双基雷达成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双基成像雷达指收发分置的雷达成像系统。与传统的单基成像雷达系统相比,具有成本低、机动灵活、隐蔽性强等优点,是雷达成像技术的一大扩展,近年来得到了广泛的关注。本论文主要对下面两方面内容进行了研究:其一是双基合成孔径雷达(SAR,SyntheticAperture Radar)成像算法;其二是基于窄带连续波的双基雷达成像算法。论文的内容可以概括为下面四个部分:
     1.提出了三种双基SAR二维频谱算法。首先提出一种简化的四次精确传递函数(EETF4,Fourth-order Extended Exact Transfer Function)二维频谱算法,该算法首先将斜距历程四阶泰勒展开,通过求解其驻相点方程来得到较为精确的二维频谱。其次,为了得到更高精度的二维频谱,提出一种基于最佳平方逼近的二维频谱算法。在简化的EETF4二维频谱算法的基础上,利用最佳平方逼近方法使其斜距历程展开式在成像过程中误差积累最小,从而提升二维频谱精度。然后,提出一种微增量二维频谱算法,该算法在低阶驻相点已知的基础上,通过求解低阶驻相点与高阶驻相点之间的微增量来间接得到高阶驻相点的近似解,进而得到二维频谱。实际上,三阶驻相点是已知的,可以将其作为起点而得到更高阶的驻相点。微增量最大的特点是具有可扩展性,能够通过提高所求驻相点的阶数来提高二维频谱的精度。
     2.在上述二维频谱算法的基础上,对双基SAR成像处理算法进行了研究。由于上述算法得到的二维频谱结果较为复杂,难以分解。而OMEGA-K算法仅需要二维频谱的相位存在一个与其他部分分离的距离变量,无需将整个频谱作细致分解,所以在成像处理中采用了OMEGA-K算法。OMEGA-K算法的关键步骤是利用距离频率映射函数进行stolt插值,为得到距离频率映射函数在处理过程中采用了角度不变假设。为了保证算法聚焦效果,对不变区域的大小进行了分析。
     3.提出一种基于MSR二维频谱的改进的双基OMEGA-K算法。为了提升聚焦质量,在上述OMEGA-K算法的基础上,引入了斜距历程高阶项对消操作。通过此操作,降低斜距历程的残余高阶项对成像结果的影响。与传统OMEGA-K算法中二维频谱“单向”匹配回波信号相比,改进的OMEGA-K算法中二维频谱和回波信号“双向”的互相匹配。仿真实验表明,上述处理实现简单,运算量小,能够显著提升聚焦效果。在斜距历程同为二阶泰勒展开的情况下,改进的OMEGA-K算法的聚焦效果要优于常规OMEGA-K算法,而与基于三阶泰勒展开的常规OMEGA-K算法非常接近。
     4.以已有的基于窄带连续波的双基雷达频域成像算法为基础,在新的成像模型下,提出一种改进的频域算法和一种时域算法。由于回波信号在频域内仅在一个圆周上分布,因此改进的频域算法在极坐标格式下进行成像处理,而时域算法则在直角坐标系下进行成像处理。两种算法都是基于平动补偿后的转台模型进行的,虽然在不同的域内进行处理,并采用了不同的坐标系格式,但因为采用了相同的成像模型和信号形式,二者的单位冲激响应的实质相同,分辨率和峰值旁瓣比(PSLR,Peak SideLobe Ratio)也相同。本文对两种算法的单位冲激响应进行了仔细分析,得到了算法聚焦能力的量度。
Bistatic imaging radar, which can be depicted as the imaging radar system with thedifferent locations for transmitter and receiver, takes many advantages over thetraditional monostatic imaging radar system, such as low cost, flexibility, reducedvulnerability, etc.. The radar system is the significant development in the radar imagingfield, and has drawn widespread attention. This thesis considers two issues including thebistatic Synthetic Aperture Radar (SAR) imaging algorithm and bistatic radar imagingalgorithm based on the narrow band continuous wave. The main contributions of thethesis are summarized as the following four parts:
     1. There two-dimensional(2-D) spectrum algorithms for bistatic SAR are proposed.Firstly, the simplified Fourth-order Extended Exact Transfer Function (EETF4)2-Dspectrum algorithm is considered. The algorithm, first of all, handles the slant rangehistory by using the fourth-order Taylor expansion, then obtains the more precise2-Dspectrum by solving the stationary points equation. Moreover, in order to obtain thefurther precise2-D spectrum, the optimal-square-approach-based2-D spectrumalgorithm is raised. Based on the simplified EETF42-D spectrum algorithm, thisalgorithm minimizes the error accumulation of the slant history expansion in theimaging process to improve the accuracy of the2-D spectrum by exploiting the optimalsquare approach. Furthermore, Micro-increment2-D spectrum algorithm is given. Onthe basis of the known low-order stationary phase point, this method indirectly gets theapproximate solution of the high-order stationary phase point by considering themicro-increment between the low-order and high-order stationary phase point, and thenthe2-D spectrum can be obtained. In fact, the three-order stationary phase point isknown, and it can be selected as the starting point to acquire the higher-order stationaryphase point. It is noted that the biggest characteristic of the micro-increment isexpandability, and so it can improve the accuracy of the2-D spectrum by raising theorder of stationary phase point to be solved.
