开环谐振器在滤波器及天线中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着人们对无线通信设备的要求越来越高,微波通信得以迅猛发展。便携式、小型化、抗干扰能力强等功能逐渐成为无线通信设备和终端的发展要求。作为射频前端不可或缺的一部分,滤波器和天线性能具有至关重要的作用。如何更好地缩减器件整体尺寸,控制通带带宽,调节高次谐波,抑制阻带,提高选频特性等各项指标始终是微波工作者所不断追求的目标。开环谐振器(SRR)因实现了左手材料特性而逐渐引起微波界的关注,并因其具有亚波长谐振和高品质因数的特性而成为研究热点。本文主要对开环谐振器进行了深入和广泛地应用研究。利用开环谐振器及其创新结构,结合阶跃阻抗变换、源与负载耦合、交叉耦合、零度角馈电,凋落波放大等技术,提出了多种具有新颖特性的谐振器和耦合结构,并应用在多种高性能滤波器和天线的设计中。
     本论文的创新性工作及成果主要包括以下几个方面:
     1、提出了一种新颖的阶跃阻抗开环谐振器(SIR-SRR)结构,这种结构是将开环谐振器与阶跃阻抗谐振器相互结合而构成,从而使得这种组合谐振器结构既继承了SIR的谐波可调谐优势,又具备SRR亚波长谐振的小型化特点。本文将该结构应用于交叉耦合滤波器的设计,采用这种复合结构设计的带通滤器具有小型化的特点,并表现出谐振波可抑制的特性;在此类滤波器结构基础上,通过内环谐振器上加载金属过孔,进一步设计出了具备小型化与高选择性的双频带通滤波器。
     2、提出了一类新型多模带通滤波器。这类滤波器采用短路分支线加载SIR结构,并结合了源与负载耦合技术,从而克服开路分支线加载SIR相对面积较大的缺点。此外,通带内被激励的多个模式表现出可以独立调谐的优越特性;采用由SIR直接折叠成的开环谐振器结构,设计出了一种仍具有高选择性的双模双频带通滤波器。
     3、提出一类交指电容加载的开环谐振器(CLSRR)结构,该类结构能显著地缩减滤波器整体尺寸、增大带宽,并极大地增加设计自由度。本文利用该类结构设计多款多通带带通滤波器,它们具有尺寸小、结构紧凑、低损耗,同时每个通带两侧都有一对紧靠的传输零点,具有高择性。此外,由于CLSRR结构与SRR结构组合可以构成不同的耦合方式,多个单元的这种组合结构能够实现多路通带特性。本文基于这种复合结构设计了一种结构紧凑的微带双工器,它可以在两条不同路径上分别产生不同的通带,且具有非常小的尺寸。
     4、将二阶互补开环谐振器(CSRR的高阶形式)作为陷波结构应用于超宽带系统,研制了几类陷波超宽带器件(天线和滤波器)。与传统的陷波超宽带器件相比,这类器件的陷波区域具有陡峭过渡带,从而提高了超宽带系统的抗干扰能力。
     5、将所提出的高阶互补开环器结构(CSR)与基片集成波导(SIW)相结合,设计几款小型化带通滤波器并对其进行分析。与普通CSRR和SIW组合的滤波器相比,高阶结构和SIW组合所构成的滤波器在SIW截止区域内产生了更低频率的通带,极大拓展了互补开环谐振器这类结构在SIW上设计双频多频窄带滤波器的自由度。
     6、采用二阶互补开环谐振器(CSR2)结构,通过同轴单点馈电,在普通微带贴片上,实现了一款极化方向不同的双频双圆极化天线。
With ever-increasing demands for microwave communication systems, the wireless communicationdevices and ends with low loss, sharp transition, strong anti-interference capabilities and compact sizeare highly desired. The components including filter and antenna plays an important role in the part ofRF front end. It’s a always goal for researchers to improve these functions of microwave apparatus.The split-ring resonator (SRR) has attracted extensive attention of researchers for its novel properties.Utilizing these properties, various exotic circuits have been presented and improved. In thisdissertation, the SRR provides a particular interest, specifically for its resonant behaviors. Since theSRR can be considered as an electronically small resonator with very high Q-value, it is a very usefulstructure in constructing microwave apparatus with compact size. In this work, several kinds of theresonators based on SRR and coupling structure are presented, and different apparatus with improvedproperties are designed from the application of these resonators.
