移变双基地SAR特性与成像方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双/多基地SAR的发、收平台分置,能够实现比单基地SAR更多的功能,在高分辨率大测绘带成像、InSAR、GMTI等应用领域具有更为优越的性能和更强的灵活性。从双基地SAR的发展来看,具有一般意义双基特性的SAR系统(General bi-static SAR)的发、收运动矢量可以不同,比当前的平行等速双基地SAR更为灵活、可实现更多的功能,是未来双基地SAR发展的重要方向之一。但由于发、收速度矢量的方向和大小都可能不同,系统将具有方位移变特性,给系统实现和成像带来了新的问题,这些问题已成为近几年双基地SAR领域研究的热点。
     本文将平行等速双基地SAR推广至非平行非等速的情况,以发、收速度矢量不同的双基地SAR为对象,研究了其特点和成像方法,这些研究成果可以应用到具有移变特性的一般双基SAR成像中。
     第二章研究了一般双基地SAR的移变特性问题。从其空间几何模型和信号模型出发,分析了双基斜距历程及其方位空变特性,认为发、收速度矢量不同造成双基地SAR对不同方位目标成像几何的差异是造成信号方位空变的原因。然后根据分析结果推导了移变双基地SAR的多普勒参数和空间分辨率的计算公式,并分析了以上参数的空变特性,发现发、收速度比的变化对参数空变量的影响较大。
     第三章建立了一种新的移变双基地SAR的高精度点目标回波频域模型。首先提出了瞬时多普勒贡献比这一全新概念,通过它把双基相位历程区分为发射和接收两部分,将双基中的“双根号和”问题转化为两个可直接应用驻相原理的单基问题。然后在此基础上建立了一种新的点目标回波频域模型,并与当前已有的几种频域模型进行了分析比较。结果表明,本建模方法物理意义明确,所得模型同时具有高精度、广泛适用性以及形式比较简洁的优势。点目标回波频域模型的建立为研究频域成像算法奠定了基础。
     第四章基于前一章建立的高精度频域模型提出了一种移变双基地SAR的频率域Chirp-Z成像算法。通过对频域模型空变特性的分析,发现场景回波二维频谱具有尺度傅立叶变换特性,据此提出了应用两次逆Chirp-Z变换分别校正距离向和方位向的尺度及平移因子的成像方法,解决了移变双基地SAR成像中的二维空变问题。该算法只用到了傅立叶变换和复数相乘,是一种高效率的成像算法。
     第五章研究了“发、收速度矢量不同”的典型实例-星机SAR成像相关的问题。分析了滑动聚束模式下发、收平台及目标间的几何特性与信号特点,所得结果为星机双基地SAR的参数选择和系统实现提供了依据。然后用所建立的成像方法对星机SAR进行了仿真成像,实验结果验证了模型和算法的有效性。
     第六章基于本文频域模型的广泛适用性,解决了已有平行等速双基地SAR研究中在大双基角情况下频域模型精度不高的问题。并建立了适于大双基角、大斜视平行等速双基地SAR的波数域成像算法。推导了小斜视情况下高效率的双基CS成像算法。本文的模型和成像方法对进一步研究大斜视、大双基角SAR成像有重要的参考价值。
With separation of transmitter and receiver, bi- and multi-static synthetic aperture radar (SAR) could provide more abilities and more performance, such as resolution improvement, extended mapping swath, elevation information acquirement and moving target detection, and so on, than the mono-static SAR system. The general Bi-SAR system, which has different velocities of transmitter and receiver, is the heading of development in the future because of its flexibilities and more abilities. However, the new system is azimuth variant. And the new radar imaging theories with regard to the new system receives increasing interest in the past few years.
     This thesis focuses on signal processing theories for general bi-static SAR system which is azimuth variant with different velocities of transmitter and receiver, with respect to system characteristic and general bi-static SAR imaging.
