竹子地下茎根系统的计算机模拟仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了定量研究竹子地下茎根系统(Bamboo Grove Underground Stems-RootSystem,简称BGUSRS)的形态结构特征及生长分布规律,本课题引入了虚拟植物技术,通过对隐藏于地下的BGUSRS的计算机模拟仿真,增强了研究方法的便捷性、动态性及可调控性,实现了对BGUSRS形态结构特征的量化描述及生长分布过程的动态直观显示,为研究竹林侵蚀控制和坡面保护的水平与效益提供了进一步的理论依据和技术支撑。
     本研究采用虚拟植物技术,结合传统根系挖掘观测方法,在云南省新平县竹类栽培基地进行野外试验观测,定量测定了桂竹BGUSRS的形态结构及生长分布特征;运用几何结构建模方法,提取描述BGUSRS分布过程的特征参数,归纳总结生长发育规律,建立了符合植物学特征且便于编程实现的的生长模型;在Windows平台上应用Visual C++程序设计语言结合OpenGL三维图形技术开发了竹子地下茎根系统的模拟仿真程序。
     运行本模拟仿真程序,用户通过输入以实测参数为依据的生长控制参数及生长时间,从主鞭开始,逐级递归调用根轴的生长函数,计算各根轴单位时间的生长量,确定其几何尺寸和空间位置并新建分根,累加每天的变化量,完成特定生长时间整个根系的分级生长,实时显示根系的三维图形,计算并输出描述生长分布的几何参数,从而实现对指定生长时间BGUSRS生长过程的模拟仿真。
     以桂竹为实验对象,通过模拟数据和实测数据的对比,表明模型具有较好的精度,仿真效果较为逼真可靠,所建立的模拟仿真系统是有效的。利用此模拟仿真系统作为根系研究的工具,简化了BGUSRS形态特征的测定难度,改善了以往研究根系时的劳动量问题,获取了按照传统根系研究方法难以获得的详细生长分布参数,并且用户可以从任意角度对整个根系进行直观详细的动态观测,从而将传统的静态研究推向动态分析,使得BGUSRS研究效能得到显著提高
To study the morphological features, spatial distribution and dynamic growth of BGUSRS (Bamboo Grove Underground Stems-Root System), the method of computerized virtual plant simulation was introduced in this paper. With this method both structure and distribution of BGUSRS were successfully visualized, and the dynamic growth was also simultaneously simulated. Because of its high adaptability, efficiency and controllability, this method may play an important role on BGUSRS studies and provide theoretical support for erosion control and slope stabilization researches.
     The field study was carried out in the Bamboo Cultivation and Experimentation Site of Xinping County, Yunnan Province. The traditional methods, including excavating, mapping and measuring, were applied in the field study to obtain the fundamental data on the morphological features and spatial distribution of BGUSRS. After that, based on the data observed from the field study, geometry structural modeling was used to establish the morphological parameters that described the growth and the distribution of BGUSRS. Meanwhile, according to these established morphological indices, a growth model that not only identically reflected the natural growth of BGUSRS but could be easily programmed with certain computer languages was also established. When this growth model was completed, the growth and distribution simulation based on it was program with the combination of Visual C++ language and the OpenGL 3-D graphics.
     When running the program, a user-friendly interface appeared and a set of parameters describing BGUSRS properties such as length and growing time must be input for further running. It was controllable: different sets yielded different outcomes. The program worked in 3 stages. First, it executed the growth function that was called recursively to calculate the growth per time unit and determine the geometrics of primary underground stem. Second, it branched the primary underground stem into secondary ones and secondary into tertiary in accordance with branching rules preliminarily written in and founded a hierarchical skeleton network. Finally, visualize this network and summarize the outcome to the interface. This was how a certain BGUSRS growing progress was simulated in a given period.
     This program used Phyllostachys bambusoides as the prototype. All the data and simulation were based on this species. The comparison of observed and simulated data by statistical analysis showed this simulation was feasible and reliable. Compared with traditional BGUSRS research methods, this imitation program provided a brand-new way of thought to this research area with accuracy and efficiency. It was labor-saving by reducing the determination on the morphological features of BGUSRS. Moreover, it was dynamic, with the vividly visualized 3-D rooting graphs facilitated related studies on BGUSRS that means you can obtain details of BGUSRS from any aspects.
