基于有限元理论的木材机械性能建模与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材是人民生活和经济建设的重要工程材料,随着现代化工业和科学技术的发展,木材作为一种具有优势性的建筑材料得到了广泛应用。尽管木材已经使用了上千年,但是对其机械性能还不是完全了解,如树种间机械性能差异,裂纹扩展,因含水率变化而引起的变形,在施加较大负载时木材表现出复杂的非线性力学特性等等。木材结构决定木材的性质,木材的性质又决定木材经济价值,并直接影响木材的加工和利用,因此,更好剖析木材的机械性能尤为重要。
     本文在国内外有关木材机械性能研究的基础上,通过试验系统分析了木材微观构造和宏观构造不同构造级上的机械性能。通过微观结构观察得出木材早材、过渡材、晚材宽度按生长轮序号的分布关系;通过对木材逐个生长轮密度的测量,得出了密度随生长轮序号的分布关系;通过对木材逐个生长轮制取的薄小试件,测量了木材早、晚材的刚度随生长轮序号的分布关系;木材的机械性能与含水率紧密相关,试验测量了木材三个主方向的收缩系数与生长轮序号的分布关系。在木材机械性能建模的研究中,将有限元方法和均质化理论应用于生长轮模型的构建中,用等价的均匀连续体替代复杂的周期性微观结构材料的平均特性,建立宏观量场和微观量场之间的关系方程,最后根据均质化方法建立代表性单元的本构关系。模型仿真采用ANSYS实体模型单元SOLID46计算材料的有效性能。木材结构建模研究中应用了复合材料理论,研究了平面应力下单层材料的应力—应变关系,建立单层材料与总坐标间的刚度转换关系;木材宏观结构可以视为由各生长轮层合而成的复合结构,应用层合板的强度理论对木材进行了强度分析,采用HILL—蔡强度判别式来判断失效,同时进行理论计算和ANSYS仿真,以及木材顺纹抗拉强度试验加以验证,试验结果与理论计算结果是相符的。应用Hill—蔡屈服准则,对木材裂尖塑性区进行了分析研究,建立木材正交各向异性材料的裂尖应力场及屈服准则,讨论各向异性常数对塑性区及断裂性能的影响,以及木材生长轮间早材和晚材的不同强度比、刚度比对木材塑性区的影响,同时还从微观结构和ANSYS仿真验证了对塑性区的讨论。木材的强度、变形和破坏性能都与其内部结构、裂缝扩展以及断裂参数有关,考虑到裂纹尺寸的随机性,用随机有限元计算了木材强度因子的变化曲线,为验证其可行性,用帽儿山落叶松为材料加工的紧凑拉伸试件拟和了木材强度因子的测试曲线,两曲线具有相同的变化趋势,说明采用随机有限元方法对木材的断裂特性进行计算和预测是可行的。
     本研究将有限元理论、均质化理论、复合材料理论和木材科学相结合,属于交叉和前沿的研究,是连接微观与宏观力学发展的桥梁,在工业加工等领域中有重要的潜在应用价值,对提高木材从微观到宏观的机械性能认识、扩大木材的适用范围、提高木材的利用水平和实现木材工业的可持续发展具有重要意义。
Wood is an important engineering material for people's life and economic construction.With the development of science and technology in industry field, it has been widely used as asuperior nature material. The material has been used for several thousand years, but itsmechanical properties, such as the difference of mechanical properties among species, crackpropagation, the deformation caused by changes in moisture content and the complex nonlinearmechanical performance with overload etc. is not yet fully understood by people. Timber'sstructure determines its mechanical properties, which estimate the value of timber andinfluence the processing and use of timber. Therefore, the detailed investigations and a betterunderstanding of timber's mechanical properties are very important.
