用户名: 密码: 验证码:
铋复合氧化物的合成及其可见光光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在利用简单温和的液相水热合成法来制备得到一系列具有规则有序纳米结构的光催化功能材料。自发现二氧化钛在经紫外光照射后,可以催化分解水以及降解有机物,光催化功能材料在解决全球面临的能源危机和废水废气等环境污染治理方面表现出的优越性能,激励了人们不断的开发和研究光催化材料,通过对制备得到的催化功能材料的结构表征与相关物理化学性质的分析,进一步深入地研究了功能材料的纳米结构对材料的性能应用方面将会产生的影响。光催化的过程能耗少,可直接利用太阳光的能源,转化为新能源或者可彻底矿化有机污染物,解决人类在能源和环境方面所面临的问题。目前关于光催化纳米材料的研究,大多数集中在二氧化钛或者二氧化钛的改性方面,但是由于TiO_2能带较宽,对可见光的响应能力差,其应用前景受到一定的限制。铋复合氧化物由于具有可见光响应性能,近年来一直受到国内外许多科研工作者们的广泛关注,制备高催化效率的光催化材料以及研究相应材料的光催化机理和影响催化效率的因素等都是人们研究的焦点。对光催化机理以及催化效率影响因素的研究,不仅有利于更好的研究开发更多的新型功能材料,还为材料的应用提供了更为广泛的空间,同时也为研究功能材料的结构与性能之间的关系提供了一个可供讨论的理想模型。在本论文中,制备的一系列铋复合氧化物都具有优越的可见光光催化性能,利用新型的双子表面活性剂辅助合成得到了m-BiVO_4的多级支晶结构;通过自组装过程,合成得到了大小均一的花状碳酸氧铋的纳米结构;为了研究结构与性能之间的影响因素,合成了系列不同形貌与表面结构的γ-Bi_2MoO_6材料,并对其结构和光催化性质进行了深入的分析;通过光催化降解染料的研究,将光催化降解有机污染物的反应从紫外光区扩展到可见光区,并为利用太阳光去除难降解的染料污物提供了一种新的途径。本论文的主要研究内容如下:
     1.在水热的条件下,通过利用十二烷基二苯醚二磺酸钠阴离子双子表面活性剂对金属离子的螯合作用,制备得到了具有多级分枝结构的单斜相钒酸铋枝晶。通过不同反应时间段所得的中间产物的物相和结构分析,观察到了单斜相钒酸铋多级分权结构的生长过程,双子表活剂的螯合作用控制了晶体的生长方向和生长速率,由此推测出了多级支晶机构的可能的生长机理。通过在可见光照射下,利用所得的枝晶结构钒酸铋材料作为光催化剂,降解有机染料罗丹明B溶液的光催化实验,得到的实验结果表明了枝晶结构的单斜相钒酸铋比一般块材具有更为优越的光催化性能,是具有应用前景的可见光光催化功能材料。利用双子表面活性剂等多官能团分子的螯合作用,辅助合成得到多级结构的方法,也为其他材料的多级支晶结构的制备提供了一种可行的思路。
     2.根据碳酸氧铋的晶体结构的剖析,首次提出了具有层状结构的碳酸氧铋材料作为光催化剂的潜在可能性。通过柠檬酸根络合金属铋离子生成溶胶-凝胶的前驱液,再经过调节前驱液的pH值,改变反应体系的温度等制备得到了具有不同纳米结构的碳酸氧铋材料。由不同时间段的中间产物的对比分析实验,推测出了不同纳米结构的生长机理。在实验室中,通过利用不同的碳酸氧铋纳米结构作为光催化剂,在可见光照射下降解罗丹明B溶液的光催化实验,表明了碳酸氧铋材料确实是具有可见光响应的功能材料。其中花球状的碳酸氧铋纳米结构,表现出了最高的催化效率,这是由于组成花球的片状基本单元结构所暴露出的{001}晶面具有很高的反应活性,在此晶面上由于Bi-O多面体的极大程度的扭曲变形,使得Bi-O键非常不稳定,从而促进了花球状纳米结构的光催化活性能力。光催化实验结果表明,优越的光催化活性是高比表面积与特殊晶面裸露的协同作用,即具有较高的有效的比表面积的功能材料对应用性能的提高起着积极的促进作用。因此,制备得到的碳酸氧铋材料可以应用于光催化降解有机物,不仅拓宽了开发新型可见光光催化材料的思路,还为探索研究光催化性能的影响因素提供了一个潜在的可行的途径与理论模型。
     3.通过简单的水溶液加热合成法,制备得到了具有不同形貌、尺寸与表面结构的γ-Bi_2MoO_6材料,并通过对这一系列所得产物用于降解有机染料罗丹明B溶液的光催化性能实验,研究了对于γ-Bi_2MoO_6作为光催化剂时其可见光光催化活性能力,并深入地讨论了影响光催化性能的可能因素。通过实验,发现暴露出{010}晶面的片状γ-Bi_2MoO_6虽然具有较低的比表面积却表现出了较高的光催化活性能力。通过进一步对γ-Bi_2MoO_6作为光催化剂降解有机染料罗丹B溶液的光催化机理的研究和γ-Bi_2MoO_6晶体结构的深入分析,表明由于γ-Bi_2MoO_6片状材料裸露出的特殊活性晶面{010}面上MoO_6八面体发生了很大程度上的扭曲变形,使得在此晶面上具有非常多的氧缺陷和平面空位,这对促进材料光催化活性能力的提高有着重要的作用。因此,通过对γ-Bi_2MoO_6光催化降解有机物的机理分析,如果催化剂材料的表面晶面能够有效地促进光生电子与空穴的分离,提高溶液中过氧自由基和过羟基自由基的浓度,将会促进功能材料的催化效率的提高,这样的表面晶面的暴露对光催化作用的加强才是有效的,具有较高的有效的比表面积的纳米材料的制备,将对研究高效的光催化材料有着深远的意义。
In this dissertation, a series of bismuth complex oxide with special nanostructure were synthesized via mild hydrothermal method, which all showed excellent photocatalytic activities under visible light irradation. Since 1972 Fujishima reported titanium oxide as photocatalyst under splitted water into oxygen and hydrogen ultraviolet light irradation, much admirable researches on the preparation of the environmentally friendly photocatalysts have been investigated to progress their activity of the photocatalysts by the energy shortage and environment pollution of the whole globe recently. Basing on investigating the relationships of the structure and properties, the crystal structure of the obtained functional materials were played a more key role for the proprieties performance, which is worth for developing the new functional materials with novel morphologies and superior properties. The photocatalytic process was very friendly, lost less energy and totally mineralized the organic pollutants which were as known the best process for the environment pollution. The previous works were most focusing on titanium dioxide or related complex as photocatalyst, which was limited its application at the visible light rang for the band-gap. Bismuth complex oxides with layered structure as a series new appealing photocatalysts have attracted considerable attention for their admirable photocatalytic properties under visible light irradiation. The photocatalysis mechanism of the materials and the related influence factors on the photocatalysis were investiged for preparing more novel photocatlysts and inhancing the photocatalytic activity, which was set up an ideal model for understanding the relationship of the crystal structure and the properties. The dominating related reports have put forward that the higher BET surface area is the main in·uencing factor of the photocatalysis. Nevertheless, recent researches have indicated that the particular surface may also be pivotal to the photocatalytic activity. Our photocatalytic experiments showed that the photocatalyst with higher effective surface area were promoted by the particular surface exposed. The monoclinic phase bismuth vanadate with hierarchical frame works were prepared assisted by the Gemini-surfactant; the Bi_2O_2CO_3 with different hierarchitecturs were achieved without any templates; theγ-Bi_2MoO_6 samples with different morphologies and surface structures were prepared for investigating the impact factors of the photocatalytic activities. The details are summarized briefly as follows:
     1. The m-BiVO_4 hierarchical frame works were synthesized using a novel Gemini surfactant-monoalkylated disulfonated di-phenyl oxide surfactant (C12-MADS) as the structure-directing reagent and as-obtained m-BiVO_4 nanomaterials exhibited good photocatalysis for degradation of rhodamineB (RhB) under visible light. The C12-MADS played a key role for the formation of the m-BiVO_4 hierarchical frame works, which were chelated with the bismuth ions. The growth rate of the crystal was directly controlled by the decomposition of the obtained chelating precursor. The bismuth vandate with branches showed its potential applications as photocatalystsf. The surfactants with functional groups can be used to chealting with the metal ion that provide a new method to prepare the nanostructure with hierarchical frame works.
