钢板夹芯混凝土组合梁力学性能与破坏机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近代科学技术的发展和需要,钢板夹芯混凝土(steel-concrete-steel,简称SCS)组合结构已应用于各类结构工程中,如桥梁结构、防护结构、船舶、近海结构等,展示了广阔的应用前景。但在设计理论上,和钢筋混凝土结构、钢-混凝土组合结构相比,该组合结构领域尚存在着大量未解决的问题。本文基于理论分析及数值模拟方法,对钢板夹芯混凝土组合梁的界面力学特性和破坏机理两方面问题进行了研究,并取得了以下研究成果:
     1.利用弹性理论和塑性理论,建立了钢板夹芯混凝土组合梁的弹性抗弯极限承载力和塑性抗弯极限承载力的计算公式,并对影响极限承载力的因素进行了分析。研究结果表明,钢板的强度和厚度比对塑性极限承载力有很大的影响,而混凝土强度对其影响较小。
     2.考虑到钢板夹芯混凝土组合梁的实际受力和变形,建立了组合梁微段分析模型。通过对组合梁的受力平衡及变形协调进行分析,得到了关于界面滑移的微分方程,分别求出了跨中集中载荷、两点对称载荷、均布载荷和任意集中载荷作用下的简支组合梁的界面滑移和滑移应变的计算公式。这有助于深入研究组合梁的力学性能。
     3.对界面滑移和滑移应变的主要影响因素进行了分析,结果表明剪力连接程度是影响界面滑移和滑移应变的主要因素,并随着剪力连接程度的提高,界面滑移和滑移应变均减小;含钢率对ss和εs的影响较大,而对st和εt的影响较小,且随着含钢率的增加,界面滑移和滑移应变均增大;混凝土强度等级对ss和εs的影响较小,对st和εt几乎没有影响,且随着混凝土强度等级的提高,ss和εs略有减小。
     4.建立了考虑界面滑移影响的组合梁的轴力、截面曲率、挠度和截面应力的计算公式,并分析了界面滑移对轴力、截面曲率、挠度和截面应力的影响。研究结果表明,随着界面滑移减小,上部钢板截面承担的轴力Ns增加,截面曲率和挠度减小,界面滑移对远离交界面位置处的截面应力影响较小,而对靠近交界面处的截面应力影响较大。
     5.建立了FRP片材加固的混凝土梁、含复合型裂纹的混凝土梁和钢板夹芯混凝土梁的数值模型,并对其破坏过程进行了数值模拟,数值模拟结果与试验结果吻合较好。然后利用该方法建立了考虑界面影响的钢板夹芯混凝土组合梁相似数值模型,分析了不同界面强度下组合梁的破坏机理。研究结果表明,组合梁破坏形式主要为由界面破坏导致钢板与混凝土间发生剥离破坏和混凝土下缘边界产生许多斜裂纹导致钢板与混凝土间发生粘结破坏。界面的强度越高,组合梁的极限承载力越高,延性越好。
Along with the development and needs of modern science and technology,steel-concrete-steel composite structure is widely used in bridge structures、protectivestructures、ship hulls、offshore structures etc. And it has a vast range in many domains. Thereare still a lot of issues that need to be solved in field of steel-concrete-steel compositestructure, compared with traditional reinforced-concrete structure and steel-concretecomposite structure. Combining theoretical analysis and numerical simulation methods,interface mechanics characteristics and failure mechanism of steel-concrete-steel sandwichbeam are studied in this paper. The main research achievements are summarized as thefollowing:
     1. Using elastic and plastic theory, the formulas of elastic bending limit bearing capacityand plastic bending limit bearing capacity about steel-concrete-steel composite structure isestablished, and was analysed the influencing factor about plastic bending limit bearingcapacity. The results indicated that the strength and thickness of the steel panel had a greateffect on the plastic bending limit bearing capacity and had no effect on the concrete strength.