引文
[1]江泽慧.世界竹藤.沈阳:辽宁科学技术出版社,2002,3-4.
    [2]李睿等.中国竹类植物多样性的价值及保护进展竹子研究汇刊.2003,12-13.
    [3]丝肇华.中国热带地区竹藤发展.北京:中国林业出版社,2001,56-58.
    [4]辉朝茂.关于云南竹类植物多样性及其保护研究.林业科学,2004,15-18.
    [5]萧江华.材用毛竹林的地下系统结构.竹类研究,1983,2(1):114-119.
    [6]Zhou,Y.et al.Effects of the lateral roots of Pinus yunnanensis Forest on shallow soil reinforcement.Plants and Soil,1997,190:77-86.
    [7]郭焱,李保国.虚拟植物的研究进展[J].科学通报,2001,46(4):273-275.
    [8]萧江华.散生竹林地下系统研究的概况与展望.竹类研究,1986,5(1):26-36.
    [9]许礼哲等.种植麻竹治理蹦岗的实验研究.水土保持通报,1994,14(5).
    [10]周跃.山地灾害与生态工程.昆明:云南科技出版社,2004.
    [11]周跃等.云南松侧根的浅层土体加固潜能及其计算.土壤侵蚀与水土保持学报,1998,4(5).
    [12]周跃等.乔木侧根对土体的斜向牵引效应研究-(Ⅰ)原理和计算.山地学报.1999,17(1).
    [13]周跃等.乔木侧根对土体的斜向牵引效应研究-(Ⅱ)野外直测.山地学报.1999,17(1).
    [14]周跃等.云南松侧根对浅层土体的水平牵引效应的初步研究.植物生态学报,1999,23(5.
    [15]程建峰,潘晓云,刘宜柏.作物根系研究法最新进展.江西农业大学学报,1999,11(4):55-59.
    [16]周跃.山地灾害与生态工程.昆明,云南科技出版社,2004.
    [17]云南省政府,云南省水土流失公报,2000.
    [18]周跃,唐川,滇西北水土流失、山地灾害与区域生态环境危险程度研究.见吴良镛,滇西北人居环境可持续发展规划研究.昆明,云南大学出版社,2000.
    [19]周跃,D.Watts,坡面生态工程及其发展现状.生态学杂志.1999,18(5).
    [20]Prusinkiewicz P,Hammel M,Mjolsness E.Animation of plant development.Computer Graphics,1993,27(3):351-360.
    [21]汪懋华.“精细农业”发展与工程技术创新.农业工程学报,1999,15(1):1-8.
    [22]Room P M,Hanan J S,Prusinkiewicz P.Virtual plants:new perspectives for ecologists,pathologists and agricultural scientists.Trends in Plant Science,1996,1(1):33- 8.
    [23]郭焱,李保国.虚拟植物的研究进展[J].科学通报,2001,46(4):273-280.
    [24]PeterM,Jim S.VirtualCotton:A New ToolforResearch,Man-agementand Training.In:Proceofthe rorld oC tton Research Conference-1,Birsbane,1994,40-44.
    [25]de Reffye P,Houllier F.Modelling plant growth and architecture:some recent advances and applications to agronomy and forestry.Current Science,1997,73(11):984-992.
    [26]Thwaites T.Down on the virtual farm.New Scientist,1995,146(1979):34-37.
    [27]胡包钢,赵星等.植物生长建模与可视化.回顾与展望.自动化学报,2001,11,816-835.
    [28]Lindenmayer A.Mathematical models for cellular interaction in development,Part Ⅰ and Part Ⅱ.Journal of Theoretical Biology,1958,18:280-315.
    [29]毛卫强,潘石鹤.植物二维建模方法综述[J].计算机科学,2000,6:35-37.
    [30]Prusinkiewicz Przemyslaw,Mark Hammel et al.Animation of plant development.Anaheim,California:ACM SIGGRAPH 1993.351-360.