     2. Based on the2-D spectrum algorithms mentioned above, the bistatic SAR dataprocessing algorithm is investigated. Due to that the result obtained by exploiting thealgorithms mentioned above is rather complicated and hard to be decomposed, while theOMEGA-K algorithm only needs the range variable which is separated between thephase in2-D spectrum and the other parts rather than makes the careful decomposition in the whole spectrum, and the OMEGA-K algorithm is exploited in the imagingprocess. The key process in the OMEGA-K algorithm is the stolt interpolation by usingthe range frequency mapping function, and employs the angle invariance hypothesis inthe process to acquire the range frequency mapping function. In order to guarantee thefocusing quality of the algorithm, the size of the invariance region is analyzed.
     3. The modified bistatic OMEGA-K algorithm based on MSR2-D spectrum isgiven. Based on the mentioned-above OMEGA-K algorithm, the higher-ordercancellation operation of slant range history is introduced to improve the focusingquality. By using this operation, the effect of the residual higher-order term of the slantrange history on the imaging result can be reduced. Compared to the2-D spectrummatches the echoes in one way in the traditional OMEGA-K algorithm, they match intwo way in the modified OMEGA-K algorithm. The simulation shows that the methodabove implements simply, has low computational complexity, and improves thefocusing effect significantly. In the case of illustrating the slant range history as thesecond-order Taylor expansion, the focusing effect of the modified OMEGA-Kalgorithm overmatches the ordinary methods, while approximates that of the ordinaryOMEGA-K algorithm based on the third-order Taylor expansion very closely.
     4. Based on the present bistatic radar frequency domain imaging algorithm in thecase of narrow band continuous wave, focusing on the new imaging model, a modifiedfrequency domain algorithm and a time domain algorithm are proposed, which arebased on the after-motion-compensation turntable model. Due to the echoes onlydistributes in one circle in the frequency domain, and then the modified frequency-domain algorithm handles the imaging process in the polar coordinate format, while thetime-domain considers it in the rectangular system. Although they are processed in thedifferent domain and coordinate system, the unit impulse response is identicalessentially, and the same in the resolution and the peak sidelobe ratio (PSLR) because ofexploiting the same imaging model and the signal form. The measurements of the effectcapacity of the two algorithms are obtained by analyzing the unit impulse response ofthe two algorithms carefully.
引文
[1]丁鹭飞,狄富录.雷达原理[M].西安电子科技大学出版社,西安,2002.
    [2] M A Richards. Fundamentals of Radar Signal Processing [M]. McGraw-HillCompanies, Inc,2005.
    [3]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [4] M I Skolnik.王军等译.雷达手册[M].北京:电子工业出版社,2003.
    [5] W G Carrara, R S Goodman, R M. Majewski. Spotlight Synthetic Aperture Radar:Signal Proeessing Algorithms [M]. Boston: Artech House,1995.
    [6] G Franceschetti, R Lanari. Synthetic Aperture Radar Proeessing[M].Boca RatonLondon NewYorkWashington, D.C.:CRC Press.
    [7] I G Cumming, and F H Wong. Digital Processing of Synthetic Aperture RadarData: Algorithms and Implementation [M]. Norwood, MA: Artech House,2005.
    [8] M Soumekh. Synthetic Aperture Radar Signal Processing with MATLABAlgorithm [M]. John Wiley&Sons Inc,1999.
    [9] M Soumekh. Fourier Array Imaging [M]. Prentice Hall Inc,1994.
    [10]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社,1989.
    [11]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [12]魏钟锉.合成孔径雷达卫星[M].北京:科学出版社,2001.
    [13]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社,2004.
    [14] R Werninghaus and S Buckreuss. The TerraSAR-X Mission and System Design[J]. IEEE Trans. Geosci. Remote Sens.,2010,48(2):606-614.
    [15]安道详.高分辨率SAR成像处理技术研究[D].长沙:国防科学技术大学博士毕业论文,2011.
