CBGA在循环载荷下的热弹塑性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子封装就是一种将集成电路用绝缘的塑料或陶瓷材料打包的技术。电子封装是连接半导体芯片和电子系统的一道桥梁,随着半导体产业的飞速发展及其向各行业的迅速渗透,电子封装因此在近三十年内获得长足的进步。今日的电子封装不但要提供芯片保护,同时还要在一定的成本下满足不断增加的性能、可靠性、散热、功率分配等功能。其可靠性问题,即在功率循环和热循环中由于电子元件与基板材料之间存在热膨胀失配,使焊点内部产生应力而失效,最终导致焊点失效的问题越来越受到人们的关注。
     本文的主要内容是采用双尺度的理论分析和有限元非线性求解两种方法,对带有底充胶的CBGA电子封装元件在热循环载荷下的力学行为进行了研究。
     首先,将均匀化理论和高阶逐层离散层板理论相结合,采用热弹塑性增量理论,考虑焊料的粘塑性行为,建立了CBGA电子封装元件热粘弹塑性非线性力学分析模型及其双尺度增量控制方程;
     其次,采用瑞利—里兹法,求解了在热循环载荷作用下CBGA宏观、细观的双尺度问题的解析解,与数值分析结果的对照,验证了理论分析的正确性,并就加载速率、材料参数和结构几何参数对焊球应力、应变行为的影响的进行了分析,为CBGA电子封装元件结构的设计提供了理论参考;
     在数值分析中,利用有限元数值分析软件ANSYS软件,采用3D模型,对CBGA在热循环载荷下的力学行为进行非线性有限元模拟,分析了结构在升温段、保温段、降温段焊球应力应变的变化情况,最后,通过各焊球的应力应变迟滞回线,得出最容易发生失效的焊球,为进一步的CBGA元件可靠性分析提供数值依据。
Electronic packaging is a technology which packages intergrated circuit using insulating plastics and ceramics and a connection between semiconductor die and electronic system. With the development of semiconductor and penetrating other industries, electronic packaging has made a significant progress in three decades. Today, electronic packaging not only provide chip protection, but also be satisfied with increasing performance, reliability, heat dissipation and power distribution in some cost. Reliability performance is the key people consider. Stress in solder joints leads to invalidation which is due to coefficient of thermal expansion mismatches in different materials.
     The effect of underfill in ceramic ball grid array(CBGA) package under thermal cycling load is studied in this paper by using double-scale homogenization theory and finite element nonlinear ananlysis.
     Firstly, combining double-scale homogenization theory and high order discrete plate using thermal elastic-plastic increment theory, taking account of viscoplastic behaviour of solder joints, it builds nonlinear thermal elastic-plastic model and double-scale homogenization constitutive equation of CBGA.
     Secondly, using Rayleigh-Ritz method, it gets macro and micro ananlysis solutions of CBGA. Comparing with numerical result, it approves right. It also takes accout of loading velocity, material properties and model structure parameters and provide theoretics for design of CBGA.
     It simulates nonlinear finite element mechanics behaviour of CBGA under thermal cycling load with ANSYS by using 3-D model. It analyses the change of stress and strain of solder joints when model is in heat increasing, heat preservating and heat decreasing. Finally, it gets solder jiont where most easily happens invalidation by stress strain hysteresis loop and provides proof for further studying reliability of CBGA.
引文
1.童志义.高密度封装技术现状及发展趋势[J],电子工业专用设备,2006,29(2):1-9.
    2.李牧.徽电子封装技术的发展与展望[J],电子工艺技术,2001,22(3):15-18.
    3.况延香,马营生.迈向新世纪的微电子封装技术[J],电子工艺技术,2000,21(1):1-6.
    4.鲜飞.微电子封装技术的发展趋势[J],微电子技术,2000,30(4):11-14.
    5.聂小龙.表面组装焊点的热力行为研究[D],北京工业大学,2004.
