五自由度冗余驱动并联机构性能分析与力/位混合控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
并联机构与串联机构在应用范围上是互补关系。相比而言,并联机构具有刚度大、精度高、承载力强等优点,但其工作空间较小、作业空间中存在奇异位形、末端灵活性较差;奇异位形附近性能大幅下降、不可控、刚度较差、承载能力降低、运动精度下降等缺点制约了并联机构的实用化和商业化。冗余驱动方法成为目前并联机构研究领域的新热点,引入了冗余驱动后,可消除或减少奇异位形,扩大其有效工作空间,增加结构刚度,优化驱动器之间的负载分配,均衡并联机构的内力,消除铰链间隙和提高运动精度,使其在速度、刚度、精度、承载能力上达到实用化水平。
     本文提出一种新型的6-PUS/UPU冗余驱动并联机构,针对该机构的相关问题进行深入研究,主要研究内容如下:
     分析了6-PUS/UPU冗余驱动并联机构的自由度,确定了该机构的主要参数,建立了其运动学模型,并对其工作空间进行了分析。
     在对中间约束分支进行详细分析的基础上,建立了6-PUS/UPU冗余驱动并联机构的力平衡方程;利用驱动力范数最小解方法对冗余动力进行优化,求解出冗余驱动分支的驱动力;为冗余驱动改善其它分支驱动力提供了理论依据;基于凯恩法建立了动力学模型。
     分析了6-PUS/UPU机构的运动学及动力学,同时对冗余驱动并联机构的控制进行了研究,提出在运动不受限/受限的情况下,冗余驱动的运动控制、力/位混合控制、力/位同步控制、回零策略等。利用ADAMS软件建立了该机构的虚拟样机,并借助MATLAB中建立了其驱动模型,从而实现了两者的联合仿真,且对比分析了仿真结果与理论计算结果,验证了模型的准确性。
     对6-PUS/UPU机构的需求进行分析,提出一种开放式的SOA/MVC控制系统架构,并基于该架构对6-PUS/UPU控制系统各层进行设计,实现和部署了该控制系统。
     对该冗余驱动并联机构进行了包括控制系统PID参数整定实验、标定实验、控制策略验证实验等一系列实验研究,结果表明冗余驱动并联结构运行平稳,可满足复杂任务的需求,且验证了冗余驱动分支可提高了动平台的定位精度和动力学性能。
     本文的理论和实验研究工作为冗余驱动并联机构的深入研究和工程应用奠定了基础,同时也对其它类型并联机构的理论研究和应用实验研究具有很好的借鉴意义。同时对复杂曲面精密加工、航天器对接等国民经济和国防工业的发展具有重要的理论意义与实用价值。
Parallel mechanisms (PMs) and serial mechanisms form a complementaryrelationship in practical application. Compared with serial mechanisms, PMs performbetter in terms of rigidity, accuracy and carrying capacity, etc. However, itspracticalization and commercialization are restricted for small workspace, singularconfigurations existed in workspace, less flexibility of end-effector and great performancedegradation, uncontrollability, poor rigidity, low carrying capacity, decreased movementaccuracy near the singular configurations. As a new hot topic in the field of PMs,redundant actuation could reduce or eliminate the singular configurations, enlargeeffective workspace, improve structural rigidity, optimize load distribution betweenactuations, balance internal forces of PMs, eliminate the hinge gap and improve themovement precision to reach the practical level in velocity, rigidity, accuracy and carryingcapacity.
     The dissertation puts forward a novel6-PUS/UPU redundantly actuated PM andresearches the relevant issues in-depth aimed at the PM. The main contributions are asfollows:
     Firstly, the degree of freedom(DOF) and main parameters of6-PUS/UPUredundantly actuated PM are determined, and its kinematics model is established.Meanwhile, its work space is analyzed.
     Secondly, based on the detailed analysis of the intermediate constrained limb, forceequilibrium equation of the6-PUS/UPU redundantly actuated PM is established. Inaddition, the driving force of redundant actuation limb is created by using norm minimumto optimize redundant driving force, which provides theoretical basis to improve themechanical performance of other driving limbs. Moreover, the dynamics model isestablished by Kane.
     Thirdly, on the basis of the kinematics and dynamics analysis, the control system ofthe redundantly actuated PM is studied. And the motion control, force/position hybridcontrol, force/position synchronization control and zero-returning strategy are developed in condition of the movement unrestricted/restricted. Moreover, the virtual prototype ofthe PM is built by ADAMS software and the driving model by MATLAB software tocomplete the co-simulation. Besides, the simulation and the theoretical calculations areanalyzed comparatively and verify mutual model accuracy.