     Elementary problems for general bi-static SAR imaging, such as signal model and characteristic of echo, are studied in Chapter 2. Based on the study of movement of transmitter and receiver, the changing travel-distance of electromagnetic wave and its azimuth variance are analyzed. Then the calculation of Doppler centric frequency and Doppler FM rate of general bi-static are given and their azimuth variance is analyzed. These are the basis of the following work.
     The two-Dimensional point target spectrum for general bi-static SAR is derived in Chapter 3. The instantaneous Doppler contribution ratio is proposed to represent the difference between the instantaneous Doppler contributions of transmitter and receiver. By this, the problem of double square roots included in bi-static phase is reduced to solving two individual weighted stationary phase equations. Then the two- Dimensional spectrum is obtained by using the stationary phase principle and Taylor series expansion for general bi-static SAR. The derived spectrum is also compared with the existing ones for general bi-static SAR. The analysis shows that our spectrum has the better precision, more applicability and more concision comprehensively. It will be useful for developing efficient bi-static algorithms operating in the two-dimensional frequency or the range Doppler domains.
     The general bi-static SAR focusing algorithms are studied in Chapter 4. Firstly the two-dimensional special variance of the spectrum is analyzed. Then, on the trait that the spectrum could be regard as the scaled Fourier transform of the echo, the Chirp-Z algorithm is proposed for general bi-static SAR. It used inverse Chirp-Z transform twice to solve the problem of range and azimuth variance for general bi- static SAR. Only the Fourier transform and multiplication of complex number are used, so the Chirp-Z algorithm is an efficient imaging method for general bi-static SAR.
     Spaceborne/airborne hybrid bi-SAR system characteristics and imaging method are studied in Chapter 5. For sliding spot mode the spatial relationship of transmitter, receiver and targets is analyzed, echo of the target is modeled for hybrid bi-SAR and the Doppler parameters are derived. The results are basis of the hybrid bi-SAR system implementation. For hybrid bi-SAR imaging the proposed algorithm is applied. It is verified to work well in the case of spaceborne/airborne hybrid bi-SAR by simulation results.
     Azimuth invariance SAR imaging is studied in Chapter 6. For high squint and bi-static angle SAR it is difficult to obtain a precise spectrum of echo, which leads to difficulty in setting up effective algorithm. The proposed spectrum is applied and the RMA algorithm is proposed for high squint and bi-static angle SAR. The simulation results show that it work well in the case of high squint and bi-static angle SAR. For low squint bi-static SAR the CS algorithm is proposed and verified by simulation.
引文
[1] M. I. Skolnik.王军等译.雷达手册[M].北京:电子工业出版社,2003.
    [2] W. G. Carrara, R. S. Goodman, R. M. Majewski. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms [M]. Boston: Artech House, 1995.
    [3] G. Franceschetti, R. Lanari. Synthetic Aperture Radar Processing [M]. Boca Raton London New York Washington, D.C.: CRC Press.
    [4] M. Soumekh. Synthetic Aperture Radar Signal Processing with MATLAB Algorithems [M]. John Wiley & Sons Inc, 1999.
    [5] M. Soumekh. Fourier Array Imaging [M]. Prentice Hall Inc, 1994.
    [6]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社, 1989.
    [7]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社, 1999.
    [8]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社, 2001.
    [9]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社, 2004.
    [10]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [11] N. Wllis. Bistatic Radar [M]. Boston: Artech House, 1991.
    [12] Y. S. Hsu and D. C. Loreti. Spaceborne bistatic radar– an overview [J]. IEE Proc., Radar Sonar Navig., 1986, 133(7): 642-648.
    [13] G. Krieger and A. Moreira. Spceborne bi- and multistatic SAR: potential and challenges [J]. IEE Proc.-Radar Sonar Navig., 2006, 153(3): 184-198.
    [14]汤子跃,张守融.双站合成孔径雷达系统原理[M].北京:科学出版社, 2003.
    [15] A. Moccia, G. Salzillo, M. D’errico, et al. Performance of Spaceborne Bistatic Synthetic Aperture Radar [J]. IEEE Trans. on Aeros. and Electro. Syst., 2005, 41(4): 1383-1395.