     In this paper, the mechanical properties of macro and microstructure were studiedsystematically with a great deal of tests based on the former researches in the field. Thedistribution relation of the width of early wood, transition wood and latewood versus thenumbers of growth ring was achieved by observing the microstructure. The density versus thenumber of growth ring was determined by measuring the density of growth ring one by one.Slip specimens measured the stiffness of early wood and latewood versus the number ofgrowth ring. Due to the mechanical properties closed related with moisture content, shrinkagecoefficients of three main directions of wood versus growth ring was detected by tests. Duringthe modeling of wood mechanical properties, FEM and heterogeneous theory were applied formodel of growth rings assumed as the continuum. The average performance of wood fiber withthe other organizations was considered synthetically whose geometric and material informationwere integrated into an equivalent body. The average property of complex periodic-microstructure- material was substituted by the equivalent uniform continuum. The relativeequations between micro vector fields and macro ones were established through the boundaryconditions of stress and displacement in the basic units where the field of strain and stress wasobtained by known macro vector fields, geometric and physical equations. Finally, constitutiveequation that is the relation between macro stress and strain of special units was achievedaccording to heterogeneous theory with SOLID46adopted as a model to calculate the efficientperformance in the simulation software of ANSYS. The composite material theory used for themodeling research to the wood composite laminated structure and the strain and stress relationof single layer material under plane stress w as studied. The stiffness conversion wasconstructed by monolayer material versus macro axis. The macro structure of wood wasregarded as composite laminated structure integrated by growth rings. The strength wasanalyzed by composite material theory and malfunction was evaluated by HILL-CAI criterion. The result of tests was consistent with theoretical calculation. Crack plastic zone of wood withanisotropy was studied by HILL-CAI criterion, crack tip stress fields and yield criteria were setup, the effect that constant of anisotropy material influence on the performance of plastic zoneand the different stiffness ratios of early wood and latewood in growth ring impact of theplastic zone were analyzed. Meanwhile, the research result on plastic zone was verifiedthrough the microphotograph of wood microstructure and ANSYS simulation software. Thestrength, deformation and failure of wood are related with parameters on its structure, crackpropagation and fracture. The size of crack with stochastic being taken into account, curve ofwood strength factors was calculated by stochastic FEM, which had been verified by relatedexperiments. The results show that the fracture properties of wood were calculated andpredicted by stochastic FEM is feasible and applicable.