     2. In this work a novel Bi_2O_2CO_3 photocatalyst was first put forward by virtue of structural understanding. The internal layered structure of a material would guide the lower growth rate along certain axis compared with that for other axises, to form 2D morphologies such as sheet-like/plate-like morphologies. The highly anisotropic internal structure of Bi_2O_2CO_3 is obviously a benefit for controlling the formation of Bi_2O_2CO_3 sheet-like or plate-like nanounits with special surface. Previous work was indicated that controlled organization of primary building units into hierarchically structured nanoarchitecture represents another challenge for their high potential in applications. The Bi_2O_2CO_3 nanostructures with different morphologies were fabricated after the sol gel precuer solution was treated with various pH value or temperature. In particular, the flower-like Bi_2O_2CO_3 hierarchitecture with the controlled special {001} surface exposed was first synthesized via a mild route, showing more excellent photocatalytic activity than the sponge-like porous spheres with higher surface area, which was due to the large distortion of Bi-O on the exposed surface of the sheets that were arranged the flower-like sample. The Bi_2O_2CO_3 nanostructures have proved to be not only a new photocatalyst under solar light irradiation, but also a possible example for investigating the key factors of which may impact on the photocatalytic ability. The results confirmed that the higher efficiency of the photocatalytic activity should be contributed synergistically by the higher BET surface area and the special exposed surface.
     3. In this work,γ-Bi_2MoO_6 samples with different morphologies and surface structures were prepared via simple solution methods and their photocatalytic degradations of rhodamine-B (RhB) were investigated under visible light irradiation. As one of the three different crystalographic phases of bismuth molybdates, theγ-Bi_2MoO_6 showed the distinguished photocatalytic activity under visible light irradiation for its suitable bandgap and intrinsic structure. Therefore, it is still very necessary to investigate the influencing factors of theγ-Bi_2MoO_6 surface structure on their photocatalytic activity. In spite of their lower BET surface area, we found that theγ-Bi_2MoO_6 sheets with the preferentially exposed {010} surface exhibited the greatly enhanced photocatalytic activity. The mechanism study and structural analysis of stoichiometricγ-Bi_2MoO_6 indicated that the particular reactive surface with enhancing the concentration of·OH and/or·OOH radicals, derived from the larger distortion of the MoO_6 octahedra, play a more important role of the enhanced photocatalytic activity. The photocatalytic mechanism of degrading the organic pollutant indicated that improving the separation of the electronic and vacancy can inhance the photocatalytic activity. Hence,the photocatalytic property has a close relationship with the structure of the exposed surface plane, in that the particular reactive surface with much more oxygen defects and in-plane vacancies can greatly enhance the photocatalytic activity.
引文
1.张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.1-3
    2. Feynman R P. The Man Who Dared to Think Small [J]. Science, 1991, 254:1300.
    3. (a) Wang Z L. Characterizing the Structure and Properties of Individual Wire-Like Nanoentities [J]. Adv. Mater., 2000, 12(17): 1295-1298; (b) Hu J, Odom T W, Lieber C M. Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes [J]. Acc. Chem. Res., 1999, 32(5): 435-445. (c) A special issue in MRS Bull. 1999, 24(2):20-49.
    4. Boorum M M, Vasilev Y V, Drevello T, et al. Groundwork for a Rational Synthesis of C60: Cyclodehydrogenation of a C60H30 Polyarene [J]. Science 2001, 294: 828-831.
    5. Binning G., Rohrer H, Gerber C, et al. Tunneling through a controllable vacuum gap [J]. Appl. Phys. Lett., 1982, 40(2):178-180.
    6. (a)张志,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000; (b)顾宁,付德刚,张海黔等.纳米技术与应用[M].北京:人民邮电出版社,2002.
    7. Watzke H J, Fendler J H. Quantum size effects of in situ generated colloidal cadmium sulfide particles in dioctadecyldimethylammonium chloride surfactant vesicles [J]. J. Phys. Chem., 1987, 91(4):854-861.
    8. Parker D W, Kuntner G L. HVOF-Spray Technology-Poised for Growth [J]. Adv. Mater. Process, 1991, 139(4): 68-72.
    9. Stichlmair J, Schmidt J, Propleschr J. Electroextraction: A novel separation technique [J]. Chem. Eng. Sci., 1992, 47(12): 3015-3022.
    10. Duan X, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J]. Nature, 2001, 409(6816): 66-69.
    11. Kroto H W. C60: Buckminsterfullerene [J]. Nature, 1985, 318(6042): 162.
    12.熊宇杰.一维纳米结构的液相合成与同步组装.[D]:[博士学位论文].合肥.中国科学技术大学化学院, 2002.
    13. Klabunde K J, Stark J, Koper O, et al. Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry [J]. J. Phys. Chem., 1996, 100(30): 12142-12153.
    14. Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chem. Rev., 1989, 89(8): 1861-1873.
    15. Brus L E. Electronic wave functions in semiconductor clusters: experiment and theory [J]. J. Phys. Chem., 1986, 90(12):2555-2560.