    [16] J. Mittermayer, R. Lord and E. Borner. Sliding Spotlight SAR Processing for TerraSAR-X using a New Formulation of the Extended Chirp Scaling Algorithm [C]. International Geoscience and Remote Sensing Symposium (IGARSS), v 3, p 1462-1464, 2003.
    [17] Y. Sharay and U. Naftaly. TECSAR: design considerations and programme status [J]. IEE Proc.-Radar Sonar Navig., 2006, 153(2): 117-121.
    [18] W. Keydel. Perspectives and Visions for Future SAR Systems[J]. IEE Proc. Radar Sonar Navig., 2003, 150(3): 97-103.
    [19]何煦.非合作星地双基地SAR成像算法及相关技术研究[D].成都:电子科技大学,2008.
    [20] O. Loffeld, H. Nies, V. Peters and S. Knedlik. Models and Useful Relations for Bistatic SAR Processing [J]. IEEE Trans. on GRS. 2004, 42(10): 2031-2038.
    [21] G. Guttrich. Wide Area Surveillance Concepts Based on Gessynchrorous Illumination and Bistatic unmanned Airborne Vehicles or Satellite Reception [C].Edinburgh: IEEE National Radar Conf. 1997. IEEE Press, 1997: 126-131.
    [22]张直中.双基地合成孔径雷达[J].现代雷达, 2005, 27(1): 1-4.
    [23] I. Walterscheid, J. Klare, A. R. Brenner, et al. Challenges of a Bistatic Spaceborne/Airborne SAR Experimnet [C].
    [24]杨永红.星机双基地SAR成像机理与算法研究[D].成都:电子科技大学, 2008.
    [25] G. Krieger, H. Fiedler, D. Hounam, and A. Moreira. Analysis of System Concepts for Bi- and Multi-Static SAR Missions[C]. 2003.
    [26] J. Balke. Bistatic Forward-looking Synthetic Aperture Radar[C]. Radar2004.
    [27] K. Knaell. Three-dimensional SAR from Curvilinear Apertures[C]. Proceedings of the 1996 IEEE National Radar Conference. Ann Arbor, Michigan, 1996: 220-225.
    [28] J. Li, Z. Bi, Z. Liu, et al. Using Curvilinear SAR for Three-Dimensional Target Feature Extraction[J]. IEEE Proc. Radar Sonar Navig., 1997, 144(5): 275-283.
    [29] T. Isemia, V. Pascazio, R. Piem, and G. Schirinzi. Synthetic Aperture Radar Imaging from Phase Corrupted Data[C]. IEE Proceedings-Radar Sonar Navigation. 143, 1996: 268-274.
    [30] A. Das and R. Cobb. TechSat 21- Space Missions Using Collaborting Constellations of Satellites[C]. Logan Utah, Proceeding of the 12th Annual AIAA/USU Conference on Small Satellites, 1998.
    [31] Cyrus D. Jilla. A Multiobjective, Multidisciplinary Design Optimization Methodology for the Conceptual Design of Distributed Satellite Systems. Doctoral Thesis, Department of Aeronautics Astronautics, Massachusettes Institute of Technology, 2002
    [32] M. Martin, P. Klupar, S. Kilberg, J. Winter. Techsat21 and Revolutionizing Space Missions using Microsatellites[C]. 15th American Institute of Aeronautics and Astronautics Conference on Small Satellites, Utah, 2001.
    [33] D. Massonnet. Capabilities and Limitations of the Interferometric Cartwheel [J]. IEEE Trans. on Geoscience and Remote Sensing, 2001, 39(3): 506-520.
    [34] G. Kreiger, M. Wendler. Comparison of the Interferometric Performance for Spaceborne Parasitic SAR Configurations [C]. EUSAR 2002. Berlin: VDE VERLAG GMBH, 2002: 467-470.