    [16] M Cherniakov, A Moccia, M D’Errico, et al. Bistatic radar:Emerging Technology[M]. John Wiley&Sons Ltd,2008:248-313.
    [17]汤子跃,张守融.双站合成孔径雷达系统原理[M].北京:科学出版社,2003.
    [18] Y L Neo. Digital processing algorithms for bistatic synthetic aperture radar data.[D]. Dept. Electr. Comput. Eng., Univ. British Columbia, Vancouver,BC, Canada,2007.
    [19] C H Gierull. Bistatic synthetic aperture radar. Defence R&D Canada, Ottawa,Tech. Rep. DRDC-OTTAWA-TR-2004-190. http://cradpdf.drdc.gc.ca/PDFS/unc34/p523308.pdf,2004.
    [20] G Krieger, and A Moreira. Multistatic SAR satellite formations: potentials andchallenges [C]. In Proc. Int. Geoscieence and Remote Sensing Symp. IGARSS’05,Seoul, Korea,2005:2680-2684.
    [21]王大海,王俊.单发多收模式下无源雷达成像研究[J].电子学报,2006,34(6):1138-1141.
    [22] M Soumekh. Bistatic synthetic aperture radar inversion with application indynamic object imaging [J]. IEEE Trans. on Signal Processing,1991,39(9):2044-2055.
    [23] S N Maden, E L Christensen, et al. The Danish SAR system: Design and InitialTests [J]. IEEE Trans. Geosc. and Remote Sens.,1991,29(3):417-426.
    [24] G Canavan, D Thompson, and I Bekey. Distributed Space Systems[C]. in NewWorld Vistas, Air and Space Power for the21st Century: US Air Force,1996.
    [25] A Das, R Cobb, and M Stallard. TechSat21:a Revolutionary Concept inDistributed Space Based Sensing[C]. in AIAA Defense and Civil Space ProgramsConf.Exhibit Huntsville,AL,1998, AIAA98-5255.
    [26] M Martin and J Michael. Distributed Satellite Missions and Technologies–TheTechSat21Program[C]. inAIAA Space Technology Conference&Expostion. vol.AIAA-99-4479, Albugquerque, NM,1999, A99-42052.
    [27] D Massonnet.Capabilities and limitations of the interferometric cartwheel [J].IEEE Trans. Geosc. and Remote Sens.,2001,39(3):506-520.
    [28] J Mittermayer, G Krieger, A Moreira, and M Wendler. Interferometricperformance estimation for the interferometric Cartwheel in combination with atransmitting SAR-satellite[C]. in Geoscience and Remote Sensing Symposium,2001. IGARSS'01. IEEE2001International,2001,2955-2957.
    [29] H Fiedler, G Krieger, and F Jochim. Analysis of Bistatic Configurations forSpaceborne SAR Interferometry[C]. in the European Conference on SyntheticAperture Radar, EUSAR2002, Cologne,Germany,2002,29-33.
    [30] G Krieger, A Moreira, H Fiedler, et al. TanDEM-X:A Satellite Formation forHigh-Resolution SAR Interferometry [J]. IEEE Trans. Geosc. and Remote Sens.,2007,45(11),3317-3341.
    [31] G Yates, A M Horne, A P Blake,et al. Bistatic SAR image formation[C]. in theEuropean Conference on Synthetic Aperture Radar, EUSAR2004Ulm, Germany,2004,581-584.
    [32] M Wendler, G Krieger,R Horn,et al. Results of a bistatic airborne SAR experiment[C]. in the International Radar Symposium,IRS2003Dresden, Germany,2003,247-253.
    [33] M Wendler, G Krieger, and M Rodriguez. Analysis of Bistatic Airborne SARdata[C]. in the European Conference on Synthetic Aperture Radar, EUSAR2004,Ulm, Germany,2004.
    [34] H Cantalloube, M Wendler, V Giroux,et al. Challenges in SAR processing forairborne bistatic acquisitions [C]. in theEuropean Conference on SyntheticAperture Radar, EUSAR2004Ulm, Germany,2004,577-580.
    [35] I Walterscheid, A Brenner, and J Ender. Geometry and system aspects for abistaticairborne SAR-experiment[C].in the European Conference on Synthetic ApertureRadar, EUSAR2004Ulm, Germany,2004,567-570.
    [36] I Walterscheid, J H G.Ender, A R Brenner, et al. Bistatic SAR Processing andExperiments [J]. IEEE Trans. Geosc. and Remote Sens.,2006,44(10):2710-2717.