     In this study, finite element theory, homogenization theory, composite material theory andwood micro-mechanics are researched which are of cross-frontier research to improve theawareness on the mechanical properties of wood from micro to macro, expend the scope ofapplication, enhance the wood utilization level. The investigation is of great significance forsustainable development of wood industry.
引文
[1] 程瑞香.动态热机械分析在木材加工行业的应用.木材工业,2005,19(4):28~30
    [2] 傅永华.有限元分析基础.武汉:武汉大学出版社,2003
    [3] 朱伯芳.有限单元法原理与应用.北京:中国水利水电出版社,1998
    [4] 渡边治人.木材应用基础.上海:上海科学技术出版社,1984
    [5] 庄茁.连续体合结构的非线性有限元.北京:清华大学出版社,2002:442~491
    [6] 李顺林,王兴业.复合材料结构设计基础.武汉:武汉工业大学出版社,1993
    [7] 王兴业,唐羽章.复合材料力学性能.北京:国防科技大学出版社,1998
    [8] 余雁,江泽慧,费本华.管胞细胞壁力学研究进展评述.林业科学,2003,39(5):133~138
    [9] B.A. Jayne. Mechanical Properties of Wood. Tappi, 1959
    [10] R.E. Mark. Cell Wall Mechanics of Tracheids. Yale Univ. Press, New Haven, USA, 1967
    [11] I.D. Cave. The Anisotropic Elasticity of the P/ant Cell Wall. Wood Science and Technology, 1968, 2(4): 268~278
    [12] A. Bergander, L. Salmen. The Transverse Elastic Modulus of the Native Wood Fibre Wall. Journal of Pulp and Paper Science; 2000a, 26(6): 234~238
    [13] A. Bergander, L. Salmen. Variation in Transverse Fiber Wall Properties: Relation between Elastic Propertied and Structure. Holzforschung, 2000b, 54(6): 654~660
    [14] L.H. Groom, S.M. Shaler, L. Mott. The Mechanical Properties of Individual Lignocellulosic Fibers. Proceedings of Wood Fiber-Plastic Composite. Published by Forest Product Journal, 1995:33~40
    [15] L.H. Groom, L. Mot-t, S.M. Shaler. Mechanical Properties of Individual Southern Pine Fibers Part I : Determination and Variability of Stress-Strain Curves with Respect to Tree Height and Juvenility. Wood and Fiber Science, 2002a, 34(1): 14~27
    [16] L.H. Groom, L. Mott, S.M. Shaler. Mechanical Properties of Individual Southern Pine Fibers. Part: Global Relationships between Fiber Properties and Fiber Location with in an Individual Tree. Wood and Fiber Science, 2002b, 34(2): 238~250
    [17] I.D. Cave. The Anisotropic Elasticity of the Plant Cell Wall. Wood Science and Technology, 1968, 2(4): 268~278
    [18] D.H. Page, F. E1-Hosseiny, K. Winkler, A.P.S. Lancaster. Elastic Modulus of Single Wood Pulp Fibres. Part V. Elastic Modulus, 1977, 60(4): 114~117
    [19] S. Koponen, T. Toratti, P. Kanerva. Modelling Longitudinal Elastic and Shrinkage Properties of Wood. Wood Science and Technology, 1989, 23:55~63
    [20] 余雁.人工林杉木管胞的纵向力学性质及其主要影响因子研究.中国林业科学研究 院工学博士论文.2003
    [21] 李大纲.木材细胞壁细观断裂及其损伤机理.科学技术与工程,2004,4(1):24~27
    [22] 马岩.木材横断面六棱规则细胞数学描述理论研究.生物数学学报,2002,17(1):64~68
    [23] 林金国等.杉木人工林木材力学性质与纤维形态关系的研究.生物数学学报,2000,15(3):281~285
    [24] 赵荣军,杨培华等.油松半同胞子代及亲本木材构造与物理力学性质的研究.西北林学院学报,2000,15(2):24~28
    [25] 王丽宇,鹿振友等.木材干燥后的裂纹与断裂.木材工业,2002,16(2):26~28
    [26] 邵卓平,任海青,江泽慧.木材横纹理断裂及强度准则.林业科学,2003,39(1):119~126
    [27] 江泽慧,姜笑梅等.杉木微观结构与其品质特性关系模型的一类神经网络建模方法.林业科学,2005,41(4):133~139
    [28] 张爽,王栋等.复合材料层合板机械连接结构累积损伤模型和挤压性能试验研究.复合材料学报,2006,4(23):163~169
    [29] 高永毅.植物的细胞力学行为研究及在水果机械损伤研究中的应用.中国农业大学工学博士论文.2003
    [30] 江泽慧,费本华,侯祝强等.针叶树木材细胞力学及纵向弹性模量计算—纵向弹性模量的理论模型.林业科学,2002,38(5):101~107
    [31] 张璧光.木材科学与技术研究进展.北京:中国环境科学出版社,2003
    [32] 李坚.木材科学.北京:高等教育出版社,2002
    [33] 邵卓平,江泽慧,任海青.线弹性断裂力学原理在木材中应用的特殊性与木材顺纹理断裂.林业科学,2002,38(6):110~115
    [34] 赵广杰.功能性木质生物质环境材料的研究现状与展望.木材工业,2006,20(2):16~18
    [35] Hibbitt, Karlsson & Sorensson Inc. ABAQUS Theory manual. Version 5.4, Pawtucket, 1994.