    16. Steigerwald M, Brus L E. Semiconductor crystallites: a class of large molecules [J]. Acc. Chem. Res., 1990, 23(6): 183-188.
    17. Wang Y, Suna A, Mahler W, et al. PbS in polymers: From molecules to bulk solids [J]. J. Chem. Phys., 1987, 87(12): 7315-7323.
    18. Trindade T, O’Brien P, Pickett N L. Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives [J]. Chem. Mater., 2001, 13(11): 3843-3858.
    19. Hagfeldt A, Graetzel M. Light-Induced Redox Reactions in Nanocrystalline Systems [J].Chem. Rev., 1995, 95(1): 49-68.
    20. Wang Y, Mahler W. Degenerate four-wave mixing of CdS/polymer composite [J]. Opt. Commun., 1987, 61(3):233-236.
    21. Hilinski E F, Lucas P A, Wang Y. A picosecond bleaching study of quantum-confined cadmium sulfide microcrystallites in a polymer film [J]. J. Chem. Phys., 1988, 89(6): 3435-3442.
    22. Auer S, Frenkel D. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy [J].Nature, 2001, 413(6857): 711-712
    23. Cavicchi R E, Silsbee R H, Scalapino D J. Electronic Heat Capacity and Susceptibility of Small Metal Particles [J]. Phys. Rev. Lett., 1971, 26(12): 707-711.
    24. Pipa V I, Mitin V V, Stroscio M. Photons in a semibounded dielectric and the surface effect on spontaneous emission in nanostructures [J]. Phys. Rev. B, 2002, 65(23):235308-235313.
    25. Xu W H, Zhang T Y. Surface Effect for Different Types of Materials in Nanoindentation [J]. Key Engineering Mater., 2004, 261-263:1587-1592.
    26. Ball P, Garwin L. Science at the atomic scale [J]. Nature, 1992, 355(6363): 761-763.
    27.曹雪波.高质量三方硒纳米线、带、网格结构的可控生长与机理研究[D]:[博士学位论文].合肥.中国科学技术大学化学院, 2004.
    28.张立德,牟季美.物理学与新型(功能)材料专题系列介绍(Ⅲ)开拓原子和物质的中间领域——纳米微粒与纳米固体[J].物理, 1992, 21(3): 167-173.
    29. Barbara B, Wernsdorfer W. Quantum tunneling effect in magnetic particles [J]. Curr. Opin. Solid State Mater. Sci., 1997, 2(2): 220-225.
    30. Legget A J, Chakravarty S, Dorsey A T, et al. Dynamics of the dissipative two-state system [J]. Rev. Mod. Phys., 1987, 59(1): 1-85.
    31. Linderoth S, Morup S. Ultrasmall iron particles prepared by use of sodium amalgam. [J]. J. Appl. Phys., 1990, 67(9): 4496-4498.
    32. Amschalom D D, McCord M A, Grinstein G. Observation of macroscopic spin phenomena in nanometer-scale magnets [J]. Phys. Rev. Lett., 1990, 65(6): 783-786.
    33.冯翠菊.纳米材料的奇异特性[J].现代物理知识, 2008, 20(4): 5-7
    34.张兵.硫化物和硒微纳结构的溶液相合成及物性研究[D]:[博士学位论文].合肥.中国科学技术大学化学院, 2007.
    35.赵宇.分级纳米结构的形貌合成及性质研究[D]:[博士学位论文].合肥.中国科学技术大学化学院, 2008.
    36. Wiley B, Sun Y, Mayers B, et al. Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver [J].Chem. Eur. J., 2005, 11(2): 454-463.
    37. Littau K A, Szajowski P J, Muller A J, et al. A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction [J]. J. Phys. Chem., 1993, 97(6): 1224-1230.
    38. (a) Kanernitsu Y, Uto H, Masumoto Y, et al. On the origin of visible photoluminescence in nanometer-size Ge crystallites [J]. Appl. Phys. Lett., 1992, 61(18): 2187-2189; (b) Yang H Q, Yao X, Wang X J, et al. Sol?Gel Preparation and Photoluminescence of Size Controlled Germanium Nanoparticles Embedded in a SiO_2 Matrix [J]. J. Phys. Chem. B, 2003, 107(48):13319-13322.
    39. Bhargagra R N, Gallagher D, Hong X, et al. Optical properties of manganese-doped nanocrystals ofZnS [J]. Phys. Rev. Lett., 1994, 72(3):416-419.
    40. Hofler H J, Averback R S, Hahn H, et al. Diffusion of bismuth and gold in nanocrystalline copper [J]. J. Appl. Phys., 1993, 74(6): 3832-3840.
    41. Siegel R W, Hahn H, Ramasamy S, et al. Structure and Properties of Nanophase TiO_2 [J]. J. Phys. Collo., 1988, 49(C5): 681-686.
    42. Karch J, Birringer R, Gleiter H. Ceramics ductile at low temperature [J]. Nature, 1987, 330(6148): 556-557.
    43.朴顺玉,程雪琴.超微粒应用技术的现状和展望[N].中国科学院化冶所内部资料, 1991.
    44.日本的科学与技术[M].日本的科学技术编辑部编辑,1985,1.
    45. Wu S, Chen J X, Zheng X F. Novel preparation of nanocrystalline magnesia-supported caesium-promoted ruthenium catalyst with high activity for ammonia synthesis [J]. Chem. Commun., 2003(19):2488-2489.
    46. Chen J, Li S L, Xu Q, et al. Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation [J]. Chem. Commun., 2002(16): 1722-1723.
    47. Wu W, Herrman J M, Pichat P. Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO_2 [J]. Catal. Lett., 1989, 3(1): 73-84.
    48. Frank S N, Bard A J. A mass spectral study of the kinetics of carbon monoxide displacement from a nickel surface [J]. J. Phys. Chem., 1977, 81(15): 1484-1488.
    49. Leland J K, Bard A J. Photochemistry of colloidal semiconducting iron oxide polymorphs [J]. J. Phys. Chem., 1987, 91(19): 5076-5083.
    50. (a) Harada H., Ueda T. Photocatalytic activity of ultra-fine rutile in methanol-water solution and dependence of activity on particle size [J].Chem. Phys. Lett., 1984, 106(3): 229-231;(b)尚静.新型复合纳米薄膜光催化剂的研究[D]:[博士学位论文].北京,清华大学, 2003
    51.刘欢,翟锦,江雷.纳米材料的自组装研究进展[J].无机化学学报,2006, 22(4):585-597
    52. Kim F, Kwan S, Akana J, et al. Langmuir?Blodgett Nanorod Assembly [J]. J. Am. Chem. Soc., 2001, 123(18): 4360-4361
    53. Huang Y, Duan X, Wei Q, et al. Directed Assembly of One-Dimensional Nanostructures into Functional Networks [J]. Science, 2001, 291: 630-633
    54. Paul S, Pearson C, Molloy A, et al. Langmuir?Blodgett Film Deposition of Metallic Nanoparticles and Their Application to Electronic Memory Structures [J]. Nano. Lett., 2003, 3(4): 533-536.