    [37] J Klare, I Walterscheid, A R Brenner, et al. Evaluation and Optimisation ofConfigurations of a Hybrid Bistatic SAR Experiment Between TerraSAR-X andPAMIR[C]. in Geoscience and Remote Sensing Symposium,2006. IGARSS2006.IEEE International Conference,2006,1208-1211.
    [38] M Antoniou, R Saini, and M Cherniakov.Results of a Space-Surface Bistatic SARImage Formation Algorithm[J]. IEEE Trans. Geosc. and Remote Sens.,2006,45(11):3359-3371.
    [39] J Balke. Field Test Of Bistatic Forward-looking Synthetic Aperture Radar [C].IEEE International Radar Conference2005,424-429.
    [40] S Duque, P L Dekker, J J Mallorqui. Single-Pass Bistatic SAR InterferometryUsing Fixed-Receiver Configurations: Theory and Experimental Validation [J].IEEE Trans. Geosc. and Remote Sens.,2010,48(6):2740-2749.
    [41]张直中.双基地合成孔径雷达[J].现代雷达,2005,27(1):1-6.
    [42] Z Liu, J Yang, and X Zhang, et al.Study on Spaceborne/Airborne Hybrid BistaticSAR Image Formation in Frequency Domain [J]. IEEE Geosci. Remote. Sens.Lett.,2008,5(4):578-582.
    [43] J Ding, Z Zhang, M.Xing, et al. A New Look at the Bistatic-to-MonostaticConversion for Tandem SAR Image Formation[J]. IEEE Geosci. Remote. Sens.Lett.,2008,5(3):392-395.
    [44] Z Li, Z Bao, H Li, et al. Image autocoregistration and InSAR interferogramestimation using joint subspace projection [J]. IEEE Trans. Geosc. and RemoteSens.,2006,44(1):288-297.
    [45]张振华,保铮,邢孟道,等.同航线双基合成孔径雷达成像的频域分析[J].自然科学进展,2007,17(6):809-816.
    [46] Z Zhang, M Xing, J Ding, and Z Bao. Focusing Parallel Bistatic SAR Data Usingthe Analytic Transfer Function in theWavenumber Domain[J]. IEEE Trans. Geosc.and Remote Sens.,2007,45(11):3633-3645.
    [47] Y Wu. Investigation of Passive Rada r Imaging Using Wigner-Ville Distribution[D].(Master Dissertation) Urbana: University of Illinois,2001.
    [48] B Barber. Theory of digital imaging from orbital synthetic aperture radar[J]. Int. J.Remote Sens.,1985,6(6),1009-1057.
    [49] J Shi, X Zhang, and J Yang. Principle and Methods on Bistatic SAR SignalProcess-ing via Time Correlation[J]. IEEE Trans. Geosc. and Remote Sens.,2008,46(10):3163-3178.
    [50] L M H. Ulander, P O Fr lind, A Gustavsson, et al. Fast factorized back-projectionfor bistatic SAR processing [C]. in Proc. IEEE EUSAR2010, Aachen, Germany,June2010.
    [51] Y Ding, and D C Munson. A fast back-projection algorithm for bistatic SARimaging [C]. in Image Processing.2002.Proceedings.2002InternationalConference on,2002,pp.II-449-II-452vol.2.
    [52] R Bamler, F Meyer, and W Liebhart. Processing of bistatic SAR data from quasi-stationary configurations[J]. IEEE Trans. Geosc. and Remote Sens.,2007,45(11):3350-3358.
    [53] I Walterscheid, J H G Ender, A R Brenner, and O Loffeld. Bistatic SARprocessing using an-k type algorithm [C]. in Proc. IGARSS, Seoul Korea,2005,1064-1067.
    [54] V Giroux, H Cantalloube, and F Daout. Frequency domain algorithm for bistaticSAR [C]. In Proc. EUSAR, Dresden, Germany, May2006. CD-ROM.
    [55] X Qiu, D Hu, and C Ding. An Omega-K Algorithm With Phase ErrorCompensation for Bistatic SAR of a Translational Invariant Case[J]. IEEE Trans.Geosc. and Remote Sens.,2008,46(8):2224-2232.
    [56] K Eldhuset. Spaceborne Bistatic SAR Processing Using the EETF4Algorithm [J].IEEE Geoscience and Remote Sensing Letters,2009,6(2):194-198.
    [57] H Zhong, and X Liu. A fourth-order imaging algorithm for spaceborne bistaticSAR[C]. in Proc. IGARSS, Denver, CO,2006,1196-1199.
    [58] Y Neo, F Wong, and I Cumming. A two-dimensional spectrum for bistatic SARprocessing using series reversion [J]. IEEE Geoscience and Remote SensingLetters,2007,4(1):93-96.