     Fourthly, based on analyzing6-PUS/UPU demand, the open SOA(Service-OrientedArchitecture)/MVC(Model View Controller) control system architecture is proposed.Moreover, the control system of6-PUS/UPU PM is designed and implemented based onthe framework.
     Finally, a series of experimental investigations for the redundantly actuated PM areconducted, including PID parameter tuning, calibration, control strategy verification, etc.The experimental results show that the redundantly actuated PM operates smoothly andmeet the needs of complex tasks. What’s more, it also verifies that the redundant drivinglimb improves the positioning accuracy and dynamic performance of the moving platform.
     The theoretical and experimental researches of the dissertation lay the foundation offurther study and engineering applications of redundantly actuated PMs, and also offer agood reference for theoretical and experimental studies of other types of PMs. At the sametime, this work will be complicated surface precision machining, spacecraft docking thenational economy and national defense industrial development has important theoreticalsignificance and practical value.
引文
[1].黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997:2-3,29,36-64.
    [2].丛爽,尚伟.并联机器人:建模、控制优化及应用[M].北京:电子工业出版社,2010:1-2.
    [3].日本机器人学会编,宗光华,等译.新版机器人技术手册[M].北京:科学出版社,2007:292-298.
    [4].Merlet J P. Parallel Robots(Second Edition)[M]. Netherlands:Springer,2006:12-13.
    [5].Dasgupta B, Mruthyunjaya T. Force Redundancy in Parallel Manipulators: Theoretical andPractical Issues[J]. Mechanism and Machine Theory,1998,33(6):727–742.
    [6].Conkur E S, Buckingham R. Clarifying the Definition of Redundancy as Used in Robotics[J].Robotica,1997,15(5):583-586.
    [7].Gallardo-Alvarado J, Aguilar-Nájera C R, Casique-Rosas L, et al. Kinematics and Dynamics of2(3-RPS)Manipulators by Means of Screw Theory and The Principle of Virtual Work[J].Mechanism and Machine Theory,2008,43(10):1281-1294.
    [8].Wang J, Gosselin C M. Kinematic Analysis and Design of Kinematically Redundant ParallelMechanisms[J]. ASME J Mech Des,2004,126(1):109-118
    [9].Chakarov D. Study of The Antagonistic Stiffness of Parallel Manipulators with ActuationRedundancy[J]. Mech Mach Theory,2004,39(6):583-601.
    [10].S nke Kock, Walter Schumacher. Redundant Parallel Kinematic Structures and Their Control[J].Springer Tracts in Advanced Robotics,2011,67:143-157.
    [11].Nokleby S B, Fisher R, Podhorodeski R P, Firmani F. Force Capabilities of Redundantly ActuatedParallel Manipulators[J]. Mech Mach Theory,2005,40(5):578-599.
    [12].窦玉超,姚建涛,侯雨雷,等.65米射电望远镜副面调整系统姿态精度监测与回零策略[J].机器人,2012,34(4):399-404.
    [13].Ellis G W. Piezoelectric micromanipulators[J]. Science Instruments and Techniques,1962,138:84-91.
    [14].Lee K M, Argument S. A3-DOF Micro-Motion In-Parallel Actuated Manipulator[C]. Proc IEEEConf Robt,1989:1698-17031.
    [15].Hudgens J C, Tesar D. A Fully-parallel Six Degree-of-freedom Micromanipulator: KinematicAnalysis and Dynamic Model[C]. Proc.20th Biennal ASME Mechanisms Conference Trends andDevelopment in Mechanisms Machines and Robotics,1988,15(3):29-37.
    [16].Clavel R, Delta. A Fast Robot with Parallel Geometry[C], The18th Int Symposium on IndustrialRobots(ISIR’98), Sydney, Australia,1988:97-100.
    [17].吴秀平.基于Diamond机械手的大批量、多类型锂电池分选装备的研究与开发[D].天津:天津大学硕士学位论文,2007:20-26.
    [18].Yi B J, Freeman R, Tesar D. Force and Stiffness Transmission in Redundantly ActuatedMechanisms: The Case for A Spherical Shoulder Mechanism[J].Robotics, Spatial Mechanisms andMechanical Systems,1994,45:163-172.
    [19].Zanganeh K E, Angeles J. Mobility and Position Analysis of A Novel Redundant ParallelManipulator[C]. IEEE International Conference on Robotics and Automation,1994:3049-3054.