     2. In view of the actual stress and deformation of the steel-concrete-steel compositestructure, the micro section analysis model of the composite structure was established. Byanalyzing the force balance and deformation coordination of the composite beam, thedifferential equation about interface slip is gained, interface slip and slipping straincalculation formula of simply supported composite beam by the mid-span concentrated load、two load symmetry、uniformly distributed load and any concentrated load were derived. Thesedepth studies on the system may conduce to the mechanical property of the SCS compositebeam.
     3. The major parameter of interface slip and slipping strain distribution was analysed.The results indicated that shear connection degrees have a great effect on the interface slipand slipping strain, as shear connection degrees increased, interface slip and slipping strain isreduced. Steel content have a big effect on ssand εs, less influence on stand εt, as steel contentincreased, interface slip and slipping strain is increased. The strength classes of concrete had a small effect on ssand εs, almost no influence on stand εt, as strength classes of concreteincreased, interface slip and slipping strain is a little decreased.
     4. The formula of axial force and curvature of section and deflection and cross-sectionalstress was established considering the interface slip.And the influence of the interface slip onaxial force, section curvature, deflection and section stress was analysed. The studies show,that axial force Nswould increase, section curvature and deflection would increase along withthe interface slip decreasing. The influence of the interface slip on section stress of away fromthe border face was smaller,and the influence on section stress of closer the border face wasgreat.
     5. The numerical model was established about FRP reinforced concrete beam, theconcrete beam with complex crack and steel-concrete-steel composite beam, and used thenumerical simulation to research the the failure process. Numerical simulation results had agood agreement with experimental results. And then similar numerical model ofsteel-concrete-steel composite beam considering of interface influence was established usingthis method. The failure mechanism of the composite beams was analyzed under the differentstrength of interface. The studies show, that the failure form of the composite beams mainlyfor the debonding failure between steel plate and concrete leading to by interface failure, andbonding failure between steel plate and concrete leading to by many crack in the inferiorborder of concrete. As the strength of interface increased, the ultimate bearing capacity of thecomposite beams is increased, and ductility was better.
