建模方法及加工过程模拟[J].机械设计,2003,20(6):23-24.
    [23]康富军.双圆弧弧齿锥齿轮的参数化建模及力学特性模拟分析[D].太原,太原理工大学,2006.
    [24]盛云,吴光强,武宝林.双圆弧弧齿锥齿轮的精确建模及其弯曲强度的有限元分析[J].机械科学与技术,2007,26(10):1240-1244.
    [25]李纯明,王铁,张瑞亮.双圆弧弧齿锥齿轮三维参数化模型的构建分析[J].机械传动,2009,33(5):48-50.
    [26]张瑞亮,王铁,李纯明.双圆弧弧齿锥齿轮啮合的动力学分析[J].机械设计,2009,26(增刊):53-54.
    [27]Zhang Ruiliang, Wang Tie, Wu Zhifei. Study on virtual simulation machining of double circular arc profile spiral bevel gear. Applied Mechanics and Materials,2009,e-Engineering and Digital Enterprise Technology VII:1253-1257.
    [28]张瑞亮,吕明,王铁.双圆弧弧齿锥齿轮的三维虚拟仿真加工[J].机械设计与研究,2009,25(4):49-52.
    [29]Zhang Ruiliang. Wang Tie, Wu Zhifei. Tooth contact analysis of the double circular arc tooth spiral bevel gear, Applied Mechanics and Materials,2011, Frontiers of Manufacturing and Design Science:3711-3715.
    [30]李红梅,王铁,张瑞亮.双圆弧弧齿锥齿轮啮合特性的仿真分析[J].煤矿机械,2011,32(10):78-80.
    [31]张瑞亮,王铁,李红梅.双圆弧弧齿锥齿轮齿面接触分析[J].机械设计,2011,28(7):80-83.
    [32]Zhang Ruiliang, Wang Tie.The influences of installation errors on double circular arc tooth spiral bevel gear using TCA method. Journal of Convergence Information Technology,2012,7(1):1:10.
    [33]Zhang Ruiliang, Wang Tie, Wu Zhifei. TCA principle and application of the double circular arc tooth spiral bevel gear. Applied Mechanics and Materials,2012,Frontiers of Manufacturing and Design Science 11:3559-3561.
    [34]天津齿轮机床研究所,北京齿轮厂等编译.格利森锥齿轮技术资料译文集[M].第一分册,北京,机械工业出版社,1983:3-6.
    [35]郑昌启.弧齿锥齿轮和准双曲面齿轮[M].北京:机械工业出版社,1988:3-5.
    [36]Litivin F.L., Gutman Y.,Methods of synthesis and analysis of hypoid gear drives of Formate and Helixform,part 1-3,ASME J.of Mech.Dessin.,1981,103:83-113.
    [37]Litivin F.L., Gear Geometry and Applied Theory.New Jersey:PrentieeHall,1994.
    [38]Litvin F.L., Automatic determination of guess values for simulation of meshing of gear drives,NASA C.R.,4342,1990:23-48.
    [39]Litvin F.L.,Chen N.X.,Chen J.S., Computerized determination of curvature relations and contact ellipse for conjugate surfaces, Computer Methods in Applied Mechanics and Engineering.1995,125:151-170.
    [40]Litvin. F.L., Chen J S.Application of Finite Element Analysis for Determination of Load Share,Real Contact Ratio,Precision of Motion and Stress Analysis,ASME Journal of Mechanical Design,1996,118:561-567.
    [41]Litvin F.L,Optimized bearing ellipses of hypoid gears, Journal of Mechanical Design, 2003,125:739-745.
    [42]Litivin F.L,Sheveleva G.I,Vecchiato D,A modified approach for tooth contact analysis of gear drives and automatic determination of guess values, Computer Methods in Applied Mechanics and Engineering,2005,194(27-29):2927-2946.
    [43]F.L.Litvin, A.G. Wang,R.F. Handschuh.Computerized generation and simulation of meshing and contact of spiral bevel gears with improved geometry,Comput. Methods Appl. Mech. Engrg,1998,158:35-64.