    [20].Yi B J,Oh S R, Suh I H. A Five-bar Finger Mechanism Involving Redundant Actuators:Analysisand Its Applications[J]. IEEE Transactions on Robotics and Automation,1999,15(6):10001-1010.
    [21]. Ryu S J, Kim J W, J C Hwamg, et al. An Over Actuated Parallel Mechanism for RapidMachining[C].Proc ASME Int Mechanical Engineering Congress and Exposition, USA,1998,8:681-689.
    [22].Kim J, Hwang J C, Kim J S, et al. Eclipse II: A new Parallel Mechanism Enabling Continuous360-degree Spinning Plus Three-axis Translational Motions[J]. IEEE Transactions on Roboticsand Automation,2002,18(3):367-373.
    [23].In W, Lee S, Jeong J I, et al. Design of a Planar-type High Speed Parallel Mechanism PositioningPlatform with The Capability of180Degrees Orientation[J]. CIRP Annals ManufacturingTechnology,2008,57(1):421-424.
    [24].Marquet F, Krut S,Company O, et al. A Redundant Mechanism for Machining with UnlimitedRotation Capacities[C]. In Proc of ICAR, Budapest, Aug,2001:683-689.
    [25].Sébastien Krut, Oliver Company, Sani Rangsri, et al. Eureka: A New5-Degree-of-FreedomRedundant Parallel Mechanism with High Tilting Capabilities[C]. Proceeding of The2003IEEE/RSJ Intl Conference on Intelligent Robots and Systems, Las Vegas,2003,evada:3575-3580.
    [26].Han Xianguo, Chen Wuyi. Study on The Kinematics of A New Redundant Actuated PKMs[C].7th International Conference on Progress of Machining Technology,China,Beijing,2004:424-429.
    [27].Wu Jun,Wang Jinsong, Wang Liping, et al. Dynamics and Control of a Planar3-DOF Manipulatorwith Actuation Redundancy[J].Mechanism and Machine Theory,2009,44(4):835-849.
    [28].沈辉.并联机器人的几何分析理论和控制方法研究[D].长沙:国防科学技术大学控制科学与工程学科博士学位论文,2003:23-34.
    [29].张立杰,黄真.一种球面冗余并联机器人机构设计的基础研究[J].中国机械工程,2006,17(7):681-683.
    [30].张立杰,李永泉,史文雅.一种球面2-DOF冗余驱动并联机器人的优化设计[J].机械设计与研究,2009,25(2):60-64.
    [31].Zhao Y J, Gao F. Inverse Dynamics of The6-dof Out-parallel Manipulator by Means of ThePrinciple of Virtual Work [J].Robotica,2009,27(2):259-268.
    [32].Zhao Y J,Gao F.Dynamic Formulation and Performance Evaluation of The Redundant ParallelManipulator [J]. Robotics and Computer-Integrated Manufacturing,2009,25(4/5):770-781.
    [33].李喜先.21世纪100个交叉科学难题[M].科学出版社,2005:646-655.
    [34].Innocenti C, Castelli V P. Closed-Form Direct Position Analysis of A5-5ParallelMechanism[J].ASME Journal of Mechanical Design,1993,115:515-521.
    [35].倪振松,廖启征,魏世民,等.基于共形几何代数的一种平面并联机构位置正解[J].北京邮电大学学报,2010,33(2):7-10.
    [36].曾达幸,黄真,侯雨雷.一种新型三维平动并联机构及其位置分析[J].中国机械工程,2008,19[2]:239-241.
    [37].高征,高峰.6自由度3_UrRS并联机构的位置正解分析.机械工程学报[J],2007,43(12):171-177.
    [38].Innocenti C,Castelli V P. Forward Kinematics of the General6-6Fully Parallel Mechanism:AnExhaustive Numerical Approach Via A Mono–Dimensional-Search Algorithm[J]. ASME Journalof Mechanical Design,1993(115):932-937.
    [39].沈辉,吴学忠.基于区间对分搜索法的并联机构位置正解问题求解[J].机械科学与技术,2004,23(2):185-188.
    [40].刘安心,杨廷力.求一般6_SPS并联机器人机构的全部位置正解[J].机械科学与技术,1996,15(4):543-546.
    [41].王玉新,王仪明,柳杨,朱殿华.对称结构Stewart并联机器人的位置正解及构型分析[J].中国机械工程,2002,13(9):734-737.
    [42].冯志友,张策,杨廷力.基于序单开链法的空间4自由度并联机构位置正解[J].机械工程学报,2006,42(7):35-38.