    6.徐步陆.电子封装可靠性研究[D],中国科学院上海微系统和信息技术研究所,2002.
    7.李牧.微电子封装技术的发展与展望[J],半导体杂志,2000,25(2):32-36.
    8. John B. High-Density Packaging:The Next Interconnect Challenge[J], Seniconductor International, 2000,23(2):91-100.
    9. Hall, Dudderar, Thermal deformations observered in leadless ceramic chip carriers surface mounted to printed wiring boards[J], Transactions on Components, Hybrids and Manufactureing Technology,1983, 6(4):544-552.
    10. Y. Guo. Characterizations of thermal deformation and effective cte of pbga modules[C], Proc of the 2nd international symposium on electronic packaging technology, shanghai 1996,125-130.
    11. B. Han. Higher sensitivity moire interferometry for micromechanics studies[J], optical engineering, 1992,31(7):1517-1526.
    12. B. Han,D.Post. Immersion Interferometer for Microscopic Moire Interferometry[J], Experimental Mechanics,1992,32(1):3-41.
    13.刘宝琛,训清.云纹干涉反转倍增法及其在微电子组件变形场测量中的应用[C],第八届国实验力学会议文集,1995,8:598-601.
    14.王卫宁,张存林.电子封装器件BGA的实时全息干涉实验研究[J],激光杂志,1999,20(3):46-48.
    15.王卫宁,石玲,戴福隆.表面封装技术组件焊点热变形的云纹干涉法研究[J],光学技术,1996,2:2-4.
    16.王国忠,程兆年.SnPb钎料合金的粘塑性Anand本构方程[J],应用力学学报,2000,17(3):133-140.
    17.黄春跃,周德检,李春泉.CCGA焊点热循环加载条件下应力应变有限元分析[J],桂林电子工业学院学报,2001,21(3):22-28.
    18.王春玲.塑性力学[M],北京:中国建材工业出版社,2005,51-52.
    19.谢贻权,何福保.弹性和塑性力学中的有限单元法[M],北京:机械工业出版社,1981,198-210.
    20. Darveaux. Constitutive relations for tin-based solder joints[J], Transactions on Components, Hybrids and Manufactureing Technology,1992,15(6):1013-1024.
    21. Anand L. Constitutive equation for hot-working of metals[J], Internal Journal of plasticity,1985,4(1):213-231.
    22.王呼佳,陈洪军,包陈.A NSYS工程分析进阶实例[M],北京:中国水利水电出版社,2006,1-300.
    23.任辉启.A nsys 7.0工程分析实例详解[M],北京:人民邮电出版社,2003,1-300.
    24.张朝晖,王富耻,王立.Ansys工程应用范例与提高[M],北京:清华大学出版社,2005,1-470.
    25.张朝晖.Ansys结构分析及实例解析[M],北京:机械工业出版社,2005,1-400
    26.刘书田,程耿东.球形空心材料导热性能预测研究[J],大连理工大学学报1994,34(2):137-144.
    27.刘书田,程耿东,空心材料导热性能预测研究[J],计算结构力学及其应用1994,11(2):147-153.
    28.刘书田,程耿东.复合材料应力分析的均匀化方法[J],力学学报,1997,29(3):307-313.
    29.刘书田,程耿东.基于均匀化理论的复合材料热膨胀系数预测方法[J],大连理工大学学报,1995,35(5):451-456.
    30.吴世平,唐绍锋,梁军,杜善义.周期性复合材料热力耦合性能的多尺度方法[J],哈尔滨工业大学学报,2006,38(12):2049-2053.
    31.曹礼群,崔俊芝.整周期复合材料弹性结构的双尺度渐近分析[J],应用数学学报,1999,2(1):38-46.
    32李英梅,黄宝宗,冼爱平,尚建库,王中光.电子封装元件的高阶层离散均匀化分析[J],力学学报,2005,4(37):429-433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700