    [59] D D’Aria, G A Monti, and F Rocca. Focusing bistatic synthetic aperture radarusing dip move out [J]. IEEE Geoscience and Remote Sensing Letters,2004,42(7):1362-1376.
    [60] O Loffeld, H Nies, V Peters, et al. Models and useful relations for bistatic SARprocessing [J]. IEEE Geoscience and Remote Sensing Letters,2004,42(10):2031-2038.
    [61] Wang Fang, Li Xiang. A New Method of Deriving Spectrum for Bistatic SARProcessing [J]. IEEE Geoscience and Remote Sensing Letters,2010,7(3):483-486.
    [62] Wang R, Loffeld O. A bistatic point target reference spectrum for general bistaticSAR processing [J]. IEEE Geoscience and Remote Sensing Letters,2008,5(3):517-521.
    [63] Ding Jinshan, Loffeld O, Wang R. Weighted LBF for Spaceborne General BistaticSAR Processing [J]. Progress in Natural Science,2008,18(10):1271-1277.
    [64]杨科锋,梁甸农,何峰.基于等效平行轨迹距离模型的双基CS成像算法[J].信号处理,2009,25(2):228-232.
    [65]孙进平,白霞,毛士艺.双基地合成孔径雷达的扩展ETF成像算法[J].电子学报,2007,35(12):2394-2398.
    [66] R WANG, Y DENG, O LOFFELD, et al. Processing the azimuth-variantbistatic sar data by using monostatic imaging algorithms based on two-dimensional principle of stationary phase[J]. IEEE Trans Geosci Remote Sens,2011,49(10):3504-3520.
    [67]刘喆,杨建宇,张晓玲,等.星机双基地SAR二维频谱解析表达式求解方法研究[J].电子与信息学报,2008,30(9):2073-2076.
    [68] Y L Neo, F H Wong, and I G Cumming. Processing of Azimuth-Invariant BistaticSAR Data Using the Range Doppler Algorithm [J]. IEEE Trans. Geosci.RemoteSens.,2008,46(1):14-21.
    [69] B Liu, T Wang, and Z Bao. An Analytical Method of Updating the RangeDerivatives and a Simple Image Registration Method for the MSR-based RangeDoppler Algorithm [J]. IEEE Geosci. Remote Sens. Lett.,2010,7(4):831-835.
    [70]丁金闪, O Loffeld, H Nies,保铮,邢孟道.异构平台双基SAR成像的RD算法[J].电子学报,2009,37(6):1170-1174.
    [71] R Wang, O Loffeld, H Nies, et al. Chirp-Scaling Algorithm for Bistatic SAR Datain the Constant-Offset Configuration[J]. IEEE Trans. Geosc. and Remote Sens.,2009,47(3):952-964.
    [72] F Li, S Li, and Y Zhao. Focusing Azimuth-Invariant BistaticSAR Data With ChirpScaling[J]. IEEE Geosci. Remote. Sens. Lett.,2008,5(3):484-486.
    [73] F H Wong, I G Cumming, and Y L Neo. Focusing Bistatic SAR Data Using theNonlinear Chirp Scaling Algorithm[J]. IEEE Trans. Geosc. and RemoteSens.,2008,46(9):2493-2505.
    [74] H Zhong and X Liu. An Extended Nonlinear Chirp-Scaling Algorithm forFocusing Large-Baseline Azimuth-Invariant Bistatic SAR Data [J]. IEEE Geosci.Remote. Sens. Lett.,2009,6(3):548-552.
    [75]熊涛,周松,邢孟道.基于级数反演的聚束式广义双基成像算法研究[J].电子与信息学报,2010,32(4):932-936.
    [76]李燕平,张振华,邢孟道,保铮.基于级数反演和数值计算的广义双基SAR距离徙动成像算法[J].电子与信息学报,2008,30(12):2080-2084.
    [77] X Qiu, D Hu, and C Ding. An Improved NLCS Algorithm With CapabilityAnalysis for One-Stationary BiSAR [J]. IEEE Trans. Geosci. RemoteSens.,2008,46(10):3719–3186.
    [78]陈晓龙,丁赤飚,梁兴东,等.改进的接收机固定双站NLCS成像算法[J].电子与信息学报,2008,30(5):1041–1046.
    [79] B Liu, T Wang, Q Wu, and Z Bao. Bistatic SAR Data Focusing Using anOmega-K Algorithm Based on Method of Series Reversion.[J]. IEEE Trans.Geosc. and Remote Sens.,2009,47(8):2899-2912.