    [43].罗佑新,黎大志.求一般6_SPS并联机器人机构的全部位置正解的混沌迭代方法[J].工程设计学报,2003,10(2):70-74.
    [44].何兵,车林仙.载波混沌Newton法在并联机构位置正解中的应用[J].机械传动,2010,34(1):11-15.
    [45].何兵,车林仙,罗佑新.求十面体变几何桁架机器人位置正解的改进粒子群算法[J].机械设计,2008,25(11):31-34.
    [46].车林仙,何兵,易建,等.对称结构Stewart机构位置正解的改进粒子群算法[J].农业机械学报,2008,39(10):158-163.
    [47].李明磊,贾育秦.6_SPS并联机构位置正解的改进粒子群算法[J].现代制造工程,2009,(5):106-110.
    [48].孙坚,丁永生,郝矿荣.基于改进粒子群优化算法的并联机构位置正解法[J].制造业自动化,2010,32(4):92-95.
    [49].潘芳伟,卢菊洪,贺利乐.基于模糊遗传算法的新型六自由度并联机器人运动学分析[J].机床与液压,2009,37(1):37-40.
    [50].车晓毅,何哲明,罗佑新.平面并联机构位置正解的粒子群复形法[J].机械设计,2009,26(3):46-48.
    [51].宋建军,闫献国,李明磊,杜娟.基于PSO_Newton的并联机构位置正解研究[J].机械传动,2010,34(10):8-11.
    [52].季晔,刘宏昭,范彩霞,乔战宏.新型2T2R并联机构及其位置求解[J].应用科学学报,2010,28(5):546-550.
    [53].Thomas M, Tesar D. Dynamic Modeling of Serial Manipulator Arms[J]. J of Dyn Sys Meas andCont,1982.104(9):218-227.
    [54].Mohamed M G, Duffy J. A Direct Determination of Instantaneous Kinematics of Fully ParallelRobot Manipulators[J]. ASME J Mech Trans Aut Des,1985,107:226-229.
    [55].黄真.平行支路机械手动力模型(一)系数矩阵[J].东北重型学院学报,1985.(4):36-44.
    [56].黄真.平行支路机械手动力模型(二)模型建立及实例[J].东北重型学院学报,1986.(2):40-47.
    [57].黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006.5:169-170,1-26.
    [58].Gosselin C. Determination of the workspace of62DOF parallel manipulators[J]. ASME J MechDes,1990,112(3):331-336.
    [59].Merlet J P. Geometrical Determination of Workspace of A Constrained Parallel Manipulators[C].ARK. France,1992:326-329.
    [60].黄田,汪劲松,D.J.Whitehouse.Stewart并联机器人位置空间解析[J].中国科学E辑:技术科学.1998,28(02):136-145.
    [61].刘辛军,张立杰等.基于AutoCAD平台的六由度并联机器人位置工作空间的解析求解方法[J],机器人,2000,22(6):457-464.
    [62].张立杰,刘辛军.球面三自由度并联机器人可达工作空间的研究[J].中国机械工程,2001,(10):1122-1125.
    [63].Cheng H, Liu G F, Xiong Z H, et al.Advantages and Dynamics of Parallel Manipulators withRedundant Actuation[C].Proc of IEEE/RSJ Int Conf on Intelligent Robots and Systems,2001:171-176.
    [64].Hyung Wook Kim, Jae Hoon Lee, Il Hong Suh, et al. Comparative Study and ExperimentalVerification of Singular-free Algorithms for a6DOF Parallel Haptic Device[J]. Mechatronics,2005,15(4):403-422.
    [65].J Gallardo-Alvarado,G Alici, L Pérez-González.A New Family of Constrained Redundant ParallelManipulators[J]. Multibody Syst Dyn,2010,23:57-75.
    [66].吴宇列,吴学忠,李圣怡.冗余并联机构的分类研究[J].机械科学与技术,2002,21(1):1-2.
    [67].Cheng H, Liu G F, Yiu Y K, et al. Advantages and Dynamics of Parallel Manipulators withRedundant Actuation[C]. IEEE International Conference on Intelligent Robots and Systems,Hawaii, USA,2001:171-176.
    [68].沈辉,吴学忠,李圣怡,等.并联机构的奇异位形分析及冗余驱动控制方法[J].国防科技大学学报,2002,24(2):91-94.
    [69].Shen Hui, Wu Xue-Zhong, Liu Guan-Feng, et al. Hybrid Position/Force Adaptive Control ofRedundantly Actuated Parallel Manipulators[J]. ACTA AUTOMATICA SINICA,2003,29(4):567-572.