    55. (a) Shiang J J, Heath J R,Collier C P, et al. Cooperative Phenomena in Artificial Solids Made from Silver Quantum Dots: The Importance of Classical Coupling [J]. J. Phys. Chem. B, 1998, 102(18): 3425-3430; (b) Collier C P, Saykally R J, Shiang J J, et al. Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition [J]. Science, 1997, 277: 1978-1981
    56. (a) Tripp S. L., Pusztay S. V., Ribble A. E., et al. Self-Assembly of Cobalt Nanoparticle Rings [J]. J. Am. Chem. Soc., 2002, 124(27):7914-7915; (b) Maye M. M., Chun S. C., Han L., et al. Novel Spherical Assembly of Gold Nanoparticles Mediated by a Tetradentate Thioether [J]. J. Am. Chem. Soc., 2002, 124(18):4958-4959.
    57. Zhao X. K., Yang J., McConnick L. D., et al. Epitaxial formation of lead sulfide crystals under arachidicacid monolayers [J]. J. Phys. Chem., 1992, 96(25): 9933-9939.
    58. (a) Tripp S. L., Pusztay S. V., Ribbe A. E., et al. Self-Assembly of Cobalt Nanoparticle Rings [J]. J. Am. Chem. Soc., 2002, 124(27):7914-7915; (b) Xu H, Cui L L, Tong N H, et al. Development of High Magnetization Fe3O_4/Polystyrene/Silica Nanospheres via Combined Miniemulsion/Emulsion Polymerization [J]. J. Am. Chem. Soc., 2006, 128(49): 15582-15583.
    59. Jin R. C., Egusa S. J., Scherer N. F. Thermally-Induced Formation of Atomic Au Clusters and Conversion into Nanocubes [J]. J. Am. Chem. Soc., 2004, 126(32): 9900-9901.
    60. Kiely C J, Fink J, Brust M, et al. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters [J]. Nature, 1998, 396(6710): 444-446
    61. Shevchenko E V, Dmitri V T, Andrey L R, et al. Colloidal Synthesis and Self-Assembly of CoPt3 Nanocrystals [J]. J. Am. Chem. Soc., 2002, 124(38): 11480-11485
    62. (a) Redl F X, Cho K S, Murray C B, et al. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots [J]. Nature, 2003, 423(6943): 968-971. (b) Shevchenko E V, Talapin D V, O′Brien S, et al. Polymorphism in AB13 Nanoparticle Superlattices: An Example of Semiconductor?Metal Metamaterials [J]. J. Am. Chem. Soc., 2005, 127(24): 8741-8747.
    63. Chen S. F., Yu S H, Wang T X, et al. Polymer-Directed Formation of Unusual CaCO_3 Pancakes with Controlled Surface Structures [J]. Adv. Mater., 2005, 17(12):1461-1465.
    64. Nam K T, Kim D W, Yoo P J, et al. Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes [J] .Science, 2006, 312: 885-888.
    65. Yang H G., Zeng H C. Self-Construction of Hollow SnO_2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites [J]. Angew. Chem. Int. Ed., 2004, 43(44): 5930–5933
    66.李本侠.金属氧化物和硒化物的三维多级微纳结构的化学合成与组装[D]:[博士学位论文].合肥.中国科学技术大学化学院,2008.
    67. Yang P D. Nanotechnology:Wires on water [J]. Nature, 2003, 425(6955): 243-244.
    68. Tao A., Kim F., Hess C., et al. Langmuir?Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy [J]. Nano. Lett., 2003, 3(9): 1229-1233.
    69. Liu H, Li S, Zhai J, et al. Self-Assembly of Large-Scale Micropatterns on Aligned Carbon Nanotube Films [J]. Angew. Chem. Int. Ed., 2004, 43(9): 1146-1149.
    70. Park S, Lim J H, Chung S W, et al. Self-Assembly of Mesoscopic Metal-Polymer Amphiphiles [J]. Science, 2004, 303, 348-351.
    71. Wu C Z, Xie Y, Wang D, et al. Selected-Control Hydrothermal Synthesis ofγ-ΜnO_2 3D Nanostructures [J]. J. Phys. Chem. B., 2003, 107(49): 13583-13587.
    72. (a) Zhang B., Ye X. C., Hou W. Y., et al. Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Bi_2S3 Flowerlike Patterns with Well-Aligned Nanorods [J]. J. Phys. Chem. B, 2006, 110(18): 8978-8985. (b) Zhang B., Ye X. C., Dai W., et al. Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Porous Sponglike Ni3S2 Nanostructures Grown Directly on Nickel Foils [J]. Chem. Eur. J., 2006, 12(8): 2337-2342.
    73. Li B X, Xie Y, Xue Y. Controllable Synthesis of CuS Nanostructures from Self-Assembled Precursors with Biomolecule Assistance [J]. J. Phys. Chem. C., 2007, 111(33):12181-12187
    74. Wu C Z, Lei L Y, Zhu X, et al. Large-Scale Synthesis of Titanate and Anatase Tubular Hierarchitectures[J]. Small, 2007, 3(9): 1518-1522.
    75.纳米结构材料合成方法.《中国表面活性剂网》,应用技术,纳米材料加工。
    76.谢毅.特殊纳米结构的化学自组装[J].无机化学学报, 2002, 18(1):1-7
    77.段旭,赵晓鹏.纳米材料的分子自组装合成述评[J].材料导报, 2001, 15(4):44-47
    78. Zheng L, Xu Y, Song Y, et al. Nearly Monodisperse CuInS Hierarchical Microarchitectures for Photocatalytic H2 Evolution under Visible Light [J]. Inorg. Chem., 2009, 48(9):4003-4009。
    79. Cheng C, Tang R, Xi F. Preparation and Aggregation of Polypseudorotaxane from Dendronized Poly(methacrylate)-Poly(ethylene oxide) Diblock Copolymer and -Cyclodextrin [J]. Macromol. Rapid. Commun., 2005, 26(9): 744-749.
    80. Jay A S., Hung C J, Huang L Y, et al. Electrochemical Self-Assembly of Copper/Cuprous Oxide Layered Nanostructures [J]. J. Am. Chem. Soc., 1998, 120(14):3530-3531.
    81. Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature, 1972, 238(5358): 37.