    [36] 王华倩.大型通用有限元分析软件—ANSYS.计算机辅助设计与制造,1998,12:16~18
    [37] 侯秀英等.植物纤维在复合材料中的应用与发展.纤维素科学与技术,2005,13(4):12~14
    [38] 国家技术监督局.木材物理力学性质试验方法(GBl927-943-91).北京:中国标准出版社,1991:32~64
    [39] 祝效华,余志祥.ANSYS高级工程有限元分析范例精选.北京:电子工业出版社,2004:6
    [40] 曹礼群,崔俊芝.复合材料拟周期结构的均匀化方法.计算数学,1999,21(3): 331~344
    [41] N.S. Bakhvalov, G.P. Panasenko, Homogenization. Averaging Processes in Periodic Me dia, Kluwer, Kordrecht, 1989
    [42] 杜善义,王彪.复合材料细观力学.北京:科学出版社,1998
    [43] 冯康,石钟慈.弹性结构的数学理论.北京:科学出版社,1981
    [44] N.S. Bachvalov, G.P. Panasenko. Homogenization of Processes. Periodic media, Nauka, 1984
    [45] A. Bensoussan, J. L. Lions, G. Papanicolaou. Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications. 1978, 5
    [46] 庄守兵.基于均匀化方法的多孔材料的本构数值研究和升阶谱有限元.中国科学技术大学,2002
    [47] 吴家龙.弹性力学.上海:同挤大学出版社,1993
    [48] 应隆安.有限元方法讲义.北京:北京大学出版社,1985
    [49] 王瑁成,邵敏.有限元法基本原理和数值方法.北京:清华大学出版社,1997
    [50] 吕和祥,蒋和洋.非线性有限元.北京:化学工业出版社,1992
    [51] L.Q. Cao, J.Z. Cui, The Two-Scale Asymptotic Analysis for Elastic Structures of Composite Materials with Only Including Entirely Basic Configuration. Acta Math. Appl. Sinica, 1999, 22(1): 38~46
    [52] R. Hill. Theory of Mechanics of Properties of Composite Materials, Self-consistent model. Mech Phys Solid, 1965,13:189~198
    [53] 周以良.黑龙江树木志.哈尔滨:黑龙江科学技术出版社,1986:38~40
    [54] 中国林科院木材工业研究所.中国主要树种的木材物理力学性质.北京:中国林业出版社,1982
    [55] L. Salmen. Properties of Ionic Polymers Natural and Synthetic. Swedish Pulp and Paper Research Inst., Stockholm, Sweden, 1991:285~294
    [56] L.J. Gibson, M.F. Ashby. Cellular Solids. Structure and Properties, Pergamon press, U.K., 1988
    [57] W.J. Cousins, Youngs Modulus of Hemicellulose as Related to Moisture Content. Wood Science and Technology. 1978, 12:161-167
    [58] R.J. Astley, J.J. Harrington, S. Tang, J. Neumann. Modelling the Influence of Microbril Angle on Stiffness and Shrinkage in Radiata Pine. Proceeding of the IAWA/IUFRO Int., 1997
    [59] U. Sahlberg, L. Salmen, A. Oscarsson. In. press, Thebrillar Orientation of the S2-Layer of Wood Bres As Determined By X-Ray.
    [60] A. Bergander. The Transverse Elastic Modulus of the Native Wood Fibre Wall. Licentiate thesis, Report 1999: 6, Royal Institute of Techn., Dep. of Pulp and Paper Chem. and Techn., Stockholm, Sweden. 1999
    [61] Tashiro K., Kobayashi M. Theoretical Evaluation of Three-Dimensional Elastic Constants of Native and Regenerated Celluloses. Polymer. vol 32, No 8, pp 1516~1526, 1991
    [62] I. Sakurada, Y. Nukushina. Experimental Determination of the Elastic Modulus of the Crystalline Region of Oriented Polymers. J. Polym. Sci, 1962, 57: 651~660
    [63] T. Nishino, K. Takano, K. Nakamae. Elastic Modulus of the Crystalline Regions of Cellulose Polymorphs. J. of Polymer Science Part B-Polymer Physics, 1995, 33(11): 1647~1651
    [64] M. Matsuo, C. Sawatari, Y. Imai. Effect of orientation distribution and crystallinity on the measurement by x-ray-diraction of the crystal-lattice moduli of cellulose-Ⅰ and cellulose-Ⅱ. Macromolecules, 1990, 23(13): 3266~3275