    [80] H S Shin, and J T Lim. Omega-k Algorithm for Airborne Spatial Invariant BistaticSpotlight SAR Imaging[J]. IEEE Trans. Geosc. and Remote Sens.,2009,47(1):238-250.
    [81] H Nies, O Loffeld, and K Natroshvili. Analysis and Focusing of Bistatic AirborneSAR Data[J]. IEEE Trans. Geosc. and Remote Sens.,2007,45(11):3342-3349.
    [82]黄源宝.机载合成孔径雷达成像算法及运动补偿的研究[D].西安:西安电子科技大学博士论文,2005.
    [83]周峰.机载SAR运动补偿和窄带干扰抑制及其单通道GMTI的研究[D]西安:西安电子科技大学博士论文,2007.
    [84]邢孟道.基于实测数据的雷达成像算法研究[D].西安:西安电子科技大学博士论文,2002.
    [85] H Nies, O Loffeld, K Natroshvili, and A M Ortiz. A Solution for Bistatic MotionCompensation[C]. in Geoscience and Remote Sensing Symposium,2006. IGARSS2006. IEEE International Conference on,2006,1204-1207.
    [86] B D Rigling, and R L Moses. Motion measurement errors and autofocus in bistaticSAR [C], IEEE Transactions on Image Processing,2006,15(4):1008-1016.
    [87] Z Zhu, Z Tang, and X Jiang. Research on Bistatic SAR Motion Compensation[C],in Radar,2006.CIE'06.International Conference on,2006,1-4.
    [88] P L Dekker, J J Mallorqui, P S Morales, and J S Marcos. Phase Synchronizationand Doppler Centroid Estimation in Fixed Receiver Bistatic SAR Systems [J].IEEE Trans. Geosc. and Remote Sens.,2008,46(11):3459-3471.
    [89] A M Ortiz, O Loffeld, H Nies, and R Wang. Second-Order Motion Compensationin Bistatic Airborne SAR based on the Windowed Fourier-Transformation [C]. inGeoscience and Remote Sensing Symposium,2008. IGARSS2008IEEEInternational,2008, III-613-III-616.
    [90]李燕平.单双基SAR成像和运动补偿研究[D].西安:西安电子科技大学博士论文,2008.
    [91] A M Ortiz, O Loffeld, H Nies, et al. Second-order motion compensation inbistatic airborne SAR based on a geometrical approach [C]. in Proc. IGARSS,Barcelona, Spain,2007,2126-2129.
    [92] V Giroux, H Cantalloube, F Daout. Motion Compensation for Bistatic SARFrequency Domain Algorithm [C]. in Proc. EUSAR, Dresden, Germany,2006:CD-ROM.
    [93] A M Ortiz, O Loffeld, R Wang, et al. Motion compensation in bistaticSAR for thehybrid experiment [C].in Proc. EUSAR, Friedrichshafen, Germany,2008:213-216.
    [94]王俊,张守宏.微弱目标积累检测的包络移动补偿方法[J].电子学报,2000,28(12):56-59.
    [95]王俊,赵洪立,张守宏,保铮.非合作连续波雷达中存在强直达波和多径杂波的运动目标检测方法[J].电子学报,2005,33(3):419-422.
    [96]王森根,王俊.基于外辐射源的运动目标成像技术[J].雷达科学与技术,2006,4(3):170-176.
    [97]胡武明,王俊.基于外辐射源的机载无源SAR成像算法[J].系统工程与电子技术,2009,31(4):804-808.
    [98]王森根,王俊.基于外辐射源的分布式无源雷达成像算法[J].西安电子科技大学学报,2006,33(6):908-910.
    [99]张馨文,王俊.基于多电视台子孔径综合的无源雷达成像算法[J].电子与信息学报,2007,29(3):528-531.
    [100]王俊,牛溢华.基于多电视台的两种无源雷达成像算法[J].系统工程与电子技术,2007,29(8):1263-1267.
    [101]李岩,王俊,张守宏.基于外辐射源的ESPRIT超分辨成像算法[J].电子与信息学报,2009,31(1):143-146.
    [102]刘玉春,王俊,杨杰,等.基于单频连续波的无源雷达成像研究[J].电子与信息学报,2013,35(5):1108-1113.
    [103]汪玲,伍少华.一种新的采用分布式孔径的无源雷达成像方法[J].电子与信息学报,2011,33(3):616-621.
    [104]张璇,汪玲.一种基于回波相关的无源合成孔径雷达成像方法[J].电子与信息学报,2012,34(6):1511-1515.
    [105]徐浩,尹治平,刘畅畅,等.基于压缩感知的稀疏无源雷达成像[J].系统工程与电子技术,2011,33(12):2623-2630.