引文
[1]董永祺.夹芯结构及其新进展[J].高科技与产业化.1997,5:35-38页
    [2]范秋习.夹层复合材料[J].北京轻工业学院学报.1998,16(2):13-15页
    [3]弓晓芸,陈晓明.新型夹芯板的研究及应用[J].钢结构.2000(2):
    [4]张广平.复合材料夹心板及其应用[J].纤维复合材料.2000,2:26-29页
    [5]王兴业,杨孚标等.夹层结构复合材料设计原理及其应用[M].北京:化学工业出版社,2006
    [6]胡保全,牛晋川.先进复合材料[M].北京:国防工业出版社,2006
    [7]张双寅.复合材料设计的原理与实践[J].应用基础与工程科学学报.1998,9:279-286页
    [8]王连广.钢与混凝土组合结构理论与计算[M].北京:科学出版社,2005
    [9]聂建国.钢-混凝土组合梁结构-试验、理论与应用[M].北京:科学出版社,2005
    [10]聂建国.钢-混凝土组合梁结构原理与实例[M].北京:科学出版社,2009
    [11]曹志远.复合板件的等效非经典理论解[J].固体力学学报.1981,4:477-490页
    [12]王连广.预应力钢与混凝土组合结构[M].北京:科学出版社,2009
    [13]Min.Xie, J.C.Chapman. DeveloPment in Sandwich Construction[J]. Joumal ofConstructional Steel Research.2006,62(11):1123-1133P
    [14]李国强.多高层建筑钢结构设计[M].北京:中国建筑工业出版社,2003
    [15]祝文君,马军,黄会平,等.双层钢板组合剪力墙在异型结构中的应用及研究[J].特种结构.2010,27(2):14-16页
    [16]张军.盐城广播电视塔双钢板组合剪力墙结构技术[J].施工技术.2011,5:10-11页
    [17]洪伯潜.约束混凝土结构在井筒支护中的研究和应用[J].煤炭学报.2000,25(2):150-154页
    [18]聂建国,余志武.钢-混凝土组合梁在我国的研究及应用[J].土木工程学报.1999,32(2):3-8页
    [19]聂建国,樊建生.广义组合结构及其发展展望[J].建筑结构学报.2006,27(6):1-8页
    [20]Jianguo Nie, Yan Xiao, Lin Chen. Experimental studies on shear strength ofsteel-concrete composite beams[J]. Journal of strutural Engineering.2003,130(8):1202-1213P
    [21]曾青,樊健生.双钢板型组合结构[J].工业建筑.2007,37(4):77-80页
    [22]Bergan PG, Bakken K. Sandwich design: a solution for marine structures? In:Internationalconference on computational methods in marine engineering[J]. MARINE2005. CIMNE;2005
    [23]Tomlinson M, Tomlinson A, Chapman ML. Shell composite construction for shallowdraft immersed tube tunnels. In: Proceedings of the ICE international conference onimmersed tube tunnel techniques[J]. Manchester (UK): Thomas Telford;1989
    [24]Bowerman H, Coyle N, Chapman JC. An innovative steel/concrete construction system[J].The Structural Engineer.2002,80(20):8-33P
    [25]Narayanan R, Roberts TM, Naji FJ. Design guide for steel-concrete-steel sandwichconstruction. Vol: general principles and rules for basic elements. CSI Publication P131.The Steel Construction Institute,1994
    [26]Bowerman. H, Coyle. N, Chapman. J C. An innovative steel-concrete constructionsystem[J]. TheStructural Engineer.2002,80(20):33–38P
    [27]Bowerman H, Chapman JC. Bi-Steel steel–concrete–steel sandwich construction[J]. In:Composite construction in steel and concrete IV. American Society of Civil Engineers.2002,5:656–667P
    [28]Bowerman HG, Gough MS, King CM. Bi-Steel design and construction guide[M].Scunthorpe: British Steel Ltd,1999
    [29]J.Y.Richard Liew, K.M.A.Sohel. Lightweight steel–concrete–steel sandwich system withJ-hook connectors[J]. Engineering Structures.2009,31:1166–1178P