    [31]Mech R,Prusinkiewicz P.Visual models of plants interacting with their environment.Computer Graphics,1996,30(3):397-410.
    [32]王东生,曹磊.混沌、分形及其应用[M].合肥:中国科学技术大学出版社,1995.
    [33]陈大滋,李峰.植物模拟技术的研究[J].计算机应用研究,2000,1:74-75.
    [34]Barnsley.M.F.Fractals Everywhere,Academic Press,Boston,1988,6-7.
    [35]A.D.Bell,D.Roberts,A.Smith.Branching patterns.The simulation of plant architecture[J].Journal of theoretical biology(Y0022-5193),1979,81(2):351-375.
    [36]Smith.A.R.Plants,fractals and formal languages[J].ACMSIGGRAPH Computer Graphics (Y0097-8930),1984,18(3):1-10.
    [37]Godin C,CarglioY.A multiscale model of plant topological structures[J].Journal of theoretical biology(Y0022-5193),1998,191(1):1-46.
    [38]赵星,de Reffvye P,熊范纶等.虚拟植物生民的双尺度自动机模型[J].计算机学报,2001,24(6),608-615.
    [39]毛卫强,耿卫东,潘石鹤.基了特征综和的植物建模方法[J].计算机辅助设计与图形学学报,2000,8,595-600.
    [40]丁维龙,熊范纶,张友华等.基于构件的植物二维结构模拟模型[J].小型微型计算机系统,2004,9,1624-1627.
    [41]耿瑞平,涂序彦.虚拟植物生长模型[J].计算机工程与应用,2004,14,6-8.
    [42]杨国梁,郭新宇,张光年,葛庆平.计算机视觉技术在植物根系形态研究中的应用.农业网络信息,2005,(11):124-128.
    [43]Diggle AJ.ROOTMAR a model in three dimensional coordinates of the growth and structure of fibrous root systems[J],Plant and Soil,1988,105:169-178.
    [44]Bengough AG,Mackenzie CJ,Diggle AJ.Relations between root length densities and root intersections with horizontal and verbal plants using root growth modeling in 3-dimensions[J].Plant and Soil,1992,145:245-252.
    [45]PagesL,JordanMO,Picard D.A simulation model of the threedimensional architecture of the maize root system[J].Plant and Soil,1989,119:147-154.
    [46]Fitter A H.Architectural analysis of plant root systems 1.Architecturalcorrelates of exploitation efficiency,New Phytologist,1991,118:375-382.
    [47]Fitter A H,Strickland T R.Architectural analysis of plant root systems 2.Influence of nutrient supply on architecture in contrasting plant species,New Phytologist,1991,118:383-389.
    [48]Berntson G M,Lynch J P,Snapp S.Fractal geometry and plant root systems:current perspectives and future applications,In Fractals in Soil Science,Eds P Baveye,Parlange J Y and B A Stewart Lewis Publishers,1996,New York,USA.
    [49]Clausnitzer V,Hopmans.Simultaneous modeling of transient Three-dimensional root growth and soil waterflow[J].Plant and Soil,1994,164:299-314.
    [50]Lynch J,S Beebe.Adaptation of beans(Phaseolus vulgaris L)to low phosphorus availability.HortScience,1995,30(6):1165-1171.
    [51]Loomis,Jeremy,J Liu,Xiuwen Ding,Zhaohua,Fujimura,Kikuo,Evans,Michael L,Ishikawa,Hideo.Visualization of plant growth1997,Conference name:Proceedings of the 1997 TEES Visualization Conference.
    [52]陈德清.冬小麦根系的分形分析和生长模拟[M].北京:中国农业大学出版社,1996.
    [53]刘桃菊,唐建军,戚昌瀚.水稻形态的分形特征及其可视化模拟研究.江西农业大学学报(自然科学版),2002,(3):24-25.
    [54]熊海桥,蒋立华,罗轶先,刘晓东.基于粒子系统的物理约束植物根生长建模.计算机应用,2002,22(7):39-41.
    [55]钟南、罗锡文、严小龙、廖红.植物根系生长的三维可视化模拟.华中农业大学学报,2005, 24(5):516-518.