    82. Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science, 2001, 293:269-271
    83. Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bull Environ Contam Toxicol., 1976, 16(6):697-706
    84. Goswami D Y. A Review of Engineering Developments of Aqueous Phase Solar Photocatalytic Detoxification and Disinfection Processes [J]. J. Sol. Energ., 1997,119 (3):101-107
    85. Serpone N, Lawless D, Disdier J, et al. Spectroscopic, Photoconductivity, and Photocatalytic Studies of TiO_2 Colloids: Naked and with the Lattice Doped with Cr~(3+), Fe~(3+), and V~(5+) Cations [J]. Langmuir, 1994, 10 (3): 643-652.
    86.施宝昌,沈维榕,王勤娜.光催化氧化处理苯酚废水[J].北京化工大学学报, 2002,29(6):86-88
    87.朱馨乐,谢一兵,李萍等.纳米TiO_2光催化降解水中有机物机理研究进展[J].化学通报, 2003, 66(w10):1-8
    88.李景刚,姜妍彦,周靖.新型钙钛矿及尖晶石型光催化材料研究进展[J].玻璃与搪瓷, 2005, 33(1):47-51
    89. Einaga H, Futamura S, Ibusuki T. Photocatalytic decomposition of benzene over TiO_2 in a humidified airstream [J] . Phys. Chem. Chem. Phys., 1999, 1(23): 4903-4908.
    90.周静涛,王弘,黄柏标等.光催化材料的最新研究进展[J].功能材料, 2004, 35:1964-1969.
    91.于向阳,梁文,程继健.提高二氧化钛光催化性能的途径[J].硅酸盐通报, 2000, 1: 53-57.
    92.熊建裕,乔学亮,陈建国等. TiO_2光催化活性的研究进展[J].功能材料,2004,35:256-259
    93. [ref-0-18]孙晓君,蔡伟民,井立强等.二氧化钛半导体光催化技术研究进展[J].哈尔滨工业大学学报.2001, 30 (4): 534-541.
    94. Li X Z, Li F B. Study of Au/Au3+-TiO_2 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment [J]. Environ. Sci.Technol., 2001, 35 ( 11) :2381-2387
    95.安立超,曾衍,李海燕.载银TiO_2催化剂的制备与性能研究[J].环境污染与技术设备, 2001, 2(4):30-33.
    96.崔玉民,王洪涛.二氧化钛光催化技术在污水处理领域中应用[J].水处理技术, 2009, 35(4):9-17.
    97.刘畅,暴宁钟,杨祝红等.过渡金属离子掺杂改性TiO_2的光催化性能研究进展[J].催化学报, 2001, 22 (2) :215-218.
    98. Choi W Y, Termin A, Hoffmann M R, et al. The Role of Metal Ion Dopants in Quantum-Sized TiO_2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics [J]. J. Phys. Chem., 1994, 98(51):13669- 13679
    99. Sakata Y, Yamamoto T, Gunji H,et al. Effect of Lead Oxide Addition to the Photocatalytic Behavior of TiO_2 [J]. Chem. Lett., 1998, 27(2):131-132
    100. Hattori A, Yamamoto M, Tada H,etal. A Promoting Effect of NH4F Addition on the Photocatalytic Activity of Sol-Gel TiO_2 Films [J]. Chem. Lett., 1998, 27(8):707-708
    101. Lettmann C, Hildenbrand K, Kisch H, et al. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst [J]. Appl. Catal. B: Environ., 2001, 32(4):215-227
    102.周雪锋,刘畅,何明等.改性TiO_2可见光催化分解水制氢研究进展[J].石油化工, 2004, 33(12):1191-1197.
    103.杨少斌,张建博,费学宁. TiO_2光催化氧化剂的改性技术研究进展[J].工业用水与废水, 2009,2:11-14
    104. Fujii H,Ohtaki M, Eguchi K,et al. Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO_2 gel as a stable oxide semiconducting matrix [J]. J. Mol. Catal. A: Chem., 1998, 129 (1):61-68
    105. Kwon Y T, Song K Y, Lee W I, et al. Photocatalytic Behavior of WO_3-Loaded TiO_2 in an Oxidation Reaction [J]. J. Catal., 2000, 191(1):192-199
    106.余灯华,廖世军,江国东.几种新型光催化剂及其研究进展[J].工业催化, 2003, 11(6): 45-52
    107. (a) Dion M, Ganne M, Tournoux M. Nouvelles familles de phases MIMII2Nb3O10 a feuillets“perovskites”[J]. Mater. Res. Bull., 1981, 16(11):1429-1435; (b) Dion M, Ganne M, Tournoux M, et al. Crystal structure of foliated ferroelastic perovskite (CsCa2Nb3O10) [J]. Rev. Chim. Mineral., 1984,21(1):92-103.
    108. (a) Ruddlesden S N, Popper P. New compounds of the K2NIF4 typeActa [J]. Crystallogr., 1957,10:538;(b)Ruddlesden S N, Popper P. The compound Sr3Ti2O7 and its structure [J]. Acta. Crystallogr., 1958,11: 54.
    109. (a) Aurivillius B. Mixed Bismuth Oxides With Layer Lattices: I. The Structure Type of CaNb2Bi_2O9 [J]. Ark. Kemi., 1949,1(54):463-480; (b) Aurivillius B. Mixed oxides with layer lattices [J]. Ark. Kemi., 1949, 1(55):499-512.
    110.梁振华,新型层状钙钛矿氧化物的合成和结构表征[D]:[博士学位论文].合肥.中国科学技术大学化学院, 2009.
    111. Kudo A, Omori K, Kato H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO_4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties [J]. J. Am. Chem. Soc., 1999, 121(49): 11459-11467.
    112. Tang J W, Zou Z G, and Ye J H. Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi_2O_4 under Visible-Light Irradiation [J]. Angew. Chem. Int. Ed., 2004, 43(34): 4463-4466.
    113. (a) Tang J W, Zou Z G, and Ye J H. Photocatalytic Decomposition of Organic Contaminants by Bi_2WO_6 Under Visible Light Irradiation [J]. Catal.Lett., 2004, 92(1–2): 53-56; (b) Fu H B, Pan C S, Yao W Q, et al. Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi_2WO_6 [J]. J. Phys. Chem. B, 2005, 109(47): 22432-22439.
    114. Tang J W, Ye J H. Correlation of crystal structures and electronic structures and photocatalytic properties of the W-containing oxides [J]. J. Mater. Chem, 2005, 15(40):4246-4251
    115. Hyun Gyu Kim, Dong Won Hwang, and Jae Sung Lee. An Undoped, Single-Phase Oxide Photocatalyst Working under Visible Light [J]. J. Am. Chem. Soc., 2004, 126(29): 8912-8913.
    116. Sato T, Yamamoto Y, Fujishiro Y, et al. Intercalation of iron oxide in layered H2Ti4O9 and H4Nb6O17: visible-light induced photocatalytic properties [J]. J. Chem. Soc., Faraday. Trans., 1996, 92:5089-5092.