    [30]X.X. Dai, J.Y.Richard Liew. Fatigue performance of lightweight steel–concrete–steelsandwich systems[J]. Journal of Constructional Steel Research.2010,66:256–276P
    [31]J.Y.Richard Liew, K. M. A. Sohel, C. G. Koh. Impact tests on steel–concrete–steelsandwich beams with lightweight concrete core[J]. Engineering Structures.2009,31:2045–2059P
    [32]T.O.S. Oduyemi, H.D.Wright. An experimental investigation into the behaviour ofdouble-skin sandwich beams[J]. Journal of Constructional Steel Research.1989,14(3):197–220P
    [33]H.D.Wright. The deformation of composite beams with discrete flexible connection[J].Journal of Constructional Steel Research.1990,15:49-64P
    [34]H.D.Wright, T.O.S. Oduyemi, H.R. Evans. The experimental behaviour of double-skincomposite elements[J]. Journal of Constructional Steel Research.1991,19:97-110P
    [35]H.D.Wright, T.O.S. Oduyemi, H.R. Evans. The Design of double-skin compositeelements[J]. Journal of Constructional Steel Research.1991,19:111–132P
    [36]H.D.Wright, T.O.S. Oduyemi. Partial interaction analysis of double skin compositebeams[J]. Journal of Constructional Steel Research.1991,19(4):253–283P
    [37]T. M. Roberts, D. N. Edwards, R. Narayanan. Testing and Analysis ofsteel-concrete-steel Sandwich Beams[J]. J. Construct. Steel Res.1996,38(3):257-279P
    [38]N.K. Subedi, N.R. Coyle. Improving the strength of fully composite steel-concrete-steelbeam elements by increased surface roughness—an experimental study[J]. EngineeringStructures.2002,24:1349–1355P
    [39]B. McKinley, L.F. Boswell. Behaviour of double skin composite construction[J]. Journalof Constructional Steel Research.2002,58:1347–1359P
    [40]Simon K. Clubley, Stuart S.J. Moy, Robert Y. Xiao. Shear strength of steel–concrete–steelcomposite panels. Part I—testing and numerical modeling of performance[J]. Journal ofConstructional Steel Research.2003,59:781–794P
    [41]Simon K. Clubley, Stuart S.J. Moy, Robert Y. Xiao. Shear strength of steel–concrete–steelcomposite panels. Part II—detailed numerical modeling of performance[J]. Journal ofConstructional Steel Research.2003,59:795–808P
    [42]Xie M, Chapman JC. Static and fatigue tensile strength of friction-welded bar–plateconnections embedded in concrete[J]. Journal of Constructional Steel Research.2005,61:651–673P
    [43]Xie M, Foundoukos N, Chapman JC. Experimental and numerical investigation on theshear behaviour of friction-welded bar–plate connections embedded in concrete[J].Journal of Constructional Steel Research.2005,61:625–649P
    [44]M.Xie, N. Foundoukos, J.C. Chapman. Static tests on steel–concrete–steel sandwichbeams[J]. Journal of Constructional Steel Research.2007,63:735–750P