    [65] K. Tashiro, M. Kobayashi. Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer, 1991, 32(8): 1516~1526
    [66] R.E. Mark. Cell Wall Mechanics of Tracheids. Yale Univ. Press, New Haven, USA., 1967
    [67] I.D. Cave. Modelling moisture-related mechanical properties of wood. Part Ⅰ: Properties of the wood constituents. Wood Science and Technology, 1978, 12: 75-86
    [68] P.S. Srinivasan. The elastic and thermal properties of timber. Quart. J. Indian Inst. Sci., 1941, 4(2): 222~314
    [69] W.J. Cousins. Elastic modulus of lignin as related to moisture content. Wood Science and Technology, 1976, 10: 9-17
    [70] J.M. Dinwoodie. TIMBER-its nature and behaviour. Van Nostrand Reinhold, New York, NY, USA., 1981
    [71] A.T. Price. A mathematical discussion on the structure of wood in relation to its elastic properties. Philos. Transact. Royal Soc., London, 1928, 228: 1~62
    [72] Thuvander F. (1996), Wood-Cell Wall Damage: A Composite Materials Approach. Licentiate thesis, 1996: 27 L, Lule a University of Technology, Div. of Polymer Engineering, Lulea, Sweden
    [73] S. Koponen, T. Toratti, P. Kanerva. Modeling longitudinal elastic and shrinkage properties of wood. Wood Science and Technology, 1989, 23: 55~63
    [74] S. Koponen, T. Toratti, P. Kanerva. Modeling elastic and shrinkage properties of wood based on cell structure. Wood Science and Technology, 1989, 25: 25~32
    [75] E. Kahle, J. Woodhouse. The influence of cell geometry on the elastic constants of softwood. J. of Materials Sci., 1994, 29: 1250~1259
    [76] F. Stefansson. Mechanical properties of wood at microstructural level. Masters thesis, Report TVSM-5057, Lund University, Div. of Struct. Mech., Lund, Sweden, 1995
    [77] R.J. Astley, K.A. Stol, J.J. Harrington. Modelling the elastic properties of softwood-Part Ⅱ: The cellular microstructure. Holzrohwerkst, 1998,56 (1): 43-50
    [78] J.J. Harrington, R. Booker, R.J. Astley. Modelling the elastic properties of softwood-Part Ⅰ: The cell-wall lamellae, holz roh werkst 1998, 56(1): 37~41
    [79] L. Wallstrom, K.A.H Lindberg, I. Johansson. Wood surface stabilization. Holzals Roh und Werksto, 1995, 53:87~92
    [80] D.H. Page, F. EI-Hosseiny, K. Winkler, A.P.S. Lancaster. Elastic modulus of single wood pulp fibres. Part V. Elastic modulus. Tappi, 1977, 60(4): 114~117
    [81] N. Hartler, J.Nyren. Transverse compressibility of pulp fibers Ⅱ. Influence of cooking method, yield, beating and drying. Tappi, 1970, 53(3): 820~823
    [82] O. Dahlblom, K. Persson, H. Petersson, S. Ormarsson. Investigation of variation of engineering properties of spruce. Proc. of the 6th International IUFRO Wood Drying Conference, Dept of Wood Science, 1999(1): 25~28
    [83] 孙艳玲,鹿振友.木材断裂力学的研究.北京林业大学学报,1997,19(3):85~92
    [84] 孙炳楠.工程弹塑性力学.浙江:浙江大学出版社,1998
    [85] 张爱军,谢定义.复合地基三维数值分析.北京:科学出版社,2004