     The main innovations of this dissertation are as follows:
     1. A high selectivity quadruple-mode broadband bandpass filter (BPF) with source-load coupling isproposed using two different sizes short stub loaded stepped-impedance resonators (SIR). Two SIRscan generate four operating modes, which can be approximately adjusted individually. Owing to thespecial designs of the filter, the coupling of two resonators is weak. In each resonator, the even-modefrequency can be flexibly controlled by changing the length of the short stub in central plane, whereasthe odd-mode one remains stationary. Due to the source-load coupling, two transmission zeros areclose to the cut-off frequencies of the passband, which leads to high selectivity.
     2. A novel miniaturized split ring resonator (SRR) structure is introduced in designing highfrequency selectivity and stopband expanded BPF with four transmission zeros. Such fundamentalresonators consist of a pair of half-wavelength hairpin-shaped ring resonators nested in each other,which improved SRR structure. Compared with conventional SRR, this stepped impedance split ringresonator (SISRR) has better performance on miniaturization. To verify good characteristics of thenovel structure, a new resonator-embedded cross-coupled filter which is constructed by a pair of newresonators, is proposed.This novel filter is very compact and has high frequency selectivity.
     3. In order to provide sufficient degrees of freedom for achieving wideband of the couping filter, anovel SRR loaded interdigitail capacitor is proposed. Some coupling filters with good characteristics are designed using these resonators. Furthermore,a novel planar diplexer is developed based onsplit-ring resonators (SRRs). The proposed diplexer is comprised of three SRR, which have differentcouping style. This diplexer shows advantages in terms of the compact size, low loss, easy fabricationand integration with other circuits.
     4. A miniaturized CSR2is presented to improve the effect of the notch frequency for the proposedantenna and filter. Compared with CSRR, the CSR2can excite a lower central frequency resonance,when they have the same dimensions. Due to this miniaturized characteristic, the antenna can loadmultiple CSR2unit cells which generate multiple corresponding resonant modes to control the notchbandwidth and improve high frequency selectivity at the rejection frequency. Moreover, it is veryconvenient to etch SR2s slot in UWB device for band-notched. What’more, a miniaturized substrateintegrated waveguide (SIW) filter is proposed using a complementary spiral resonator (CSR). CSRtechnique can be applied to the design of miniaturized filter by increasing electrical length. Todemonstrate the idea, the miniaturized SIW filter is designed with CSR2and CSR3, respectively. Themeasured central resonant frequencies are3.25GHz and2.23GHz, which are lower than the SIW filterwith CSRR occurs at5.17GHz.
     5. A novel dual-band circularly-polarized microstrip antenna is proposed. The designs are based onthe complementary two turns spiral resonator (CSR2). They are the counterparts of two turns spiralresonators (SR2s), which were introduced in2004by some of the authors. CSR2s technique can beapplied to the design of miniaturized antenna by increasing electrical length. To demonstrate the idea,the proposed circularly-polarized antenna is designed to work at658MHz and2.74GHz. The gaporientation asymmetric or symmetric to the current propagating direction will render the antenna toradiate circular polarization (CP) waves with the CSR2etched on the antenna. Details of theexperimental results compared with the simulated results are presented and discussed.
引文
[1] Veselago V G. The electrodynamics of substance with simultaneously negative calues ofε andμ [J]. Soviet Physics Uspekhis,1968,10(4):509-514.
    [2] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinearphenomena [J]. IEEE Transactions on Microwave Theory and Technique,1999,47(11):2075-2084.
    [3] D R Smith, W J Padilla, D C Vier, et al. Composite medium with simultaneously negativepermeability and permittivity [J].Physical Review Letters,2000,84(18):4184-4187.
    [4] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction.[J].Science,2001,292(6):77-79.
    [5] Shelby R A, Smith D R, Nemat-Nasser S C. Microwave transmission through atwo-dimensional,isotropic, left-handed metamaterial [J]. Applied Physics Letters,2001,78(4):489-491.
    [6] R. Marques et al. Left-handed-media simulation and transmission of EM waves insubwavelength split ring resonator-loaded metallic waveguides [J]. Phys. Rev. Lett,2002,89(18):3901–3904.
    [7] F. Falcone, T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla. Effectivenegative-epsilon stopband microstrip lines based on complementary split ring resonators [J]IEEE Microwave Wireless Components. Letters,2004,14(6):280–282.
    [8] J. D. Baena, J. Bonache, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia,I. Gil, and M. Sorolla. Equivalent-circuit models for split-ring resonators and complementarysplit-ring resonators coupled to planar transmission lines [J]. IEEE Trans. Microw. Theory Tech,2005,53(4):1451–1461.