    117. Zhang L S, Wang W Z, Zhou L, et al. Bi_2WO_6 Nano- and Microstructures: Shape Control and Associated Visible-Light-Driven Photocatalytic Activities [J]. Small, 2007, 3(9):161 8–1625.
    118.张海萍.钒酸盐纳米发光材料和钛酸秘系光催化薄膜的制备及性能研究[D]: [博士学位论文].济南.山东大学,2007.
    119. (a) Elghanian R, Storhoff J J, Mucic R C, et al. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles [J]. Science, 1997, 277: 1078-1081; (b) Zamborini F P, Hicks J F, Murray R W. Quantized Double Layer Charging of Nanoparticle Films Assembled Using Carboxylate/(Cu2+ or Zn2+)/Carboxylate Bridges [J]. J. Am. Chem. Soc., 2000, 122(18): 4514-4515.
    120. Hu J, Li L S, Yang W, et al. Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods [J]. Science, 2001, 292: 2060-2063.
    121. Jun Y W, Jung Y Y, Cheon J. Architectural Control of Magnetic Semiconductor Nanocrystals [J]. J. Am. Chem. Soc., 2002, 124(4): 615-619.
    122. Zhang B., Dai W., Ye X. C., et al. Photothermally Assisted Solution-Phase Synthesis of Microscale Tubes, Rods, Shuttles, and an Urchin-Like Assembly of Single-Crystalline Trigonal Selenium [J]. Angew. Chem. Int. Ed., 2006, 45(16):2571-2574.
    123. Xiong Y. J., Xie Y., Li Z. Q., et al. Growth of Well-Aligned -MnO_2 Monocrystalline Nanowires through a Coordination-Polymer-Precursor Route [J]. Chem. Eur. J., 2003, 9(7): 1645-1651.
    124. Zhao Q. R., Zhang Z. G., Dong T, et al. Facile Synthesis and Catalytic Property of Porous Tin Dioxide Nanostructures [J]. J. Phys. Chem. B, 2006, 110(31): 15152-15156.
    125. Wu Z C, Pan C, Yao Z Y, et al. Large-Scale Synthesis of Single-Crystal Double-Fold Snowflake Cu2S Dendrites [J]. Cryst. Growth Des., 2006, 6(7): 1717-1719.
    126. Vicsek T. Fractal Growth Phenomena, 2nd ed. [M]. Singapore: World Scientific, 1992.
    127. C?lfen H. Double-Hydrophilic Block Copolymers: Synthesis and Application as Novel Surfactants and Crystal Growth Modifiers [J]. Macromol.Rapid Commun., 2001, 22(4):219-252.
    128. Lisiecki I, Albouy P A, Pileni M P. Face-Centered-Cubic“Supracrystals”of Cobalt Nanocrystals [J]. Adv. Mater., 2003, 15(9): 712-716.
    129. Witten T A, Sander L M. Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon [J]. Phys. Rev. Lett., 1981, 47(19):1400-1403.
    130. Meakin P. Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation[J]. Phys. Rev. Lett., 1983, 51(13):1119-1122.
    131. Kuang D B, Xu A W, Fang Y P, et al. Surfactant-Assisted Growth of Novel PbS Dendritic Nanostructures via Facile Hydrothermal Process [J]. Adver. Mater., 2003, 15(20): 1747-1750.
    132. Xie S H, Zhou W Z, Zhu Y Q. Formation Mechanism of Mg_2SiO_4 Fishbone-like Fractal Nanostructures [J]. J. Phys. Chem. B, 2004, 108(31):11561-11566.
    133. Liu F, Cao P J, Zhang H R, et al. Novel Nanopyramid Arrays of Magnetite [J]. Angew. Chem. Int. Ed., 2005, 17(15): 1893-1897.
    134. P. D. Yang, T. Deng, D. Y. Zhao, et al. Hierarchically Ordered Oxides [J]. Science, 1998, 282:2244-2246.
    135. Yan H, He R, Pham J, et al. Morphogenesis of One-Dimensional ZnO Nano- and Microcrystals [J]. Adv. Mater., 2003, 15(5):402-405.
    136. May S J, Zheng J G, Wessels B W, et al. Dendritic Nanowire Growth Mediated by a Self-Assembled Catalyst [J]. Adv. Mater., 2005, 17(5):598-602.
    137. Manna L, Milliron D J, Meisel A, et al. Dextran templating for the synthesis of metallic and metal oxide sponges [J]. Nat. Mater., 2003, 2(6):382-385.
    138. Zhu J, Peng H, Chan C K, et al. Hyperbranched Lead Selenide Nanowire Networks [J]. Nano. Lett., 2007, 7(4):1095-1099.
    139. Ge J P, Wang J, Zhang H X, et al. Orthogonal PbS Nanowire Arrays and Networks and Their Raman Scattering Behavior [J]. Chem. Eur. J., 2005, 11(6):1889-1894.
    140. Cao M, Liu T, Gao S, et al. Single-Crystal Dendritic Micro-Pines of Magnetic -Fe2O_3: Large-Scale Synthesis, Formation Mechanism, and Properties [J]. Angew. Chem. Int. Ed., 2005, 117(27):4269-4273.
    141. Peng Q, Dong Y, Deng Z, et al. Selective Synthesis and Characterization of CdSe Nanorods and Fractal Nanocrystals [J]. Inorg. Chem., 2002, 41(20): 5249-5254.
    142. Cheng F, Zhao J, Song W, et al. Facile Controlled Synthesis of MnO_2 Nanostructures of Novel Shapes and Their Application in Batteries [J]. Inorg. Chem., 2006, 45(5):2038-2044.
    143. Fan H J, Scholz R, Kolb F M, et al. Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals [J]. Appl. Phys. Lett., 2004, 85(18):4142-4144.
    144. Kuang D B, Xu A W, Fang Y P, et al. Surfactant-Assisted Growth of Novel PbS Dendritic Nanostructures via Facile Hydrothermal Process [J]. Adver. Mater., 2003, 15(20): 1747--1750.
    145. Zou G, Xiong K, Jiang C, et al. Fe3O_4 Nanocrystals with Novel Fractal [J]. J. Phys. Chem. B, 2005, 109(39): 18356-18360.
    146. Tian Z R, Liu J, Voigt J A, et al. Dendritic Growth of Cubically Ordered Nanoporous Materials through Self-Assembly [J]. Nano Lett., 2003, 3(1): 89-92.
    147. Wang X, Naka K, Itoh H, et al. Synthesis of silver dendritic nanostructures protected by tetrathiafulvalene [J]. Chem. Commun., 2002, 12:1300-1301.