    [45]N. Foundoukos, J.C. Chapman. Finite element analysis of steel–concrete–steel sandwichbeams[J]. Journal of Constructional Steel Research.2008,64:947–961P
    [46]N. Foundoukosa, M. Xieb, J.C. Chapmanc. Fatigue tests on steel–concrete–steelsandwich components and beams[J]. Journal of Constructional Steel Research.2007,63:922–940P
    [47]M. Xie, J.C. Chapman. Static and fatigue tensile strength of friction-welded bar–plateconnections embedded in concrete[J]. Journal of Constructional Steel Research.2005,61:651–673P
    [48]Liang Qingquan, Uy Brian, Wright Howard D, et al. Local buckling of steel plates indouble skin composite panels under biaxial conpression and shear[J]. J. Struct. Eng.2004,130(3):443-451P
    [49]N.E. Shanmugam, Ghanshyam Kumar, V. Thevendran. Finite Element modeling ofdouble skin composite slabs[J]. Finite Element in Analysis and Design.2002,38(7):579-599P
    [50]O.Dogan, T.M.Roberts. Comparing experimental deformations of steel-concrete-steelsandwich beams with full and partial interaction theories[J]. International Journal of thePhysical Sciences.2010,5(10):1544-1557P
    [51]O.Dogan, T.M.Roberts. Comparison of experimental internal forces with full and partialinteraction theories in steel-concrete-steel sandwich beams[J]. International Journal of thePhysical Sciences.2010,5(15):2322-2334P
    [52]王祖恩,王永喜.钢板夹芯混凝土组合构件非弹性性能试验研究[J].地下空间.1993,13(3):161-170页
    [53]王祖恩,王永喜.钢板与混凝土组合构件的试验分析[J].上海铁道学院学报.1995,16(2):71-77页
    [54]夏志成,徐飞,王永喜.钢板夹芯混凝土组合板垂直抗剪强度的试验研究[J].哈尔滨建筑大学学报.1995,28(5):178-185页
    [55]徐飞,吴凯华,夏志成.钢板夹芯混凝土组合结构的研究[J].中国钢-混凝土组合结构协会第四次年会论文[C],1993
    [56]黄如宾,夏志成等.钢板夹芯混凝土组合板斜截面抗剪分析[J].工程兵工程学院学报.1998,13(4):76-80页
    [57]刘宗贤.表板不等厚钢板混凝土梁的静力计算与分析[J].应用力学学报.1985,2(4):109-128页
    [58]刘宗贤.钢板混凝土梁的动力计算与抗爆分析[J].爆炸与冲击.1985,5(1):24-40页
    [59]刘绍华,刘宗贤,李森.表板不等厚钢板混凝土梁的动力特性分析[J].黑龙江大学自然科学学报.1994,11(4):79-84页
    [60]刘绍华,刘宗贤,李森.表板不等厚钢板混凝土梁的抗爆分析[J].黑龙江大学自然科学学报.1995,12(1):71-74页
    [61]刘宗贤,刘绍华,李森.表板不等厚钢板混凝土梁自由振动分析[J].哈尔滨科学技术大学学报.1995,19(1):94-100页
    [62]刘宗贤,曹志远.钢板混凝土平板结构的动力分析[J].建筑结构学报.1984,4:30-44页
    [63]张新财,王连广,夏玉民.预应力钢板夹芯混凝土组合板界面剪力分析[J].东北大学学报(自然科学版).2009,30(4):597-600页
    [64]王连广,张新财,刘艳艳,等.无粘结预应力钢板夹心混凝土组合板滑移性能分析[J].沈阳建筑大学学报(自然科学版).2009,25(2):272-275页
    [65]张新财,刘晓,王连广,等.基于变分理论的钢板夹心混凝土组合板界面剪力分析[J].东北大学学报(自然科学版).2010,30(4):585-588页
    [66]杨倩.预应力钢板夹芯混凝土组合板受力性能研究[D].东北大学硕士学位论文.2008
    [67]唐春安,朱万成.混凝土损伤与断裂一数值试验[M].北京:科学出版社,2003
    [68]Chiaia B, Vervuurt A, Van Mier J G M. Lattice model evaluation of progressive failure indisordered particle composites[J]. Engineering Fracture Mechanics.1997,57(2/3):301-318P
    [69]Schlangen E, Garboczi E J. Fhacture simulations of concrete using lattice models:computational aspects[J]. Engineering Fracture Mechanics.1997,57(2/3):319-332P