    [9] J. J. Garcia, F. Martin, J. D. Baena, R. Marques, and L. Jelinek. On the resonances andpolarizabilities of split rings resonators [J]. Appl. Phys,2005,98(03):3103–3106.
    [10] Joan García García, Ferran Martín. On the electrical characteristics of complementarymetamaterial resonators [J]. IEEE Microwave Wireless Component Letters,2006,16(10):543-545.
    [11] J. D. Baena, R. Marques, F. Medina, J. Martel. Artificial magnetic metamaterial design by usingspiral resonators [J]. Physical Review B,2004,69(1):0144021-0144025
    [12] Mrinal Kanti Mandal, Priyanka Mondal, Subrata Sanyal. Low insertion-loss, sharp-rejectionand compact microstrip low-pass filters [J]. IEEE Microwave Wireless Component Letters,2006,16(11):600-602.
    [13] J C Liu, D S Shu, B H Zeng. Improved equivalent circuits for complementary split-ringresonator-based high-pass filter with C-shaped couplings [J]. IET Microwaves, Antennas&Propagation,2008,2(6):622-626.
    [14] Yuan Dan Dong, Tao Yang, Tatsuo Itoh. Substrate integrated waveguide loaded bycomplementary split-ring resonators and its applications to miniaturized waveguide filters [J].IEEE Transactions on Microwave Theory and Technique,2009,57(9):2211-2223.
    [15] P Mondal, M K Mandal, A Chaktabarty, et al. Compact bandpass filters with wide controllablefractional bandwidth.[J]. IEEE Microwave Wireless Component Letters,2006,16(10):540-542.
    [16] F. Zhang, F. S. Zhang, G. Zhao, C. Lin, Y. C. Jiao. A novel compact band-notched planarmonopole antenna from3to40GHz [J]. Microwave and optical technology letters,2009,51(6):1401-1403.
    [17] Yong Jin Kim, Hong Min Lee. Electrically small squre loop antenna with a capacitive split ringresonator cover structure [J]. Microwave and Optical Technology Letters,2009,51(3):831-835.
    [18] Wentao Wang, Shuxi Gong, Zhen Cui, et al. Dual band notched ultrawideband antenna withcodirectional SRR.[J]. Microwave and Optical Technology Letters,2009,51(4):1032-1034.
    [19] Ming-Chun Tang, Shaoqiu Xiao, Tianwei Deng, Duo Wang, Jian Guan, Bingzhong Wang, andGuang-Ding Ge. Compact UWB Antenna with Multiple Band-Notches for Wi-MAX andWLAN [J]. IEEE Transactions on Antennas and Propagation,2011,59(4):1372-1376.
    [20] Y.H. Liu X.P. Zhao. Investigation of anisotropic negative permeability medium cover for patchantenna [J]. IET Microwaves, Antennas&Propagation,2008,2(7):737-744.
    [21] M Gil, J Bonache, F Martín. Synthesis and applications of new left handed microstrip lines withcomplementary split-ring resonators etched on the signal strip [J]. IET Microwaves, Antennas&Propagation,2008,2(4):324-330.
    [22] Baena, J. D. Jelinek, L. Marques, R. Mock, J. J. Gollub, J. Smith, D. R. Isotropic frequencyselective surfaces made of cubic resonators.[J]. Applied Physics Letters,2007,91(19):191105-191105-3
    [23] J. Kim, C. S. Cho, J. W. Lee.5.2GHz notched ultra-wideband antenna using slot-type SRR [J].Electronics Letters,2006,42(6):315-316.
    [24] Yan Zhang, Wei Hong, Chen Yu, Zhen-Qi Kuai, Yu-Dan Don, and Jian-Yi Zhou. PlanarUltrawideband Antennas with Multiple Notched Bands Based on Etched Slots on the Patchand/or Split Ring Resonators on the Feed Line [J]. IEEE Transactions on Antennas andPropagation,2008,56(9):3063-3068.
    [25] A. Velez, J. Bonache, F. Martin. Varactor-Loaded Complementary Split Ring Resonators(VLCSRR) and Their Application to Tunable Metamaterial Transmission Lines [J]. IEEEMicrowave and Wireless Components Letters,2008,18(1):28-30.
    [26] A. Velez, F. Aznar, J. Bonache, M. C. Velazquez-Ahumada, J. Martel, F. Martin. OpenComplementary Split Ring Resonators (OCSRRs) and Their Application to Wideband CPWBand Pass Filters [J]. IEEE Microwave and Wireless Components Letters,2009,19(4):197-199.