    148. Chen X Y, Wang X, Wang Z H, et al. Hierarchical Growth and Shape Evolution of HgS Dendrites [J]. Cryst. Growth. Des., 2005, 5(1):347-350.
    149. Endriss H. High Performance Pigments, (Ed. H. M. Smith) [M], Wiley-VCH, Weinheim, Germany, 2002, 7-12.
    150. Hirota K, Komatsu G, Yamashita M, et al. Formation, characterization and sintering of alkoxy-derivedbismuth vanadate. Mater [J]. Res. Bull., 1992, 27(7):823-830.
    151. Rullens F, Laschewsky A, Devillers M. Bulk and Thin Films of Bismuth Vanadates Prepared from Hybrid Materials Made from an Organic Polymer and Inorganic Salts [J].Chem. Mater., 2006, 18(3):771-777.
    152. Zhang L., Chen D. R., Jiao X. L. Monoclinic Structured BiVO_4 Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Coloristic and Photocatalytic Properties [J]. J. Phys. Chem. B, 2006, 110(6): 2668-2673.
    153. Tokunaga S, Kato H, Kudo A. Selective Preparation of Monoclinic and Tetragonal BiVO_4 with Scheelite Structure and Their Photocatalytic Properties [J]. Chem. Mater., 2001, 13(12): 4624-4628.
    154. Yu J Q, Kudo A, Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO_4 [J]. Adv. Funct. Mater., 2006, 16(16): 2163-2169.
    155.许虎君,吕春绪,叶志文.烷基二苯醚二磺酸盐的制备与性能表征[J].精细化工, 2005, 22(1):19-22.
    156.周其南. 90年代开发的绿色表面活性剂[J].石油化工动态, 2000, 8(1): 52-54.
    157. Kohtani S, Hiro J, Yamamoto N, et al. Adsorptive and photocatalytic properties of Ag-loaded BiVO_4 on the degradation of 4-n-alkylphenols under visible light irradiation [J]. Catal. Commun., 2005, 6(3):185-189.
    158. Kudo A., Ueda K., Kato H., et al. Photocatalytic O_2 evolution under visible light irradiation on BiVO_4 in aqueous AgNO_3 solution [J]. Catal. Lett., 1998, 53(3-4): 229-230.
    159. Xie B. P., Zhang H. X., Cai P. X., et al. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO_4 under visible light irradiation [J]. Chemosphere., 2006, 63(6): 956-963.
    160. Zhou L., Wang W. Z., Liu S. W, et al. A sonochemical route to visible-light-driven high-activity BiVO_4 photocatalyst [J]. J. Molecular. Catal. A: Chem., 2006, 252(1-2): 120-124.
    161. Stylide M, Kondarides D I ,Verykios X E. Pathways of solar lightinduced Photocatalytic degradation of azodye in aqueous TiO_2 suspensions [J].Appl.Catal. B: Environ., 2003, 40: 271-286.
    162. Zhou K B, Wang X, Sun X M, et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes [J]. J. Catal., 2005, 229 (1):206-212.
    163. Hu L H, Peng Q, Li Y D. Selective Synthesis of Co3O_4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion [J]. J. Am. Chem. Soc., 2008,130 (48):16136–16137.
    164. Scanlon D O, Galea N M, Morgan B J, et al. Reactivity on the (110) Surface of Ceria: A GGA+U Study of Surface Reduction and the Adsorption of CO and NO_2 [J]. J. Phys.Chem.C, 2009, 113(25):11095–11103.
    165. Aneggi E., Llorc J., Boaro M., et al. Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders [J]. J. Catal., 2005,234 (1):88–95.
    166. Xu R., Wang X., Wang D.S.,et al. Surface structure effects in nanocrystal MnO_2 and Ag/MnO_2 catalytic oxidation of CO [J]. J. Catal., 2006,237 (2):426–430.
    167. Ertl G, in: Proceedings of the Robert A. Welch Foundation Conferenceson Chemical Research, Houston, Texas, November,1981, 9–11; Primary steps in ammonia synthesis, in: Heterogeneous Catalysis. XXV,1981, 179.
    168.Cristiane B R, Valmor R M. Structural characterization of the V_2O_5 /TiO_2 system obtained by the sol/gel method [J]. J. Phys. Chem. Solid., 2003, 64: 833-839.
    169. Zheng Y, Duan F, Wu J, et al. Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed {0 1 0} surface under visible light irradiation[J]. J. Mol. Catal. A: Chemical., 2009,303 (1-2):9-14.
    170. Kim J. Y., Chung I., Choy J. H., et al. Macromolecular Nanoplatelet of Aurivillius-type Layered Perovskite Oxide, Bi4Ti3O12 [J]. Chem. Mater., 2001, 13 (9): 2759-2761.
    171. Tsunoda Y., Sugimoto W., Sugahara Y. Intercalation Behavior of n-Alkylamines into a Protonated Form of a Layered Perovskite Derived from Aurivillius Phase Bi_2SrTa2O9 [J]. Chem. Mater., 2003, 15 (3):632-635.
    172. Sillen L G.über eine Familie von Oxyhalogeniden [J]. Naturwiss., 1942, 30(22):318-324.
    173. Turcotte R P, Sawyer J O, Eyrin L. Rare earth dioxymonocarbonates and their decomposition [J]. Inor. Chem., 1969, 8(2):238-246.
    174. Charkin D. O., Berdonosov P. S., Moisejev A. M., et al. A Novel Family of Layered Bismuth Compounds: I. The Crystal Structures of Pb0.6Bi1.4Cs0.6O_2Cl2 and Pb0.6Bi3.4Cs0.6O_4Cl4[J]. J. Solid State Chem., 1999, 147(2):527-535.
    175. Zhang X, Ai Z H, Jia F L, et al. Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X = Cl, Br, I) Nanoplate Microspheres [J]. J. Phys. Chem. C, 2008, 112(3):747-753.
    176. (a) Cao S H, Guo C F, Lv Y, et al. novel BiOCl film with flowerlike hierarchical structures and its optical properties.Nanotechnology, 2009, 20(27):275702; (b)常晓峰,袁实,姬广斌. NaBiO_3/BiOCl复合材料的原位制备及光催化性能研究[J].持久性有机污染物论坛2009暨第四届持久性有机污染物全国学术研讨会论文集, 2009年.
    177. Chen R, So M H, Yang J, et al. Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate [J]. Chem. Commun., 2006, 21:2265-2267.
    178. Grice J D. A Solution To The Crystal Structures Of Bismutite and Beyerite [J]. Can. Mineral., 2002, 40 (2):693-698.
    179. Chen R, So M H, Yang J, et al. Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate [J]. Chem. Commun., 2006, 21:2265-2267.
    180. Chen X. Y., Huh H. S., Lee S. W. Controlled synthesis of bismuth oxo nanoscale crystals (BiOCl, Bi12O17Cl2,α-Bi_2O_3, and (BiO)2CO_3) by solution-phase methods [J]. J. Solid State Chem., 2007,180 (9):2510-2516.