    [56]李德文.耕作土壤条件下冬小麦根系形态与吸水功能的计算机分形模拟[M].陕西西安:西北农林科技大学出版社,2000.
    [57]秋林,刘晓东,罗爱玲,罗轶先.用L一系统描述植物根系并实现其动态可控生长.微电子学与计算机,2003,(11):56-59.
    [58]邓旭阳,周淑秋,郭新宇,赵春江,王纪华.玉米根系几何造型研究.工程图学学报,2004(4):62-66.
    [59]曹云飞,刘晓东,李慧,秋林.基于生长骨架模型的虚拟作物器官建模,微电子学与计算机2004,21(9):68-70.
    [60]金明现,王天铎.玉米根系生长及向水性的模拟.植物学报,1996,38(5):384-390.
    [61]吴长高.计算机视觉技术在根系形态和构型分析中的应用.农业机械学报,2000,31(3)
    [62]李保国.郭焱.作物生长的模拟研究.科技导报,1997,109:11-12.
    [63]罗锡文,周学成,严小龙,罗良平,向子云.基于XCT技术的植物根系原位形态可视化研究.农业机械学报,2004,35(2).
    [64]刘炳成,刘伟,刘俐华,金弋.冬小麦根系生长的三维仿真模拟,华中科技大学学报(自然科学版),2005,33(9):65-67.
    [65]周芳纯.20世纪竹业的回顾和21世纪的展望[J].竹子研究汇刊,1999,18(4):1-4.
    [66]郑郁善,洪伟,陈礼光等.毛竹丰产林竹鞭结构特征研究,林业科学,1998,34(专刊1):52-59.
    [67]胡超宗,金爱武,郑建新.雷竹地下鞭的系统结构.浙江林学院学报,1994,Ⅱ(3):264-268.
    [68]黄克福,粱达丽,曾昭琴.台湾桂竹竹鞭生长规律的研究.福建林学院学报,1994.14(3):191-194.
    [69]董建文,张兴正,林德根.不同土壤管理措施的毛竹扩鞭效果研究.江西农业大学学报,2000,22(1):37-40.
    [70]陈东阳.茶秆竹竹鞭生长规律的研究.竹子研究汇刊,2002,21(2):48-53.
    [71]董文渊,黄宝龙,谢泽轩等.甲笼竹无性系地下茎生长规律的研究.竹子研究汇刊,2002,21(4):56-60.
    [72]张幼法,林世奎,张世渊.毛竹林地下鞭动态生长的研究.竹子研究汇刊,1999 18(3):62-65.
    [73]Lynch J P.Root architecture and plant productivity.Plant Physiol,1995,109:7-13.
    [74]Prusinkiewicz Przemyslaw,Lindenmayer Arstid.The algorithmic beauty of plants.New York:Springer-Vedag,1990,40-43.
    [75]Lynch J P.Root architecture and plant productivity.Plant Physiol,1995,109:15-23.
    [76]Pages L,Jordan M.O.Picard D.A simulation model of the three-dimentional architecture of the maize root system.Plant and Soil,1989,(119):147-154.
    [77]Lungley D R,The growth of root systems:A numerical computer simulation model[J],Plant and Soil,1973,38:145-159.
    [78]Jordan M.O,Mise en place du systeme racinaire du mais.These de I'Universite Louis Pasteur de Strasbourg[C],1986.
    [79]Jonathan P,Lynch,Kai L,Nielsen et al.SimRoot:Modeling and visualization of root systems.Plant and Soil,1997,188:139-151.
    [80]廖成章,余翔华.分形理论在植物根系结构研究中的应用.2001,23(2):192-196.
    [81]唐守正编著.多元统计分析方法.北京:中国林业出版社.1984,84-89.
    [82]孙家广,杨长贵,计算机图形学,清华大学出版社,1995.
    [83]Brown LR.Building a Sustainable Society[M].NewYork,Norton W W,1981.
    [84]Pages L Le Roux Y,Thaler P.Models of root architechture[J].Plant Rech,1995,2:19-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700