    [27] B. D. Braaten. A Novel Compact UHF RFID Tag Antenna Designed With Series ConnectedOpen Complementary Split Ring Resonator (OCSRR) Particles [J]. IEEE Transactions onAntennas and Propagation,2010,58(11):3728-3733.
    [28] Y. Dong, T. Itoh. Substrate Integrated Waveguide Loaded by Complementary Split-RingResonators for Miniaturized Diplexer Design [J]. IEEE Microwave and Wireless ComponentsLetters,2011,21(1):10-12.
    [29] Jordi Bonache, Gerard Sisó, Marta Gil, et al. Application of composite right/left handed (CRLH)transmission lines based on complementary split ring resonators (CSRRs) to the design ofdual-band microwave components [J]. IEEE Microwave Wireless Component Letters,2008,18(8):524-526.
    [30] Jia Xiao Niu, Xi Lang Zhou. A novel miniaturized hybrid ring using complementary split-ringresonators [J].Microwave and Optical Technology Letters,2007,50(3):632-634.
    [31] M Gil, J Bonache, I Gil. Artificial left-handed transmission lines for small size microwavecomponents: application to power dividers.[C].Proceedings of the36th European MicrowaveConference, Manchester UK,2006:1135-1138.
    [32] M. Palandoken, A. Grede, H. Henke. Broadband Microstrip Antenna with Left-HandedMetamaterials [J]. IEEE Transactions on Antennas and Propagation,2009,57(2):331-338.
    [33] H Zhang, Y.-Q Li, X Chen, Y.-Q Fu, N.-C Yuan. Design of Circular/Dual-Frequency LinearPolarization Antennas Based on the Anisotropic Complementary Split Ring Resonator [J]. IEEETransactions on Antennas and Propagation,2009,57(10):3352-3355.
    [34] W. Wang, S. Gong, Z. Cui, J. Liu, J. Ling. Dual band-notched ultra-wideband antenna withcodirectional SRR [J]. Microwave and optical technology letters,2009,51(4):1032-1034.
    [35] J.-K Kim, Y.-J Kim, H.-Y Kim, H.-M. Lee. Efficient electrically small loop antenna using SRRstructure on the ground plane [J]. Microwave and optical technology letters,2009,51(1):201-204.
    [36] Y.-J. Kim, H.-M Lee. Electrically small square loop antenna with a capacitive split ring resonatorcover structure [J]. Microwave and optical technology letters,2009,51(3):831-835.
    [37] X. L. Bao, M. J. Ammann. Microstrip-fed dual-frequency annular-slot antenna loaded bysplit-ring-slot [J]. IET Microwaves Antennas&Propagation,2009,3(5):757-764.
    [38] Y. F. Weng, S. W. Cheung, T. I. Yuk. An antenna for uwb and bluetooth standards withband-notched characteristic [C].9th IEEE International Conference on Ultra-Wideband,Vancouver,2009.
    [39] G. L. Wu, W. Mu, X. W. Dai, Y. C. Jiao. Design of novel dual-band bandpass filter withmicrostrip meander-loop resonator and CSRR DGS [J]. Progress in ElectromagneticsResearch-PIER,2008,78:17-24.
    [40] M. L. Chuang. Concurrent dual band filter using single set of microstrip open-loop resonators [J].Electronics Letters,2005,41(18):1013-1014.
    [41] D. Bouyge, D. Mardivirin, J. Bonache, A. Crunteanu, A. Pothier, M. Duran-Sindreu, et al. SplitRing Resonators (SRRs) Based on Micro-Electro-Mechanical Deflectable Cantilever-TypeRings: Application to Tunable Stopband Filters [J]. IEEE Microwave and Wireless ComponentsLetters,2011,21(5):243-245.
    [42] J. Zhang, G.-H. Li, Z.-B. Wang, H.-N. Wang. Compact dual-mode microstrip bandpass filter withadjustable transmission zero [J]. Microwave and optical technology letters,2009,51(9):2049-2051.
    [43] J. W. Fan, C. H. Liang, X. W. Dai. Design of Cross-coupled Dual-band Filter with equal-lengthSplit-ring Resonators [J]. Progress in Electromagnetics Research-PIER,2007,75:285-293.
    [44] H. Jia-Sheng, M. J. Lancaster. Couplings of microstrip square open-loop resonators forcross-coupled planar microwave filters [J]. IEEE Transactions on Microwave Theory andTechniques,1996,44(11):2099-2109.