    181. Shiho H., Kawahashi N. Titanium compounds as coatings on polystyrene latices and as hollow spheres [J]. Colloid Polym. Sci., 2000, 278 (3): 270-274.
    182. Song X. D., Zhao F. Q., Liu Z. R., et al. Thermal Decomposition Mechanism, Non-isothermal Reaction Kinetics of Bismuth Citrate and Its Catalytic Effect on Combustion of Double-base Propellant [J]. Chem. J. Chinese U., 2006, 27(1):125-128.
    183. Donath E, Gleb B, Carnso F, et al. Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes [J]. Angew. Chem. Int. Ed., 1998, 37(16):2201-2205.
    184. Song X D, Zhao F Q, Liu Z R, et al. Thermal Decomposition Mechanism, Non-isothermal Reaction Kinetics of Bismuth Citrate and Its Catalytic Effect on Combustion of Double-base Propellant [J]. Chem.J.Chin.Univ., 2006, 27(1):125-128.
    185. Kudo A., Tsuji I., Kato H. AgInZn_7S_9 solid solution photocatalyst for H_2 evolution from aqueous solutions under visible light irradiation[J]. Chem. Commun., 2002, 17:1958-1959.
    186. Li H X, Bian Z F, Zhu J, et al. Mesoporous Au/TiO_2 Nanocomposites with Enhanced Photocatalytic Activity [J]. J. Am. Chem. Soc., 2007,129 (15): 4538-4539.
    187. Zhou Y, Antonietti M. Synthesis of Very Small TiO_2 Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates [J]. J. Am. Chem. Soc., 2003, 125 (49):14960-14961.
    188. Somorjai G A, in: Proceedings of the Robert A. Welch Foundation Conferences on Chemical Research, Houston, Texas, November 1981, 9-11; The surface science of heterogeneous catalysis, in: Heterogeneous Catalysis, XXV, 1981, 83.
    189. Maeda K, Teramura K, Lu D L, et al. Photocatalyst releasing hydrogen from water [J]. Nature, 2006,440 (7082):295-296.
    190. Satoshi H, Aiko S, Ndhisao H. Environmental Remediation by an Integrated Microwave/UV Illumination Method. V. Thermal and Nonthermal Effects of Microwave Radiation on the Photocatalyst and on the Photodegradation of Rhodamine-B under UV/Vis Radiation [J]. Environ. Sci. Technol., 2003, 37(24):5813-5822.
    191. Li H X, Bian Z F, Zhu J. et al. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity [J]. J. Am. Chem. Soc., 2007, 129(27):8406-8407.
    192. Li H X, Zhang X Y, Huo Y N, et al. Supercritical Preparation of a Highly Active S-Doped TiO_2 Photocatalyst for Methylene Blue Mineralization [J]. Environ. Sci. Technol., 2007, 41(12): 4410-4414.
    193. Zhang L S, Wang W Z, Chen Z G, et al. Fabrication of flower-like Bi_2WO_6 superstructures as high performance visible-light driven photocatalysts [J]. J. Mater. Chem., 2007, 17 (24): 2526-2532.
    194. Zhang C, Zhu Y F. Synthesis of Square Bi_2WO_6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts [J]. Chem. Mater. 2005, 17 (13): 3537-3545.
    195. Zheng Y, Wu J, Duan F, et al. Gemini Surfactant Directed Preparation and Photocatalysis of m-BiVO_4 Hierarchical Frameworks [J]. Chem. Lett., 2007, 36 (4): 520-521.
    196. Fu H B, Pan C S, Yao W Q, et al. Visible-Light-Induced Degradation of Rhodamine-B by Nanosized Bi_2WO_6 [J]. J. Phys. Chem. B, 2005, 109 (47): 22432-22439.
    197. Wu J, Duan F, Zheng Y, et al. Synthesis of Bi_2WO_6 Nanoplate-Built Hierarchical Nest-like Structures with Visible-Light-Induced Photocatalytic Activity [J]. J. Phys. Chem. C, 2007, 111 (34):12866-12871.
    198. Xu H. L., Wang W. Z., Zhu W. Shape Evolution and Size-Controllable Synthesis of Cu2O Octahedra and Their Morphology-Dependent Photocatalytic Properties [J]. J. Phys. Chem. B, 2006,110 (28):13829-13834.
    199. Vila. E, Landa-Canovas A R, Galy J, et al. Bi_2n+4MonO_6(n+1) with n= 3,4,5,6: A new series of low-temperature stable phases in the mBi_2O_3-MoO_3 system (1.0    200. Brazdil J F, Suresh D D, Grasselli R K. Redox kinetics of bismuth molybdate ammoxidation catalysts [J]. J. Catal., 1980, 66(2):347-367.
    201. Galvan D H, Fuentes S, Avalos-Borja M, et al. CO oxidation of Bi_2MoO_6 catalysts [J]. J. Phys. Condens. Matter., 1993, 5(33A): A217-A218.
    202. Agarwal D D, Madhok K L, Goswami H S, et al. Selective oxidation of toluene over layered structures of Bi_2MoO_6 and La2MoO_6 [J]. Cata. Lett., 1994, 52(1):225-232.
    203. Keulks G. W., Krenzke L. D., Notermann T. M. Selective Oxidation of Propylene [J]. Adv. Catal. 1978, 27:183-225.
    204 Shimodaira Y, Kato H, Kobayashi H, et al. Photophysical Properties and Photocatalytic Activities of Bismuth Molybdates under Visible Light Irradiation [J]. J. Phys. Chem. B 2006,110 (36): 17790-17797.
    205. Zhou L, Wang W Z, Zhang L S. Ultrasonic-assisted synthesis of visible-light-induced Bi_2MO_6 (M = W, Mo) photocatalysts [J]. J. Mol. Catal. A: Chemical, 2007,268 (1-2): 195-200.
    206. (a) Watanabe T., Takizwa T., Honda K. Photocatalysis through excitation of adsorbates. 1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide [J]. J. Phys. Chem., 1977, 81(19):1845-1851. (b) Inoue T, Watanabe T, Fujishima A, et al. Suppression of Surface Dissolution of CdS Photoanode by Reducing Agents [J]. J. Electrochem. Soc., 1977, 124 (5):719-722.
    207. Wu T. X., Liu G. M., Zhao J. C. Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous TiO_2 Dispersions [J]. J. Phys. Chem. B, 1998,102 (30): 5845-5851.
    208. Franklin. D. H, Israel E W. Molecular structure of molybdenum oxide in bismuth molybdates by Raman spectroscopy [J]. J. Phys. Chem., 1991, 95 (26): 10763-10772.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700