    [70]Van Mier J G M, Vervuurt A, Vliet M R A. Materials engineering of cement-basedcomposites using lattice models[C]. Computational Fracture Mechanics in ConcreteTechnology, Southampton: WIT Press.1999,1-32P
    [71]Van Mier J G M. Fracture Processes of Concrete: Assessment of Material Parameters forFracture Models[C]. Boca Raton, Florida, US: CRC Press, Inc,1997
    [72]Vervuurt A, Schlangen E, Van Mier J G M. Tensile cracking in concrete and sandstone:Part1-basic instruments[J]. Materials and Structure.1996,29:9-18P
    [73]Cundall P E, Hart R G. Numerical modelling of discontinue[J]. EngineeringComputations.1992,9(2):101-113P
    [74]Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J].Geotechnique.1979,29:47-65P
    [75]Zubelewics A, Mroz Z. Numerical simulation of Rockbursts processes treated asproblems of dynamic instability[J]. Rock Mechanics and Rock Engineering.1983,16:253-274P
    [76]Bazant Z P, Tabbara M R. Random particle models for fracture of aggregate or fibercomposites[J]. Journal of Engineering Mechanics.1990,116(8):1686-1705P
    [77]Zhong X X, Chang C S. Micromechanical modeling for behavior of cementitious granularmaterials[J]. Journal of Engineering Mechanics.1999,125(11):1280-1285P
    [78]Mohamed A R, Hansen W. Micromechanical modelling of concrete response under staticloading-Part1: Model development and validation[J]. ACI Materials Journa.1999,96(2):196-203P
    [79]Hong D. Kang, Kaspar William, Benson Shing. Failure analysie of R/C columns using atriaxial concrete model[J]. Computers and Structures.2000,77:423-440P
    [80]Y N.Ziraba, M. H.Baluch. Computational model for reinforced concrete beamsstrengthened by epoxy bonded steel plates[J]. Finite Element in Analysis andDesign.1995,20:253-271P
    [81]Jing Liu, Stephen J.Foster. A three-dimensional finite element model for confinedconcrete structures[J]. Computers and Structures.2000,77:441-451P
    [82]Taljsten B. Strengthening of concrete prisms using the plate-debonding technique[J]. Int JFract.1996,81:253-266P
    [83]刘光廷,王宗敏.用随机骨料模型模拟混凝土材料的断裂[J].清华大学学报.1996,36(1):84-89页
    [84]Tang C A, Hudson J A, Xu X H. Rock failure instability and related aspect of earthquakemechanism[M]. Beijing: China Coal Industry Publishing House,1993
    [85]张娟霞,唐春安,王述红等.偏心加载钢筋混凝土结构破坏过程的数值模拟[J].建筑材料学报.2006,9(1):105-110页
    [86]张娟霞,唐春安,朱万诚,等. FRP加固混凝土构件中裂纹扩展规律的数值模拟[J].工程力学.2006,23(12):143-148页
    [87]杨菊英,张娟霞等. FRP加固钢筋混凝土组合梁破坏机理的数值试验研究[J].辽宁工程技术大学学报.2007,26(2):232-234页
    [88]张娟霞,唐春安等.受拉钢筋混凝土构件破坏过程中的等间距裂缝形成[J].应力力学学报.2007,24(4):646-651页
    [89]张娟霞,杨菊英等.钢筋混凝土构件拉伸破坏过程中的三维模拟研究[J].辽宁工程技术大学学报.2007,26(5):700-702页