    [45] E. Rajo-Iglesias, O. Quevedo-Teruel, M. N. M. Kehn. Multiband SRR Loaded RectangularWaveguide [J]. IEEE Transactions on Antennas and Propagation,2009,57(5):1570-1574.
    [46] J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu. A controllable magnetic metamaterial: Split-ringresonator with rotated inner ring [J]. IEEE Transactions on Antennas and Propagation,2008,56(7):2018-2022.
    [47] X. Hu, Q. Zhang, S. He. Dual-Band-Rejection Filter Based on Split Ring Resonator (SRR) andcomplimentary SRR [J]. Microwave and optical technology letters,2009,51(10):2519-2522.
    [48] A. Genc, R. Baktur. Miniaturized dual-passband microstrip filter based on double-splitcomplementary split ring and split ring resonators [J]. Microwave and optical technology letters,2009,51(1):136-139.
    [49] R. Marques, F. Mesa, J. Martel, F. Medina. Comparative analysis of edge-and broadside-coupledsplit ring resonators for metamaterial design theory and experiments [J]. IEEE Transactions onAntennas and Propagation,2003,51(10):2572-2581.
    [50] V Crnojevic-Bengin, V Radonic and B. Jokanovic. Complementary split ring resonators usingsquare Sierpinski fractal curves [C].36th European Microwave Conference, Manchester,2006.
    [51] J. Machac, J. Zehentner, M. Blaha. Coupling of split ring resonators in a mu-negative volumetricmetamaterial [C].2008IEEE MTT-S International Microwave Symposium Digest, Atlanta,2008.
    [52] D. H. Lee, W. S. Park. Extraction of effective permittivity and permeability of periodicmetamaterial cells [J]. Microwave and optical technology letters,2009,51(8):1824-1830.
    [53] J. Choi, C. Seo. Low Phase Noise VCO Using Microstrip Square Open Loop Multiple Split RingResonator [C].2008IEEE MTT-S International Microwave Symposium Digest, Atlanta,2008.
    [54] M. Duran-Sindreu, F. Aznar, A. Velez, J. Bonache, F. Martin. New Composite Right/Left HandedTransmission Lines based on Electrically Small Open Resonators [C].2009Ieee/Mtt-SInternational Microwave Symposium, Boston,2009.
    [55] J. Bonache, M. Gil, I. Gil, J. Garcia-Garcia, F. Martin. On the electrical characteristics ofcomplementary metamaterial resonators [J]. IEEE Microwave and Wireless ComponentsLetters,2006,16(10):543-545.
    [56] Q. Zhang, S. N. Khan, S. He. Realization of left handedness through CSRRs and SRRs inmicrostrip line [J]. Microwave and optical technology letters,2009,51(3):757-760.
    [57] M. Li, H. Yang, D.-e Wen. Transmission and reflection properties of composite metamaterials infree space: experiments and simulations [J]. Microwave and optical technology letters,2009,51(8):1865-1868.
    [58] Makimoto M.,Yamashita S. Bandpass filter using parallel coupled stripline stepped impedanceresonators[J].IEEE Transactions on Microwave Theory and Techniques,1980,28(12):1413-1417.
    [59] Morikazu Sagawa, Mitsuo Makimoto, and Sadahiko Yamashita. Geometrical structures andfundamental characteristics of microwave Stepped-Impedance Resonators [J]. IEEETransactions on Microwave Theory and Techniques,1997,45(7):1078-1085.
    [60] Lin, Y.-S., Ku, W.-C., Wang, C.-H., and Chen, C.H. Wideband coplanar-waveguide bandpassfilters with good stopband rejection [J]. IEEE Microw. Wirel. Compon. Lett,2004,14(9):422-424.
    [61] Yang, G.M., Jin, R.H., and Geng, J.P. Planar microstrip UWB bandpass filter using U-shaped slotcoupling structure [J]. Electron. Lett,2006,42(25):1461-1463.
    [62] Yang, G.M., Jin, R., Geng, J., Huang, X., and Xiao, G. Ultra-wideband bandpass filter withhybrid quasi-lumped elements and defected ground structure [J]. IET Microw. Antennas Propag,2007,1(3):733-736.
    [63] Li, R., and Zhu, L. Compact UWB bandpass filter using stub-loaded multiple-mode resonator [J].IEEE. Microw. Wirel. Compon. Lett,2007,17(1):40-42.