    [35] D. Massonnet. The interferometric cartwheel: a constellation of passive satellites to produce radar images to be coherently combined [J]. Int. J. Remote Sensing, 2001, 22(12): 2413-2430.
    [36] H. Fiedler, G. Krieger, F. Jochim, M. Kirschner, A. Moreira. Analysis of Bistatic Configurations for Spaceborne SAR Interferometry [C]. EUSAR’2002, Cologne, Germany. 2002: 29-32.
    [37] H. Fiedler, G. Krieger, F. Jochim, M. Kirschner, A. Moreira. Analysis of satellite configurations for spaceborne SAR Interferometry [C]. International Symposium of Formation Flying: Missions & technologies, Toulouse, October 2002.
    [38] G. Yates, A. M. Horne, A. P. Blake, R. Middleton, and D. B. Andre. Bistatic SAR image formation [C], In Proc. EUSAR2004, Ulm, Germany, 2004, pp: 581-584.
    [39] M. Wendler, G. Krieger, R. Horn, B. Gabler, and P. D. Fernandez. Results of a bistatic airborne SAR experiment [C]. In Proc. Int. Radar Symp., Dresden, Germany, 2003: 247-253.
    [40] Marc Rodriguez-Cassol’a, G. Krieger and M. Wendler. Azimuth-invariant Bistatic Airborne SAR Processing Strategies Based on Monostatic Algorithms [C]. IGARSS-2005. pp: 1047-1050.
    [41] M. Wendler, G. Krieger, M. Rodriguez, et al. Analysis of Bistatic Airborne SAR data [C]. In Proc. EUSAR2004, Ulm, Germany, May 2004,
    [42] H. Cantalloube, M. Wendler, V. GirouX, et al. Challenges in SAR processing for airborne bistatic acquisitions [C]. In Proc. EUSAR2004, Ulm, Germany, May 2004: 577-580.
    [43] I. Walterscheid, A. Brenner, and J. Ender. Geometry and system aspects for a bistatic airborne SAR experiment [C]. In Proc. EUSAR2004, Ulm, Germany, May 2004: 567-570.
    [44] J. Ender, I. Walterscheid, and A. Brenner. New aspects of bistatic SAR: Processing and Experiments [C]. In Proc. IGARSS, Anchorage, AK, 2004: 1758-1762.
    [45] I. Walterscheid, J. Ender, A. Brenner, and O. Loffeld. Bistatic SAR Processing and Experiments [J]. IEEE Trans. on GRS, 2006, 44(10): 2710-2717.
    [46] J. Klare, I. Walterscheid, A. Brenner, and J. Ender. Evaluation and optimization of configurations for a hybrid SAR experiment between TerraSAR-X and PAMIR [C], In IGARSS2006, Denver, Colorardo, USA, August 2006.
    [47] T. Espeter, I. Walterscheid, J. Klare, J. Ender. Synchronization techniques for the bistatic spaceborne/airborne SAR experiment with TerraSAR-X and PAMIR [C]. International Geoscience and Remote Sensing Symposium (IGARSS), 2007: 2160-2163.
    [48] I. Walterscheid, J. Ender, J. Klare, A. Brenner, O. Loffeld. Bistatic image processing for a hybrid SAR experiment between TerraSAR-X and PAMIR [C]. International Geoscience and Remote Sensing Symposium (IGARSS), 2006: 1934-1937.
    [49] R. Marc, B. Stefan, G. Krieger, A. Nottensteiner, el. Bistatic spaceborne-airborne experiment TerraSAR-X/F-SAR: data processing and results [C]. International Geoscience and Remote Sensing Symposium (IGARSS), 2008: III451-III454.
    [50] M. Zink, G. Krieger, H. Fiedler, A. Moreira. The TanDEM-X mission: Overview and status [C]. International Geoscience and Remote Sensing Symposium (IGARSS), 2007: 3944-3947.
    [51] M. Zink, G. Krieger, H. Fiedler, el. The TanDem-X mission [C]. European Space Agency, (Special Publication) ESA SP, n SP-636, July 2007, Proceedings ofEnvisat Symposium 2007.