    [106]张振华.双/多基SAR成像算法研究[D].西安:西安电子科技大学博士论文,2007.
    [107]刘玉春,王俊,李红伟.一种求解任意构型双基SAR频谱的新方法[J].西安电子科技大学学报,2012,39(3):72-79.
    [108]刘玉春,王俊,高博,等.一种任意构型双基合成孔径雷达成像算法[J].电波科学学报,2012,27(5):960-967.
    [109]刘玉春,王俊,高博,等.双基合成孔径雷达二维频谱微增量算法研究[J].电波科学学报,2013,28(1):56-62.
    [110]数学手册编写组.数学手册[M].北京:高等教育出版社.
    [111] R H Stolt. Migration by Transform [J]. Geophysics,1978,43(1),23-48.
    [112]刘玉春,王俊,王海涛,陈朝焰.基于微增量二维频谱的OMEGA-K双基SAR成像算法[J].系统工程与电子技术,2013,35(2):287-293.
    [113] Y L Neo, F H Wong, and I G Cumming. A Comparison of Point Target SpectraDerived for Bistatic SAR Processing.[J]. IEEE Trans Geosci Remote Sens,46(9):2481-2492.
    [114] R Wang, O Loffeld, H Nies and H G Ender. Focusing Spaceborne/AirborneHybrid Bistatic SARData Using Wavenumber-Domain Algorithm [J]. IEEE Trans.Geosc. and Remote Sens.,2009,47(7):2275-2283.
    [115]刘玉春,王俊,张各各.一种基于MSR二维谱的改进的OMEGA-K双基SAR成像算法[J].吉林大学学报.网络优先出版
    [116] M Antoniou, M Cherniakov, C Hu. Space-Surface Bistatic SAR image formationalgorithms[J]. IEEE Trans. Geosc. and Remote Sens.,2009,47(6):1827-1843.
    [117] M Antoniou, Z Zeng, F Liu, et al. Experimental demonstration of passive BSARimaging using navigation satellites and a fixed receiver[J]. IEEE Geosci. Remote.Sens. Lett.,2012,9(3):477-481.
    [118] J L Walker. Range-Dopple imaging of rotating objects [J]. IEEE Trans. Aerosp.Electron. Syst.,1980,16(1):23-52.
    [119] C Chen, and H C Andrews. Multifrequency imaging of radar turntable data [J].IEEE Trans. Aerosp. Electron. Syst.,1980,16(1):15-22.
    [120] G Y Delise, H Wu.Moving target imaging and trajectory computation using ISAR[J]. IEEE Trans. Aerosp. Electron. Syst.,1994,30(3):887~889.
    [121]王琨,罗琳. ISAR成像中包络对齐的幅度相关全局最优法[J].电子科学学刊,1998,20(3):369-373.
    [122]王根原,保铮.逆合成孔径雷达运动补偿中包络对齐的新方法[J].电子学报,1998,26(6):5-8.
    [123] G Wang, and Z Bao.The Minimum Entropy Critertion of Range Alignment inISAR Motion Compeasation [C]. Proceeding Conference Radar’97.Edinburgh UK,1997,14-16.
    [124] B D Steinberg. Radar imaging from a distorted array: the radio camera algorithmand experiments [J]. IEEE Trans. on Ap.1981,29(5):740-745
    [125]保铮,叶炜. ISAR运动补偿聚焦方法的改进[J].电子学报,1996,24(9):83-88.
    [126]保铮,邓文彪,杨军. ISAR成像处理中的一种运动补偿方法[J].电子学报,1992,20(6):1-6.
    [127] R Xu, Z Cao, and Y Liu. A new method of motion compensation for ISAR [C].Proc. IEEE Int. Radar Conf., Paris,1990,234-237.
    [128]毛引芳,吴一戎.以散射质心为基准的ISAR成像的运动补偿[J].电子科学学刊,1992,14(5):532-536.
    [129] L Xi, L Guo, and J Ni. Autofocusing of ISAR Imaging based on EntropyMinimization [J].IEEE Trans. Aerosp. Electron. Syst.,1999,35(4):1240-1252.
    [130] T J Kragh. Monotonic iterative algorithm for minimum-entropy autofocus [C].Adaptive Sensor Array Processing (ASAP) Workshop, Lexington, MA,2006.
    [131] M Martorella, F Berizzi, and B Haywood. Contrast maximization based techniquefor2-D ISAR autofocuing [J]. IEE Proceedings on Radar, Sonar and Navigation.2005,152(4):253-262.