    [64] Han, L., Wu, K., and Chen, X.-P. Compact ultra-wideband bandpass filter using stub-loadedresonator [J]. Electron. Lett,2009,45(10):504-506.
    [65] Wong, S.W., and Zhu, L. EBG-embedded multiple-mode resonator for UWB bandpass filter withimproved upper-stopband performance [J]. IEEE Microw. Wirel. Compon. Lett,2007,17(6):421-423.
    [66] S. W. Wong and L. Zhu. Quadruple-mode UWB bandpass filter with improved out-of-bandrejection [J]. IEEE Microw. Wireless Compon. Lett,2009,19(3):152-154.
    [67] B. Y. Yao, Y. G. Zhou, Q. S. Cao and Y. C. Chen. Compact UWB bandpass filter with improvedupper-stopband performance [J]. IEEE Microw. Wireless Compon. Lett,2009,19(1):27-29.
    [68] Kuo-Sheng Chin, Yi-Chyun Chiang, and Jen-Tsai Kuo. Microstrip Open-Loop Resonator withmultispurious suppression [J]. IEEE Microwave and Wireless Components Letters,2007,17(8):574-576.
    [69] Bian Wu, Chang-hong Liang, Qi Li, and Pei-yuan Qin. Novel Dual-Band Filter Incorporatingdefected SIR and Microstrip SIR [J]. IEEE Microwave and Wireless Components Letters,2008,18(6):392-394.
    [70] M.-L. Chuang. Dual-band microstrip coupled filters with hybrid coupling paths [J]. IETMicrowaves, Antennas&Propagation,2010,4(7):947-954.
    [71] H.-W. Deng, Y.-J. Zhao, L. Zhang, X.-S. Zhang and W. Zhao. Dual-band BPF with DSIR andTSIR [J]. IET Electronics Letters.2010,46(17):1205-1206.
    [72] Feng Wei, Qiu Yi Wu, Xiao Wei Shi, and Li Chen. Compact UWB Bandpass Filter with dualnotched bands based on SCRLH resonator [J]. IEEE Microwave and Wireless ComponentsLetters,2011,21(1):28-30.
    [73] Hung-Wei Wu, Ru-Yuan Yang. A New Quad-Band Bandpass Filter Using Asymmetric SteppedImpedance Resonators [J]. IEEE Microwave and Wireless Components Letters,2011,21(4):203-205.
    [74] Rowdra Ghatak, Pankaj Sarkar, R. K. Mishra, and D. R. Poddar, Senior. A compact UWBbandpass filter with embedded SIR as band notch structure [J]. IEEE Microwave and WirelessComponents Letters,2011,21(5):261-263.
    [75] Chao-Hsiung Tseng and Hsin-Yung Shao. A New Dual-Band Microstrip Bandpass Filter usingNet-Type Resonators [J]. IEEE Microwave and Wireless Components Letters,2010,20(4):196-198.
    [76] X.-H Wang B.-Z Wang. Compact broadband dual-band bandpass filters using slotted groundstructures [J]. Progress in Electromagnetics Research,2008,82:151-166.
    [77] H.-W. Liu, Y.-F Lv and W. Zheng. Compact dual-band bandpass filter using trisection hairpinresonator for GPS and WLAN applications [J]. IET Electronics Letters,2009,45(7):360-362.
    [78] Kuo-Sheng Chin, Jun-Hong Yeh, and Shuh-Han Chao. Compact Dual-Band Bandstop Filtersusing Stepped-Impedance Resonators [J]. IEEE Microwave and Wireless Components Letters,2007,17(12):849-851.
    [79] R.-Y. Yang, K. Hon, C.-Y. Hung, C.-S Ye. Design of dual-band bandpass filters usinga dualfeeding structure and embedded uniform impedance resonators [J]. Progress inElectromagnetics Research,2010,105:93-102.
    [80] Mingqi Zhou, Xiaohong Tang, and Fei Xiao. Compact Dual Band Transversal Bandpass Filterwith Multiple Transmission Zeros and Controllable Bandwidths [J]. IEEE Microwave andWireless Components Letters,2009,19(6):347-349.
    [81] Liu J C.Wang, J W, Zeng B H, etal. CPW-fed dual-mode double-square-ring resonators forquad-band filters [J].IEEE Microwave and Wireless Components Letters,2010,20(3):142–144.
    [82] Y.-L. Wu, C. Liao, and X.-Z. Xiong. A dual-wideband Bandpass filter based on E-shapedmicrostrip SIR with improved upper-stopband performance [J]. Progress in ElectromagneticsResearch,2010,108:141-153.