    [52] G. Krieger, A. Moreira, H. Fiedler, el. Tandem-x: A satellite formation for high resolution SAR interferometry [C]. European Space Agency, (Special Publication) ESA SP, n 610, February 2006, Proceedings of Fringe 2005 Workshop.
    [53] G. Krieger, A. Moreira, H. Fiedler, el. TanDEM-X: A satellite formation for high-resolution SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3317-3340.
    [54] Jesus Sanz-Marcos et al. A Subaperture Rang-Doppler Processor for Bistatic Fixed Receiver SAR [C]. Proceedings of EuSAR, 2006.
    [55] Gong Zhenqiang, Zhang Xiaoling and Tian Zhong. Automobile-Based Bistatic SAR Processing and Experimental Results.
    [56] Xian Li, Xiong Jintao, Huang Yulin and Yang Jianyu. Research on Airborne Bistatic SAR Squint Imaging Mode Algorithm and Experiment Data Processing [C]. APSAR 2007.
    [57] Chen Juan, Xiong Jintao, Huang Yulin and Yang Jianyu. Research on a Novel Backprojection Algorithm for Stripmap Bistatic SAR Imaging [C]. APSAR 2007.
    [58] Yang Liu En, Wang Jian Guo and Xu San Yuan. Bistatic SAR Imaging Algorithm Based on Phase-tracking [C]. APSAR 2007.
    [59] Shi Jun, Zhang Xiaoling, Yang Jianyu and Yang Haiguang. A New Bi-SAR TR Relative Radical Speed Estimation Method Using Nadir Echo [C]. APSAR 2007, Huangshan, China, 2007: 207-210.
    [60] D. D’Aria, A. Monti Guarnieri, F. Rocca. Focusing Bistatic Synthetic Aperture Radar Using Dip Move Out [J]. IEEE Trans. on GRS., 2004, 42(7): 1362-1376.
    [61]黄海风,梁甸农.一种新的星载双站SAR斜视等效距离模型[J].电子学报, 2005, 33(12):2209-2212.
    [62] J. Ender. Signal Theoretical Aspects of Bistatic SAR [C]. IGARSS’2003, 2003: 1438-1441.
    [63] J. Ender. A Step to Bistatic SAR Processing [C]. EUSAR’2004, 2004: 359-364.
    [64] R. Bamler and E. Boerner. On the Use of Numerically Computed Transfer Function for Processing of Data from Bistatic SARs and High Squint Orbital SARs [C]. IGARSS’05, Seoul Korea, 2005: 1051-1055.
    [65] Y. L. Neo, F. Wong, and I. G. Cumming. A Two-Dimensional Spectrum for Bistatic SAR Processing Using Series Reversion [J]. IEEE GRS. Letters, 2007, 4(1): 93-96.
    [66] R. Wang, O. Loffeld, Qurat Ul-Ann, et al. A Bistatic Point Target Reference Spectrum for General Bistatic SAR Processing [J]. IEEE GRS. Letters. 2008, 5(3): 517-521.
    [67]张振华,保铮,邢孟道,井伟.同航线双基合成孔径雷达成像的频域分析[J].自然科学进展, 2007, 17(6): 809-816.
    [68]李燕平,张振华,邢孟道,保铮.星机双基地SAR的目标二维频谱计算[J].自然科学进展, 2007, 17(12): 1699-1706.
    [69] Xupu Geng, H. Yan, and Y. Wang. A Two-Dimensional Spectrum Model for General Bistatic SAR [J]. IEEE Trans. on GRS., 2008, 46(8): 2216-2223.
    [70] Zhe Liu, J. Yang, X. Zhang, and Y. Pi. Frequency Domain Imaging Algorithm for Spaceborne/Airborne Hybrid Bistatic SAR [C]. IGARSS’2007, 2007: 842-845.