    [44]F.L.Litvin, M. De Donno, A. Peng.etc, Integrated Computer Program for Simulation of Meshing and Contact of Gear Drives.Comput. Methods Appl. Mech. Engrg.2000. 181:71-85.
    [45]Krenzer Theodore J., Knebel Richard, COMPUTER AIDED INSPECTION OF BEVEL AND HYPOID GEARS.SAE Technical Paper Series, SAE, Warrendale, Pa, USA.
    [46]Krenzer Theodore J., Yunker Kent D.Universal bevel and hypoid gear hobbing machine,Werkstatt und Betrieb,122(3):237-241.
    [47]Qi Fan, Computerized Modeling and Simulation of Spiral Bevel and Hypoid Gears Manufactured by Gleason Face Hobbing Process, ASME Journal of Mechanical Design, 2006,128:1315-1327.
    [48]吴大任.微分几何讲义[M].北京:人民教育出版社,1982.
    [49]吴大任,骆家舜.齿轮啮合理论[M].北京:科学出版社,1985.
    [50]北京齿轮厂编.螺旋锥齿轮[M].北京:科学出版社,1974.
    [51]西安交通大学机制教研室齿轮研究组.弧齿锥齿轮与准双曲面齿轮加工调整原理[M].上海:上海科学技术出版社,1979.
    [52]曾韬.螺旋锥齿轮设计与加工[M].哈尔滨:哈尔滨工业大学出版社,1988.
    [53]严志达.齿轮啮合理论数学基础(四)[J].应用数学学报,1980,3(3):195-203.
    [54]严志达.论齿轮齿面接触区[J].齿轮学报,1979:1-10.
    [55]西安交通大学机制教研室齿轮研究组.弧齿锥齿轮与准双曲面齿轮加工调整原理[M].上海:上海科学技术出版社,1979.
    [56]董学朱.准双曲面齿轮切齿调整计算法的改进(一)[J].齿轮,1985,9(6):1-4.
    [57]董学朱.准双曲面齿轮切齿调整计算法的改进(二)[J].齿轮,1986,10(1):40-43.
    [58]郑昌启.局部共轭原理及其在弧齿锥齿轮切齿计算中的应用[J].机械工程学报,1979,15(2):73-106.
    [59]郑昌启.弧齿锥齿轮和准双曲面齿轮的齿面接触分析计算原理[J].机械工程学报,1981,7(2):1-12.
    [60]张洪飙,郑昌启.双曲面齿轮齿坯几何设计[J].重庆大学学报,1984,1:14-19.
    [61]郑昌启.局部共轭的“密切抛物面”原理的应用研究[J].重庆大学学报,1977:3-44.
    [62]曾韬.螺旋锥齿轮设计中的轮坯修正[J].航空标准化与质量,1981,5:51-56.
    [63]曾韬.格里森磨齿机展成凸轮分析[J].制造技术与机床,1978,5:6-11.
    [64]曾韬.美国格里森编制原珲[J].制造技术与机床,1979,4:17-26.
    [65]董学朱.准双曲面齿轮变性半展成切齿调整计算新方法[J].齿轮,1987,11(4):3-6.
    [66]董学朱.弧齿锥齿轮半展成切齿调整计算新方法[J].齿轮,1988,12(4):23-25.
    [67]董学朱.准双曲面齿轮刀倾全展成切齿调整计算方法[J].齿轮,1988,12(5):11-17.
    [68]吴序堂.齿轮啮合原理[M].北京:机械工业出版社,1982.
    [69]吴序堂.准双曲面齿轮啮合原理及其在刀倾半展成加工的应用[J].西安交通大学学报,1981,15(1):9-24.
    [70]吴序堂.准双曲面齿轮的变性全展成加工原理[J].齿轮,1984,8(2):1-8.
    [71]吴序堂.格里生制曲线齿锥齿轮变性半展成切齿原理[J].西安交通大学学报,1984,18(5):1-14.
    [72]吴序堂.刀倾半展成法加工弧齿锥齿轮的原理及机床调整[J].西安交通大学科学技术报告,1979.