    [83] Makimoto M, Yamashita S. Geometrical structures and fundamental characteristics of microwavestepped impedance resonators [J].IEEE Transactions on Microwave Theory and Techniques,1997,45(7):1078-1085.
    [84] Chang S F,Jeng Y H,Chen J L.Dual-band step-impedance bandpass filter for multimode wirelessLANs[J].Electronics Letters,2004,40(1):38-39.
    [85] Sun S, Zhu L.Compact dual-band microstrip bandpass filter without external feeds [J]. IEEEMicrowave and Wireless Components Letters,2005,15(10):644-646.
    [86] Kuo J T,Yeh T H,Yeh C C.Design of microstrip bandpass filters with a dual-passband response[J].IEEE Transactions on Microwave Theory and Techniques,2005,53(4):1331–1337.
    [87] Z. Yin-Xiu, S. Jin, C. Jian-Xin, X. Quan. Dual-Band Bandpass Filter Design using a Novel FeedScheme [J]. IEEE Microwave and Wireless Components Letters.2009,19(6):350-352.
    [88] GARY D AllEY. Interdigital Capacitors and Their application to lumped-element microwaveintegrated circuits [J]. IEEE Trans. Microw. Theory Tech,1970,18(12):1028–1033.
    [89] Lin, Y.-S., Ku, W.-C., Wang, C.-H., and Chen, C.H. Wideband coplanar-waveguide bandpassfilters with good stopband rejection [J]. IEEE Microw. Wirel Compon Lett,2004,14(9):422-424.
    [90] Yang, G.M., Jin, R.H., and Geng, J.P.:‘Planar microstrip UWB bandpass filter using U-shapedslot coupling structure’, Electron. Lett,2006,42(25):1461-1463.
    [91] Yang, G.M., Jin, R., Geng, J., Huang, X., and Xiao, G. Ultra-wideband bandpass filter withhybrid quasi-lumped elements and defected ground structure [J]. IET Microw Antennas Propag,2007,1(3):733-736.
    [92] M. Shobeyri and M. H. VadjedSamiei. X-band miniaturized wideband bandpass filter utilizingmultilayered microstrip hairpin resonator [J]. Progress in Electromagnetic Research Letters,2008,4:25-31.
    [93] Li, R., and Zhu, L. Compact UWB bandpass filter using stub-loaded multiple-mode resonator [J].IEEE Microw. Wirel Compon Lett,2007,17(1):40-42.
    [94] Han, L., Wu, K., and Chen, X.-P. Compact ultra-wideband bandpass filter using stub-loadedresonator [J]. Electron Lett,2009,45(10):504-506.
    [95] Wong, S.W., and Zhu, L. EBG-embedded multiple-mode resonator for UWB bandpass filter withimproved upper-stopband performance [J]. IEEE Microw Wirel. Compon Lett,2007,17(6):421-423.
    [96] Y.-L. Wu, C. Liao, and X.-Z. Xi ong. A dual-wideband bandpass filter based on e-shapedmicrostrip sir with improved upper-stopband performance [J]. Progress in ElectromagneticResearch,2010,108:141-153.
    [97] M. Makimoto and S. Yamashita. Microwave resonators and filters for wireless communications[J]. In Springer Series in Advanced Micro-Electronics.2001, New York: Springer.
    [98] K.-S. Chin, J.-L. Hung, C.-W Huang, J.S. Fu, B.-G Chen and T.-J Chen. LTCC dual-bandstepped-impedance-stub filter constructed with vertically folded [J]. Electron Lett,2010,46(23):1554-1556.
    [99] C.-Y. Chen, C.-Y Hsu and H.-R Chuang. Design of miniature planar dual-band filter usingdual-feeding structures and embedded resonators [J]. IEEE Microw. Wireless Compon Lett,2006,16(12):669-671.
    [100] Pramod K. Singh, Sarbani Basu, and Yeong-Her Wang. Miniature Dual-Band Filter usingQuarter Wavelength Stepped Impedance Resonators [J]. IEEE Microw. Wireless Compon Lett,2008,18(2):88-90.
    [101] Y. P. Zhang and M. Sun. Dual-band microstrip bandpass filter using stepped-impedanceresonator with new coupling schemes [J]. IEEE Trans. Microw. Theory Tech.,2006,54(10):3779-3785.
    [102] L. Athukorala and D. Budimir. Compact dual-mode open loop microstrip resonators and filters[J]. IEEE Microw. Wireless Compon Lett,2009,19(11):698-670.