    [71] D. C. Munson, J. D. O’Brian, and W. K. Jenkins. A Tomographic Formulation of Splotlight Mode Synthetic Aperture Radar [J]. Proc. Of the IEEE, 1983, Vol.71, pp: 917-925.
    [72] C. V. Jakowatz, D. E. Wahl, P. H. Eichel, et al. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach [M]. Boston, MA, Kluwer Academic Publishers, 1996.
    [73] S. Basu, S. Xiao, D. C. Munson and Y. Bresler. An O(N2logN) Back-Projection Algorithm for SAR Image Formation [J]. Proc. of the IEEE, 2004, 42(7): 1362-1376.
    [74] S. Basu and Y. Bresler. O(N2logN) Filetered Backprojection Reconstruction Algorithm for Tomography [J]. IEEE Trans. on Image Processing, 2000, Vol.9, pp: 1760-1773.
    [75] Y. Ding and D. C. Munson. A Fast Back-Projection Algorithm for Bistatic SAR imaging [C]. In Proc. Int. Conf. on Image Processing, ICIP 2002, Vol.2, pp: 449-452.
    [76] Rigling B D, Moses R L. Polar format algorithm for bistatic SAR [J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(4): 1147-1159.
    [77] Sanz-Marcos J, Mallorqui J J. Bistatic SAR simulator and processor [C]. European Conference on Synthetic Aperture Radar, 2004, pp: 585-588.
    [78] K. Natroshvili, O. Loffeld, H. Nies, and A. Medrano Ortiz. First steps to bistatic focusing [C]. In Proc. IGARSS, Seoul, Korea, 2005, pp: 1072-1076.
    [79] O. Loffeld, K. Natroshvili, H. Niess, et al. 2D-Scaled Inverse Fourier Transformation for Bistatic SAR [C]. EUSAR’06, European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006.
    [80] K. Natroshvili, O. Loffeld, H. Niess, et al. 2D inverse scaling bistatic processing and the focused image quality measurements [C]. Geoscience and Remote Sensing Symposium, 2006: 1188-1191.
    [81] K. Natroshvili, O. Loffeld, H. Nies, et al. Focusing of General Bistatic SAR Configuration Data With 2-D Inverse Scaled FFT [J]. IEEE Trans. on GRS. 2006, 44(10): 2718-2727.
    [82] R. Wang, O. Loffeld, H. Nies, et al. Chirp-Scaling Algorithm for Bistatic SAR Data in the Constant-Offset Configuration [J]. IEEE Trans. on GRS. 2009, 47(3): 952-964.
    [83] R. Wang, O. Loffeld, H. Nies and J. Ender. Focusing Spaceborne/Airborne Hybrid Bistatic SAR Data Using Wavenumber-Domain Algorithm [J]. IEEE Trans. onGRS. 2009, 47(7): 2275-2283.
    [84] J. Ding, O. Loffeld, S. Knedlik, et al. Focusing Bistatic SAR Data in the Wavenumber Domain Using Linearized Weighted LBF. 2009.
    [85] F. Wong, I. Cumming and Y. Neo. Focusing Bistatic SAR Data Using the Nonlinear Chirp Scaling Algorithm [J]. IEEE Trans. on GRS. 2008, 46(9): 2493-2505.
    [86] B. Liu, T. Wang, Q. Wu and Z. Bao. Bistatic SAR Data Focusing Using an Omega-K Algorithm Based on Method of Series Reversion [J]. IEEE Trans. on GRS., 2009, 47(8): 2899-2912
    [87] H. Zhong and X. Liu. An Extended Nonlinear Chirp-Scaling Algorithm for Focusing Large-Baseline Azimuth-Invariant Bistatic SAR Data [J]. IEEE GRS. Letters, 2009, 6(3): 548-552.
    [88]周鹏,皮亦鸣.星机双基地SAR的两种波束同步方法[J].电子学报, 2009, 37(6): 1192-1197.
    [89]周鹏,皮亦鸣.星机双基地SAR空间几何关系与信号模型[J].遥感学报, 2008, 12(5): 750-758.