    [90]张娟霞,唐春安,王述红等.钢筋混凝土结构破裂过程的数值模拟[J].东北大学学报(自然科学版).2005,26(4):385-288页
    [91]唐烈先,唐春安,唐世斌.混凝土静态破碎的物理试验与数值试验[J].混凝土.2005,8:3-6页
    [92]朱万成,唐春安,齐安文.混凝土三点弯曲试件破坏过程的数值模拟[J].力学与实践.1999,21(5):55-56页
    [93]朱万成,王述红,唐春安.混凝土三点弯曲试验的计算机模拟[J].东北大学学报(自然科学版).1999,20(5):533-535页
    [94]朱万成,黄明利,唐春安.混凝土试件裂纹扩展及破坏过程的计算机模拟[J].辽宁工程技术大学学报.2000,19(3):271-274页
    [95]王述红,唐春安等.混凝土试件内压作用下破裂过程试验[J].混凝土.2004,10:41-57页
    [96]朱万成,唐春安等.混凝土试样在静态载荷作用下断裂过程的数值模拟研究[J].工程力学.2002,19(6):148-153页
    [97]凌丽,唐春安,杨菊英.圆钢管混凝土短柱力学性能三维数值模拟分析[J].混凝土.2008,2:15-19页
    [98]朱浮声,徐爽,唐春安等.混凝土骨料级配对抗压强度影响的数值模拟[J].混凝土.2007,2:8-15页
    [99]朱万成,尚世明,李占海等.动态荷载作用下混凝土破裂的数值模拟[J].建筑材料学报.11(6):709-714页
    [100]黄明丽,朱万成等.动载荷作用下含偏置裂纹三点弯曲梁破坏过程的数值模拟[J].岩石力学与工程学报.2007,26:3384-3389页
    [101]E. S. Andrews. Elementary principles of reinforced concrete construction [M].Scott,Greenwood and Sons.1912
    [102]Yam L.C.P, Chapman J. C.Inelastic behaviour of continuous composite beams of steeland concrete[J]. Proc. Insm Civ. Engrs, Part2,1972,53(12):487-501P
    [103]聂建国,崔玉萍,石中柱等.部分剪力连接钢-混凝土组合梁受弯极限承载力的计算[J].工程力学.2000,17(3):37-42页
    [104]樊健生,聂建国.负弯矩作用下考虑滑移效应的组合梁承载力分析[J].工程力学.2005,22(3):178-182页
    [105]聂建国,周天然,秦凯,等.预应力钢-混凝土组合梁的抗弯承载力研究[J].工业建筑.2003,33(12):1-5页
    [106]聂建国,沈聚敏.滑移效应对钢-混凝土组合梁弯曲强度的影响及其计算[J].土木工程学报.1997,30(1):3l-36页
    [107]聂建国,王洪全.钢-混凝土组合梁纵向抗剪的试验研究[J].建筑结构学报.1997,18(2):13-19页
    [108]付果,姚大海,张磊.部分抗剪连接钢-混凝土组合梁抗弯极限承载力的实用计算方法[J].交通科学与工程.2010,26(3):31-35页
    [109]张培信.钢-混凝土组合结构设计[M].上海:上海科学技术出版社,2004
    [110]Richard Yen J Y, Lin Yiching,Lai M T. Composite beams subjected to static andfatigue loads[J]. J. Struct. Engrg.1997,123(6):765-771P
    [111]聂建国,沈聚敏,袁彦声.钢-混凝土简支梁变形计算的一般公式[J].工程力学.1994,11(1):21-27页
    [112]Bradford, M. A., and Gilbert, R. I. Composite beams with partial interaction undersustained loads[J]. J. Struct. Eng.1992,118(7):1871–1883P
    [113]王连广,刘之洋,曹阅.钢-火山渣混凝土组合梁连接件及交界面滑移分析[J].工业建筑.1995,125(3): l8-23页
    [114]王力,杨大光,孙世钧.钢-混凝土组合滑移及掀起的理论分析方法[J].哈尔滨建筑大学学报.1998,3l(1):37-41页
    [115]王连广,李立新,张海霞.钢骨混凝土结构构件滑移性能研究[J].哈尔滨建筑大学学报.2002,135(5):32-34页
    [116]蒋丽忠,余志武,李佳.均布荷载作用下钢-混凝土组合梁滑移及变形的理论计算[J].工程力学.2003,120(2):133-137页
    [117]余志武,蒋丽忠,李佳.集中荷载作用下钢-混凝土组合梁界面滑移及变形[J].土木工程学报.2003,36(8):l-6页
    [118]Jianguo Nie. Steel-concrete composite beams considering shear slip effects[J]. Journalof Structural Engineering.2003,129(4):495-506P
    [119]Andrea Dall Asta, Alessandro Zona. Slip locking in finite elements for composite beamswith deformable shear connection[J]. Finite Elements is Analysis and Design.2004,40:1907-1930P
    [120]李少龙,章荣国,石启印.新型外包钢-砼T形截面组合梁滑移性能研究[J].苏州科技学院学报(工程技术版).2007,20(1):1-5页
    [121]聂建国,赵洁.钢板-混凝土组合抗弯加固中滑移分布分析[J].清华大学学报(自然科学版).2007,47(12):2085-2088页
    [122]段树金,段艳菊,张志国.钢-混凝土双面结合梁界面在集中荷载作用下的滑移表达[J].石家庄铁道学院学报.2007,20(2):1-4页