    [73]吴序堂.格里森制准双曲面齿轮刀倾全展成切齿法的研究[J].机械工程学报,1985,21(2):54-69.
    [74]王小椿.点啮合曲面的三阶接触分析[J].西安交通大学学报,1983,17(3):1-13.
    [75]王小椿.线接触曲面的三阶接触分析[J].西安交通大学学报,1983,17(5):1-12.
    [76]王小椿,吴序堂.点接触齿面三阶接触分析的进一步探讨一V/H检验理论[J].西安交通大学学报,1987,21(2):1-13.
    [77]吴序堂,王小椿,李峰.曲线齿锥齿轮三阶接触分析法的原理及传动质量评价[J].机械工程学报,1994,30(3):47-57.
    [78]刘光磊.弧齿锥齿轮传动动态接触特性研究[D].西安,西北工业大学,2000.
    [79]邓效忠.高重合度弧齿锥齿轮的设计理论与实验研究[D].西安,西北工业大学,2002.
    [80]王立华.汽车螺旋锥齿轮传动耦合非线性振动研究[D].重庆,重庆大学,2003.
    [81]李小清.螺旋锥齿轮数控加工与误差修正技术研究[D].武汉,华中科技大学,2004.
    [82]魏冰阳.螺旋锥齿轮研磨加加工的理论与实验研究[D].西安,西北工业大学,2005.
    [83]陈霞.直齿锥齿轮修形方法研究[D].武汉,华中科技大学,2006.
    [84]马宁.螺旋锥齿轮脉冲电化学及电化学机械光整加工技术研究[D].大连,大连理工大学,2010.
    [85]张金良.高强度螺旋锥齿轮的设计及实验研究[D].西安,西北工业大学,2007.
    [86]邹旻.面向制造的摆线齿锥齿轮啮合理论研究[D].武汉,华中科技大学,2007.
    [87]周凯红.基于预定啮合特性的螺旋锥齿轮点啮合齿面设计及CNC制造技术研究[D].长沙,中南大学,2010.
    [88]刘凯.弧齿锥齿轮数控铣齿机运动分析及控制系统研究[D].南京,南京航空航天大学,2007.
    [89]王志永.摆线齿锥齿轮数控加工装备及其数字化制造关键技术的研究[D].长沙,中南大学,2010.
    [90]明兴祖.螺旋锥齿轮磨削界面力热耦合与表面性能生成机理研究[D].长沙,中南大学,2010.
    [91]冯治恒.螺旋锥齿轮多体多自由度非线性动力学研究[D].重庆,重庆大学,2010.
    [92]熊越东.基于虚拟现实技术的螺旋锥齿轮CNC加工仿真理论与方法研究[D].天津,天津大学,2005.
    [93]李敬财.螺旋锥齿轮数字化制造基础应用技术研究[D].天津,天津大学,2008.
    [94]徐彦伟.弧齿锥齿轮铣齿机主动精度设计方法研究[D].天津,天津大学,2010.
    [95]石照耀,张斌,林家春.坐标测量技术半世纪[J].北京工业大学学报,2011,37(5):648-655.
    [96]石照耀,张旭.齿轮单面啮合测量技术的发展及其应用[J].工具技术,2008,42(3):10-15.
    [97]石照耀,康焱.齿轮副整体误差及获取方法[J].天津大学学报,2012,45(2):128-134.
    [98]石照耀,曲宏芬,张万年.小模数齿轮单面啮合测量仪的设计[J].北京工业大学学 报,2011,37(4):481-486.
    [99]李颖芝.重载低速齿轮跑合的研究[D].石家庄,河北理工大学,2005.
    [100]温诗铸,黄平.摩擦学原理(第2版)[M].北京:清华大学出版社,2002.
    [101]Hamrock B J,Dowson D,Isothermal elasto-hydro-dynamic lubrication of point contacts[J],Part W-starvation results,ASME Journal of Lubrication Technology,1977, 99(1):15-23.