    [90] J. Shi, X. Zhang and J. Yang. Principle and Methods on Bistatic SAR Signal Processing via Time Correlation [J]. IEEE Trans. on GRS. 2008, 46(10): 3163-3178.
    [91] Z. Liu, J. Yang, X. Zhang and Y. Pi. Study on Spaceborne/Airborne Hybrid Bistatic SAR Image Formation in Frequency Domain [J]. IEEE GRS. Letters, 2008, 5(4): 578-582.
    [92]周鹏.星机双基地SAR系统总体与同步技术研究[D].成都:电子科技大学. 2008.
    [93]韩云.双基地SAR大斜视及移变模式下成像算法研究[D].成都:电子科技大学. 2009.
    [94]钱忠清.移变双基地SAR成像算法研究[D].成都:电子科技大学. 2009.
    [95] John C. Kirk. Motion Compensation for Synthetic Aperture Radar [J]. IEEE Trans. on AES. 1975, Vol. AES-11, No.3, pp: 338-349.
    [96] Joao R. Moreira. A New Method of Aircraft Motion Error Extraction from Radar Raw Data for Real Time Motion Compensation [J]. IEEE Trans. on AES. 1990, 28(4): 620-626.
    [97]曹福祥.机载合成孔径雷达运动补偿研究[D].西安:西北工业大学, 1999.
    [98]李立伟.高分辨率机载合成孔径雷达中运动补偿问题的研究[D].北京:北京航空航天大学, 1998.
    [99] Brian D. Rigling, Randolph L. Moses. Motion Measurement Errors and Autofocus in Bistatic SAR [J]. IEEE Trans. on Imaging Processing, 2006, 15(4): 1008-1016.
    [100] V. Giroux, H. Cantalloube, F. Daout, GEA. Motion Compensation for Bistatic SAR Frequency Domain Algorithm [C]. Proc. EUSAR2004, Dresden, Germany,2004.
    [101] H. Nies, O. Loffeld, K. Natroshvili. Analysis and Focusing of Bistatic Airborne SAR Data [C]. Proc. EUSAR 2004, Dresden, Germany.
    [102] H. Nies, O. Loffeld, K. Natroshvili, et al. Parameter Estimation for Bistatic Constellations [C]. IGARSS2005.
    [103] H. Nies, O. Loffeld and K. Natroshvili. A Solution for Bistatic Motion Compensation [C]. IGARSS2006. IEEE International Conference. 2006: 1204-1207.
    [104] J. C. Curlander and Robert N. McDonough. Synthetic Aperture Radar: Systems and Signal Processing [M]. New York: Wiley, 1991.
    [105] R. K. Raney. Doppler Properties of Radars in Circular Orbits [J]. Int. J. Remote Sensing, 1986, 7(9): 1153-1162.
    [106] R. K. Raney. A Comment on Doppler FM Rate [J]. Int. J. Remote Sensing, 1987, 8(7): 1091-1092.
    [107] F. K. Li, D. N. Held, J. C. Curlander. Doppler Parameter Estimation for Spaceborne Synthetic Aperture Radars [J]. IEEE Trans. on GRS, 1985, 9(5): 563-574.
    [108] J. Ender and A. R. Brenner. PAMIR: A Wideband phased array SAR/MTI System [J]. IEE Proc. Radar Sonar Navig., 2003, 150(3): 165-172.
    [109]唐禹,王岩飞,张冰尘.滑动聚束SAR成像模式研究[J].电子与信息学报, 2007, 29(1): 26-29.
    [110] G. Cardillo. On the Use of the Gradient to Determine Bistatic SAR Resolution [C]. AP-S International Symposium. 1990, Vol.2, pp: 1032-1035.
    [111] T. Zeng, M. Cherniakov and T. Long. Generalized Approach to Resolution Analysis in BiSAR [J]. IEEE Trans. on AES, 2005, 41(2): 461-473.