    [86] F.F.P. Kollman, W.A. Cote. Principles of Wood Science and Technology. Solid Wood, Springer-Verlag, Berlin, Germany, 1968
    [87] A.J. Kerr, D.A.I. Goring. The ultra structural arrangement of the wood cell wall. Cellul. Chem. Technol. 1975, 9:563~573
    [88] 雷友锋,宋迎东,高德平等.纤维增强复合材料结构的宏细观一体化分析方法.机械科学与技术,2002,21(4):617~620
    [89] 崔俊芝,曹礼群.基于双尺度渐近分析的有限元方法.计算数学,1998,20(1):90~102
    [90] J. Bodig, B.A. Jayne. Mechanics of Wood and Wood Composites. Van Nostrand Reinhold, New York, NY, USA., 1982
    [91] 王荣国,武卫莉等.复合材料概论.哈尔滨:哈尔滨工业大学出版社,1999:2~3
    [92] 倪爱清.复合材料微观应力计算的均匀化方法.武汉工业大学硕士论文,2000
    [93] 苑学众.复合材料弹塑性有效性能的研究.东北大学硕士论文,2004
    [94] 陈精一,蔡国忠.有电脑辅助工程分析ANSYS使用指南.北京:中国铁道出版社,2001
    [95] 博弈创作室[同作者作品].ANSYS 9.0经典产品基础教程与实例详解.北京:中国水利水电出版社.2006
    [96] 沈观林.复合材料力学.北京:清华大学出版社,1996
    [97] 刘锡礼,王秉权.复合材料力学基础.北京:中国建筑工业出版社,1984
    [98] 张志民.复合材料结构力学.北京:北京航空航天大学出版社,1993
    [99] 王耀先.复合材料结构设计.北京:化学工业出版社,2001
    [100] 吕恩琳.复合材料力学.重庆:重庆大学出版社,1992
    [101] 张双寅,刘济庆,于晓霞,蔡良武.复合材料结构的力学性能.北京:北京理工大学出版社,1992
    [102] 李顺林,王兴业.复合材料结构设计基础.武汉:武汉工业大学出版社,1993
    [103] 龚曙光.ANSYS基础应用及范例分析.北京:机械工业出版社,2003
    [104] 张朝晖.ANSYS8.0结构分析及实例解析.北京:机械工业出版社,2005
    [105] 刘涛,杨风鹏.精通ANSYS.北京:清华大学出版社,2002
    [106] 叶先磊,史亚杰.ANSYS工程分析软件应用实例.北京:清华大学出版社,2003
    [107] 王生洪,吴家麒,谢惠明.有限元法基础及应用.北京国防科技大学出版社,1990
    [108] 潘洪波.复合材料层合壳体的几何非线性有限元分析.哈尔滨:哈尔滨工业大学.硕士论文,2002
    [109] 陈汝训.混杂纤维缠绕壳体结构分析与设计.强度与环境,1999,3:11~20
    [110] 王瑞,陈海霞,王广峰.ANSYS有限元网格划分浅析.天津工业大学学报.2001,21(4):8~12
    [111] 任重.ANSYS实用分析教程.北京:北京大学出版社,2003
    [112] L.Daryl Logan.有限元方法基础教程.北京:电子工业出版社.2003
    [113] J. Bodig, B.A. Jayne, Mechanics of Wood and Wood Composites. New York: Van Nostrand Reinhold Company Inc, 1982:50~53,461~488
    [114] L.O. Jernkvist. Fracture of wood under mixed-mode loading Part Ⅰ: Derivation of fracture criteria. Engineering Fracture Mechanics, 2000, 68(5): 549~563
    [115] M.F. Ashby, K.E. Easterling, R. Harrysson, S.K. Maiti. The fracture and toughness of woods. Proc R Soc Lond 1985, A398, 261~80
    [116] I. Smith, Y.H. Chui. Factors affecting mode I fracture energy of plantation-grown red pine. Wood Science and Technology, 1994, 28(2):147~157
    [117] M. Patton-Mallory, S.M. Cramer. Fracture mechanics:a tool for predicting wood component strength. J. Forest Products. 1987, 37(7):39~47
    [118] M.L. Bostro. The stress-displacement relation of wood perpendicular to the grain. Part 1: Experimental determination of the stress-displacement relation. Wood Sci Technol, 1994, 28:309~317
    [119] L.Bostrom. The stress-displacement relation of wood perpendicular to the grain. Part 1: Application of the Fictitious Crack Model to the Compact Tension Specimen. Wood Sci Technol, 1994, 28:319~327
    [120] S. Vasic, I. Smith. Brittleness of wood in tension perpendicular to the grain: micromechanical aspects. Proceedings of COST 508 Wood Mechanics Conference, Stuttgart, Germany, 1996: 555~569
    [121] S. Vasic, I. Smith (2002) Bridging crack model for fracture of spruce. Engineering Fracture Mechanics, 2002, 69: 745~760