    [123]段树金,邵晓辉,牛润明,等.钢-混凝土双面组合连续梁界面滑移试验研究[J].公路交通科技.2009,26(7):95-99页
    [124]Newmark N M, Siess C P,Vies T I M. Test and Analysis of composite beams withincomplete interaction[J]. Experimental Stress Analysis.1951,9(6):896-901P
    [125]R. P. Johnson,I. M. May. Partial-interaction design of composite steel and concretestructure[J]. The Structure Engineering.1975,53(8):305-311P
    [126]Yam L. C. P. Ultimate-load behavior of composite. T-Beams Having Inelastic ShearConnection [D]. London: University of London.1996
    [127]聂建国,王挺,樊健生.钢-压型钢板混凝土组合梁计算的修正折减刚度法[J].土木工程学报.2002,35(4):1-11页
    [128]唐春安.脆性材料破坏过程分析的数值试验方法[J].力学与实践.1999,21(2):21-24页
    [129]梁正召,唐春安,张永彬,等.准脆性材料的物理力学参数随机概率模型及破坏力学行为特征[J].岩石力学与工程学报.2008,27(4):718-727页
    [130]徐涛,林皋,唐春安,等.拉伸载荷作用下混凝土蠕变-损伤破坏过程数值模拟[J].土木工程学报.2007,40(1):28-40页
    [131]Tang C A, KOU S Q. Crack propagation and coalescence in brittle materials undercompression[J]. Engineering Fracture Mechanics.1998,61:311-324P
    [132]LIU H Y, KOU S Q, LINDQVIST P A. Numerical simulation of the fracture process incutting heterogeneous brittle material[J]. International Journal for Numerical andNanlytical Methods in Geomechanics.2002,26:1253-1278P
    [133]汪长安,黄勇,孙哲峰,等.单向纤维布用于混凝土受弯构件的加固和修复[J].建筑材料学报.1999,2(2):171-175页
    [134]吴刚,安琳,吕志涛.碳纤维布用于钢筋混凝土梁抗弯加固的试验研究[J].建筑结构.2000,30(7):3-6页
    [135]杨勇新,岳清瑞,叶列平.碳纤维布加固钢筋混凝土梁受弯剥离承载力计算[J].土木工程学报.2004,37(2):23-28页
    [136]黄彦虎.碳纤维薄板增强砼缺口梁破坏机理及优化设计初探[D].华南理工大学硕士学位论文,2001:47-57页
    [137]黄培彦,黄龙田,罗毅,等.纤维板增强钢筋砼缺口梁承载力试验研究[J].实验力学.2003,18(2):171-176页
    [138]黄培彦,罗立峰,张桂森,等.碳纤维增强混凝土缺口梁承载力试验研究[J].实验力学.2001,16(3):250-255页
    [139]龙志勤,黄彦虎.碳纤维薄板粘贴长度对混凝土应力场的影响[J].茂名学院学报.2003,13(1):34-38页
    [140]孔德清,黄培彦.纤维增强混凝土缺口试件应力场数值分析[J].华南理工大学学报(自然科学版).2000,28(4):1-5页
    [141]Hamstd M A, McCoolskey J D. Detectability of slow crack growth in bridge steels byacoustic emission[J]. Material Evaluation.1999,57(11):1165-1174P
    [142]Jemielniak K, Otman O. Tool failure detection based on analysis of acoustic emissionsignals[J]. Journal of materials processing technology.1998,76:192-197P
    [143]杨盛良,刘军,杨德明,等.复合材料损伤过程的声发射研究方法[J].无损检测.2000,22(7):303-306页
    [144]朱万成,唐春安,杨天.偏三点弯曲岩石试件中裂纹扩展过程的数值模拟[J].东北大学学报(自然科学版).2002,23(6):592-595页
    [145]毛成,邱延峻.沥青混凝土复合型裂纹扩展行为数值模拟[J].公路交通科技.2006,23(10):20-24页
    [146]Guangping Zou, Peixiu Xia. Numerical Testing for Dynamic fracture of three pointbending cement mortar specimen with off-center edge-crack[J]. Key EngineeringMaterials.2007,348-349:533-536P
    [147]阮航.钢板夹心混凝土组合板试验研究与俆变分析[D].沈阳建筑大学硕士学位论文,2011:7-21页
    [148]赵洁,聂建国.钢板-混凝土组合梁的非线性有限元分析[J].工程力学.2009,26(4):105-111页
    [149]赵洁.钢板-混凝土组合抗弯加固的试验研究与理论分析[D].北京清华大学硕士学位论文,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700