    [102]Kingsbury E. Cross flow in a starved EHD contact[J],ASLE Transaction,1973,16(4): 276-280.
    [103]Chin Y P, An analysis and prediction of lubricant film starvation in rolling contact systems[J],ASLE Transaction.1974.17(1):22-35.
    [104]汪久根,全永听,周桂如.乏油线接触部分膜弹流润滑分析[C].第五届全国摩擦学学术会议,武汉,1992:180-184.
    [105]Venner C H, Berger G Lugt P M. Waviness deformation in starved EHL circular contacts[J]. ASME Journal of Tribology,2004,126(1):248-257.
    [106]Damiens B, Venner C H, Cann P M E, et. Starved Lubrication of Elliptical EHD contact[J]. ASME Journal of Tribology,2004,126(2):105-111.
    [107]闫玉涛.航空螺旋锥齿轮失油状态下生存能力预测方法的研究[D].东北大学,2009.
    [108]章易程.齿轮乏油传动的摩擦学研究[D].中南大学,2011.
    [109]王延忠,龚康,吴灿辉.航空弹流润滑螺旋锥齿轮热摩擦行为分析[J].航空动力学报,2011,26(10):2382-2387.
    [110]王延忠,孙振宇,周元子.基于加载接触分析的航空螺旋锥齿轮油雾润滑性能分析[J].润滑与密封,2010,35(7):23-27.
    [111]张俐,牛文韬,王延忠.航空螺旋锥齿轮油雾润滑状态研究[J].润滑与密封,2011,36(11):6-10.
    [112]朱景梓,邵家辉,程明琦.关于硬齿面圆弧齿轮的两个问题[M].太原工学院齿轮研究室,1982:3-21.
    [123]孙大乐.双圆弧齿轮齿形参数优化、强度分析、跑合仿真及实验研究[D].东北大学,1995.
    [114]孙大乐,杨文通,蔡春源.齿形参数对双圆弧齿轮接触跑合性能的影响[J].机械,1998,25(5):17-19.
    [115]孙大乐,杨文通,蔡春源.双圆弧齿轮齿间、接触迹间载荷分配分析[J].机械传动,1996,20(1):7-9.
    [116]孙大乐,蔡春源.双圆弧齿轮齿面接触分析[J].东北大学学报(自然科学版),1995, 16(1):77-80.
    [117]孙大乐,杨文通,蔡春源.双圆弧齿轮磨合磨损的试验研究[J].摩擦学学报,1997,17(4):371-374.
    [118]罗立凤.圆弧齿轮的加载啮合分析及误差影响的研究[D].哈尔滨工业大学,1992.
    [119]Chen Chenwen, Chen Rongzeng, et, Method for calculation on contact fatigue strength of helical gears with double-circular-arc tooth pro file [J], Chinese Journal of Mechanical Engineering,1990,Vol.3.
    [120]王铁,孙桓五,蒋志伟.双圆弧齿轮副的跑合机理[J].机械传动,1997,21(2):79-80.
    [121]屈文涛.非常规条件下双圆弧齿轮传动工作能力研究[D].西安,西北工业大学,2000.
    [121]黄海舟,牛锡传,朱均.圆弧齿轮热弹流流体基本模型的研究[J].润滑与密封,2007,32(1):72-75.
    [122]黄海舟,牛锡传,朱均.圆弧齿轮热弹流流体动力润滑数值解[J].润滑与密封,2007,32(2):26-31.
    [123]王铁,孙桓五,武昭晖.双圆弧齿轮的齿形参数的合理选择[C].第一届国际机械工业学术会议论文集,机械工业出版社,2000:46-51.
    [124]张瑞亮,王铁.双圆弧齿轮传动的模糊可靠性设计方法[J].现代制造工程,2001,10:36-38.
    [125]张静,王铁.双圆弧齿轮齿形参数的模糊优化[J].太原理工大学学报,2002,33(2): 118-120.
    [126]Tie Wang, Jinbao Li. A Measurement and Testing Method for Lubrication Regimes in Gear Transmissions. Tribotest Journal,1995.2(1):37-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700