    [122] S. Vasic, I. Smith, E. Landis. Fracture zone characterization micro-mechanical study. Wood and Fiber Science, 2002, 34: 42~56
    [123] V. Kumar, M.D. German, C.F. Shih. An engineering approach for elastic-plastic pfacture analysis. EPRI NP-1931 Topical Report. Research Project1237-1, General Electric Company, Schenectady, NY, 1981
    [124] N.L. Goldman, and J.W. Hutchinson. Fully plastic crack problems: the centrer-cractstrip under plane strain. Int. J. Solids Structures, 1975, 11: 575~591
    [125] C.F. Shih. Fully plastic crack problems partⅠ: solutions by apenalty method. Journal of Applied Mechanics, 1984, 51: 48~56
    [126] K. Handa, K. Anderson. Application of finite element methods in statistical analysis of structures. Proc 3rd Int Conf on Structure Safety and Reliability. Nroway: Trondheim. 1981: 409~417
    [127] T. Hisada, S. Nakagiri. Stochastic finite element method developed for structure. Safety and reliability. Proc 3rd Int Conf on Structure Safety and Reliability. Nroway: Trondheim. 1981: 395~408
    [128] S. Nakagiri, T. Hisada. Stochastic finite element method applied to structure analysis with uncertain parameter. Proc Int Conf on FEM, Australia. 1982: 206~211
    [129] T. Hisada, S. Nakagiri. Role of the stochastic finite element method in structures. Safety and reliability. Proc 4th Int Conf on Struct Satety and Reliability. Japan: Kobe 1985: 213~219
    [130] Erik Vanmarcke. Random field: Analysis and Synthesis. Cambridge: The MIT Press 1983
    [131] J.R. Rice. A path independent integral and approximate analysis of strain concentration by notches and cracks. J.Appl. Mech., 1968, 35: 379~386
    [132] W.K. Wilson. Finite element methods for elastic bodies containing cracks. Mech. Of Fract. (G.C.Sihed.), 1973
    [133] J.P. Zao.The application of 2D elastic stochastic finite element method in the field of fracture mechanics. The International Journal of Pressure Vessels and Piping. 1997, 71(2): 169~174
    [134] J.K. Li. Apenalty finite element method for the full plastic problems of pure power-hardning materials. Chinese Journal of Computational Mechanis, 1999, 16(4): 379~389
    [135] V. Kumar, M.D. German, W.W. Wilkening. Further development in the engineering approach for elastic-plastic fracture analysis. EPRI NP-3607 Topical Report. Research Project 1237-1, General Electric Company, Schenectady, NY, 1983
    [136] 孙艳玲,鹿振友.用有限元计算水曲柳裂纹尖端应力强度因子.北京林业大学学报,1999,21(3):53~57
    [137] 蔺艳琴等.热塑性塑料/天然植物纤维复合材料的研究.塑料科技,1999,(8):35~39
    [138] 许沭华,王肖钧等.Kevlar纤维增强复合材料动态压缩力学性能实验研究.实验力学,2001,3:26~34
    [139] 祝效华,余志祥.ANSYS高级工程有限元分析范例精选.北京:电子工业出版社,2004
    [140] 王兴业,唐羽章.复合材料力学性能.北京:国防科技大学出版社,1998
    [141] 沈成康.断裂力学.上海:同济大学出版社,1996
    [142] 张行.断裂力学中应力强度因子的解法.北京:国防工业出版社,1992
    [143] 杨庆贤.木/塑复合材料及其增强机理的研究.复合材料学报,1992,9(4):77~81
    [144] 汤安民,卢智先.韧性材料的几种断裂形式及判据讨论.机械强度,2002,24(4):142~145
    [145] 坎宁恩等著.高等断裂力学.洪其麟等译.北京:北京航空学院出版社,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700