    [112] M. Cherniakov, T. Zeng, E. Plakidis. Ambiguity Function for Bistatic SAR and its Application in SS-BiSAR Performance Analysis [C]. International conference RADAR, 2003: 343-348.
    [113] E. Kreyszig. Advanced Engineering Mathematics [M]. John Wiley & Sons, NY, NY, 8th edition, 1999.
    [114] I. Cumming and F. Wong. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation [M]. Norwood, MA: Artech House, 2005.
    [115] R. K. Raney, A new and fundamental Fourier Transform Pair [C]. In Proc. IGARSS, Clear Lake, TX, May 1992: 106-107.
    [116] Zhang ZH, Xing MD, Ding JS, Bao Z, Focusing parallel bistatic SAR data using the analytic transfer function in wavenumber domain [J]. IEEE Trans. on GRS. 2007, 45(11): 3633-3645.
    [117] Ian G. Cumming, Frank H. Wong. Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementation [M]. Boston London: Artech House, 2004.
    [118] B. Barber. Theory of digital imaging from orbital synthetic aperture radar [J]. International Journal Remote Sensing, 1985, 6(6):1009-1057.
    [119] F. H. Wong, T. S. Yeo. New Applications of Nonlinear Chirp Scaling in SAR Data Processing [J]. IEEE Trans. on GRS. 2001, 39(5): 946-952.
    [120] L. Neo, F.H. Wong, I. G. Cumming. Bistatic SAR Processing Using Non- linear Chirp Scaling [C]. Proceedings CEOS SAR Calibration Workshop, 2004.
    [121] J. Ender, I. Walterscheid, A.R. Brenner. Bistatic SAR-Translational invariant Processing and Experimental results [J]. IEE Proceedings Radar Sonar Navig., 2006, 153(3): 177-182.
    [122] V. Giroux, H. Cantalloube, F. Daout. An Omega-k algorithm for SAR Bistatic Systems [C]. IEEE International Conference on Geoscience and Remote Sensing Symposium, 2005: 1060-1063.
    [123] I. Walterscheid, J. Ender, A. Brenner, et al. Bistatic SAR Processing Using an Omega-k Type Algorithm [C]. IEEE International Conference on Geoscience and Remote Sensing Symposium, 2005: 1064-1067.
    [124] M. D. Desai, W. K. Jenkins. Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar [J]. IEEE Trans. on Image processing, 1992, 1(4): 505-517.
    [125]程佩清.数字信号处理教程[M].北京:清华大学出版社, 2001.
    [126]李素芝,万建伟.时域离散信号处理[M].长沙:国防科技大学出版社, 1994.
    [127] Lanari R. A new method for compensation of the SAR rang cell Migration based on the Chirp-Z transform [J]. IEEE Trans. on GRS, 1995, 33(5): 1296-1299.
    [128] U. Gebhart, O. Loffeld, H. Nies, et al. Bistatic airborne/spaceborne hybrid experiment: basic considerations [J]. Proc. of SPIE Vol.5978
    [129] M. Tobin. Real Time Simultaneous SAR/MTI in a Tactical Airborne Environment [C]. Proceedings of EuSAR. 1996: 63-66.
    [130] M. Fennell, R. Wishner. Battlefield Awareness via Synthetic SAR and MTI Exploitation [J]. IEEE AES Systems Magazine, 1998, 13(2): 39-45.
    [131]何峰,梁甸农,董臻.适于大斜视角的星载双基地SAR波数域成像算法[J].电子学报, 2005, 33(6): 1011-1014.
    [132] Yanping Li, Zhenhua Zhang, Mengdao Xing, et al. Focusing General Bistatic SAR Using Analytically Computed Point Target Spectrum [C]. Asian and pacific conference on synthetic aperture radar. 2007: 638-641.
    [133] B. D. Rigling. Signal Processing Strategies for Bistatic Synthetic Aperture Radar[D]. Dept. of Electrical Engineering, Ohio State University, Columus, Ohio, September 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700