    [103] S. W. Wong and L. Zhu. Quadruple-mode UWB bandpass filter with improved out-of-bandrejection [J]. IEEE Microw. Wireless Compon Lett,2009,19(3):152-154.
    [104] B. Y. Yao, Y. G. Zhou, Q. S. Cao and Y. C. Chen. Compact UWB bandpass filter with improvedupper-stopband performance [J]. IEEE Microw. Wireless Compon Lett,2009,19(1):27-29.
    [105] Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu and G. Conciauro. Dispersioncharacteristics of substrate integrated rectangular waveguide [J]. IEEE Microwave and WirelessComponents Letters,2002,12(9):333-335.
    [106] Dong-Yeon Kim, Lee, J.W., Lee, T.K., Choon Sik Cho. Design of SIW cavity-backedcircular-polarized antennas using two different feeding transitions [J]. IEEE Transactions onAntennas and Propagation,2007,59(4):1398-1403.
    [107] Xiaoping Chen, Wei Hong, Cui, T., Ji-xin Chen, Ke Wu. Substrate integrated waveguide (SIW)linear phase filter [J]. IEEE Microwave and Wireless Components Letters,2005,15(11):787-789.
    [108] Szydlowski L., Lamecki A., Mrozowski M. Design of Microwave Lossy Filter Based onSubstrate Integrated Waveguide (SIW)[J]. IEEE Microwave and Wireless Components Letters,2011,21(5):249-251.
    [109] Dominic Deslandes, Ke Wu. Integrated Microstrip and Rectangular Waveguide in Planar Form[J]. IEEE Microwave and Wireless Components Letters,2001,11(2):68-70.
    [110] Qiao-Li Zhang, Wen-Yan Yin, Sailing He and Lin-Sheng Wu. Compact Substrate IntegratedWaveguide (SIW) Bandpass Filter With Complementary Split-Ring Resonators (CSRRs)[J].IEEE Microwave and Wireless Components Letters,2010,20(8):426-428.
    [111] Lin-Sheng Wu, Xi-Lang Zhou, Qi-Fu Wei, and Wen-Yan Yin. An Extended Doublet Substrateintegratedwaveguide (SIW) Bandpass filter with a Complementary Split Ring Resonator(CSRR)[J]. IEEE Microwave and Wireless Components Letters,2009,19(12):777-779.
    [112] Yuan Dan Dong, Wei Hong, Zhen Qi Kuai, Ji Xin Chen. Analysis of planar ultra-widebandantennas with on-ground slot band-notched structures [J]. IEEE Transactions on Antennas andPropagation,2009,57(7):1886-1893.
    [113] Saou-Wen Su, Kin-Lu Wong, Chia-Lun Tang. Band-notched ultra-wideband planar-monopoleantenna [J]. Microwave and Optical Technology Letters,2005,44(3):217-219.
    [114] Reza Zaker, Changiz Ghobadi, Javad Nourinia. Bandwidth enhancement of novel compactsingle and dual band-notched printed monopole antenna with a pair of L-shaped slots [J]. IEEETransactions on Antennas and Propagation,2009,57(12):3978-3983.
    [115] Wang-Sang Lee, Ki-Jin Kim, Dong-Zo Kim, Jong-Won Yu. Compact frequency-notchedwideband planar monopole antenna with a L-shape ground plane [J]. Microwave and OpticalTechnology Letters,2005,46(6):563-566.
    [116] Nakchung Choi, Changwon Jung, Joonho Byun, Frances J. Harackiewicz, Myun-Joo Park.Compact UWB antenna with I-shaped band-notch parasitic element for laptop applications [J].IEEE Antennas and Wireless Propagation Letters,2009,8:580-582.
    [117] Xin Zhang, Wei Wu, Ze-Hong Yan, Jun-Bo Jiang, Yue Song. Design of CPW-fed monopoleUWB antenna with a novel notched ground [J]. Microwave and Optical Technology Letters,2009,51(1):88-91.
    [118] Fangfang Fan, Zehong Yan, Tianling Zhang, Yue Song. Novel dual band-notchedultra-wideband antenna [J]. Microwave and Optical Technology Letters,2009,51(12):2973-2976.
    [119] Shun-Shi Zhong, Xian-Ling Liang, and Wei Wang. Compact Elliptical Monopole Antenna withImpedance Bandwidth in Excess of21:1[J]. IEEE Transactions on Antennas and Propagation,2007,55(11):3978-3983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700