    [132] R L Morrison, M N Do, and D C Munson. SAR image autofocus by sharpnessoptimization: a theoretical study [J]. Trans on IP,2007,16(9),2309-2321.
    [133] D E Wahl, P H Eichel, D C Ghiglia, et al. Phase gradient autofocus-a robust toolfor high resolution SAR phase correction [J]. IEEE Trans. Aerosp. Electron. Syst.,1994,30(3):827-835.
    [134] P Cao, M Xing, G Sun, et al. Minimum entropy via subspace for ISAR autofocus[J]. IEEE Geosci. Remote. Sens. Lett.,2010,7(1):205-209.
    [135]邬小青,朱兆达.同时运动补偿和雷达成像[J].电子学报,1991,19(l):123-125.
    [136] K K Eerland. Application of ISAR on aircraft [C]. IEEE Int. Radar Conf. Paris,1984,618-623.
    [137] D A Ausherman, A. Kozma, J L Walker, et al.Developments in radar imaging [J].IEEE Trans. Aerosp. Electron. Syst.,1984,20(4):363-399.
    [138] A W Doerry. Synthetic aperture radar processing with polar formattersubapertures [C].1994IEEE Conference on Signals, Systems and Computer,Vol.2,1994,1210-1215.
    [139] D L Mensa, S Halevy, G Wade.Coherent Doppler tomography for microwaveimaging [J]. Proc. IEEE,1983,71(2):254-261.
    [140] D C Muson, Jr., J D O'Brien, W K Jenkins. A tomographic formulation ofspotlight mode synthetic aperature radar [J]. Proc.IEEE,1983,71(8):917-925.
    [141] V C Chen, S Qian. Joint time-frequency analysis for radar Range-Dopplerimaging [J]. IEEE Trans. Aerosp. Electron. Syst.,1998,34(2):486-499.
    [142]保铮,王根原,罗琳.逆合成孔径雷达的距离—瞬时多普勒成像方法[J].电子学报,1998,26(12):79-83.
    [143] Z Bao, G Wang, and L Luo. Inverse Synthetic Aperture Radar Imaging ofManeuvering Targets [J]. Optical Engineering.1998,37(5):1582-1588.
    [144] G Lu, and Z Bao.Compensation of scatterers migration through resolut ion cell ininverse synthetic aperture radar imaging [J]. IEEE Proceeding,Radar SonarNavigate.2000,Vol.147(2),80-85.
    [145]卢光跃,保铮.基于瞬时谱估计的ISAR距离瞬时多普勒成像算法[J].西安电子科技大学学报,1998,25(5):593-597.
    [146] G Wang.Adaptive filtering approach to chirp estimation and inverse syntheticaperture radar imaging of maneuvering targets [J]. Society of Photo-OpticalInstrumentation Engineers,2003,42(1):190-199.
    [147] G Wang, and Z Bao.Inverse synthetic aperture radar imaging ofmaneuveringtargets based on chirplet decomposition [J]. Optical Engineering,1999,38(9),1534-1541.
    [148] S L Borison, S B Bowling, and K M Cuomo.Super-resolution methods forwideband radar [J]. Lincoln Laboratory Journal.1992,5(3):441-461.
    [149] R M Nuthalapati. High resolution reconstruction of SAR image [J]. IEEE Trans.Aerosp. Electron. Syst.,1992,8(2):462-472.
    [150] J W Odendaal, E Barnard, and C W I Pistorius. Two-dimensional superresolutionradar imaging using the MUSIC algorithm [J]. IEEE Trans on Antennas andPropagation,.1994,42(10):1386-1391.
    [151] S Barbarossa, L Marsili, and G Mungari.SAR super-resolution imaging by signalsubspace projection techniques [C]. Proceedings of EUSAR'96, Konigswinter,Germany.1996,267-270.
    [152] Y B Hua. High resolution imaging of continuously moving target using steppedfrequency radar [J]. Signal Processing,1994,35(1):33-40.
    [153] S R DeGraaf. SAR imaging via modern2-D spectral estimation methods [C].SPIE Proceedings on Optical Engineering in Aerospace Sensing, Orlando, FL,April,1994,36-49.
    [154] J Li, and P Stoica. An adaptive filtering approach to spectral estimation and SARimaging [J]. IEEE Trans on Signal Processing,1996,44(6):1469-1484.
    [155] J Li,and P Stoica.Efficient mixed-spectrum estimation with applications to targetfeature extraction [J]. IEEE Trans on Signal Processing,1996,44(2):281-295.
    [156] M W Tu, I J Gupta, and E K Walton. Application of maximum likelihoodestimation to radar imaging [J]. IEEE Trans on Antennas and Propagation,1997,45(1):20-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700