    [70].张立杰,刘颖,黄真.平面2自由度驱动冗余并联机器人的性能分析[J].机械工程学报,2006,42(7):181-185.
    [71].张立杰,刘颖.一种平面冗余驱动并联机器人的优化设计[J].机械设计与研究,2007,23(4):35-38.
    [72].刘大炜,王立平,关立文.一个特殊3自由度并联机构的精度分析及标定[J].机械工程学报,2010,46(9):46-51.
    [73].黄鹏,汪劲松,王立平等.3-PRS并联机构误差运动学分析及标识[J].清华大学学报:自然科学版,2010,50(11):1811-1814.
    [74].刘伟,赵剑波,高峰,等.一种低成本的并联机器人运动学标定方法[J].中国机械工程,20(8),2009:960-964.
    [75].高建设.新型五自由度并联机床驱动输入选择与运动学标定研究[D].秦皇岛:燕山大学机械电子工程学科博士学位论文,2006:16-18,49-51.
    [76].Philipp Last, Annika Raatz, Jürgen Hesselbach. Parallel Robot Calibration Utilizing AdaptronicJoints[C].ASME2008International Design Engineering Technical Conferences and Computersand Information in Engineering Conference,Brooklyn, USA,2008:P1277-1284.
    [77].何小妹,丁洪生,付铁,等.并联机床运动学标定研究综述[J].机床与液压,2004,(10):9-11,13.
    [78].彭斌彬,高峰.并联机器人的标定建模.机械工程学报[J].2005,41(8):132-135.
    [79].刘文涛,唐德威,王知行.Stewart平台机构标定的鸡尾酒法[J].机械工程学报,40(12),2004:48-52.
    [80].金振林,高峰.新型6-PSS微操作机器人的静力分析基础研究[J].机械传动.2001,25(2):11-15.
    [81].丁洪生,李金泉,付铁.BKX-I型并联机床的准静力学分析[J].机械设计与研究.2002,18(3):39-41.
    [82].孟祥志,王艳,蔡光起.一种三杆并联机床的静力分析[J].中国机械工程.2004,15(14):1231-1235.
    [83].尹小琴,马履中,杨启志,等.并联机构静力学分析[J].农业机械学报.2007,38(2):201-203.
    [84].罗建国,何茂艳,陆震,等.2PPPPS_R_2PPPPS串并联机构动力学与静力学分析[J].机械设计.2008,25(4):32-37.
    [85].高峰,张彦斐,宫金良.PSS型冗余输入并联机构静力学与运动学分析[J].机械设计与研究.2006,22(1):20-23.
    [86].黄真,赵永生.空间多关节六足步行机超确定输入能量最优解析[J].机械工程学报,1989,25(4):20-25.
    [87].蔡胜利,白师贤.冗余驱动的平面并联操作手的输入力优化[J].北京工业大学学报,1997,23(2):37-41.
    [88].Buttolo P, Hannaford B.Pen-based Force Display for Precision Manipulation in VirtualEnvironments[C].Proc IEEE Virtual Reality Annual Tnt Symp, North Carolina,1995:217-224.
    [89].Müller, A. Internal Preload Control of Redundantly Actuated Parallel Manipulators-ItsApplication to Backlash Avoiding Control[J]. IEEE Trans Robot,2005,21(4):668-677.
    [90].Nahon M A, Angeles J. Minimization of Power Losses in Cooperating Manipulators[J].Transactions of The ASME Journal of Dynamic Systems, Measurement, and Control,1992,114(2):213-219.
    [91].Tao J M, Luh J Y S. Coordination of Two Redundant Manipulators[C]. Proceedings of The IEEEInternational Conference on Robotics and Automation. Scottsdale, USA,1989:425-430.
    [92].Merlet, J.P.: Redundant parallel Manipulators[J]. Rep Lab Robot Autom,1996.8(1):17-24.
    [93].Zhao Y S, Ren J Y, Huang Z. Dynamic Loads Coordination for Multiple Cooperating RobotManipulators[J]. Mechanism and Machine Theory,2000,35(7):985-995.
    [94].Garg V, Nokleby S B, Carretero J A. Wrench Capability Analysis of Redundantly ActuatedSpatial Parallel Manipulators[J]. Mechanism and Machine Theory,2009,44(5):1070-1081.
    [95].Bhaskar Dasgupta, T S Mruthyunjaya. A Newton-Euler Formulation for The Inverse Dynamics ofThe Stewart Platform Manipulator [J]. Mechanism and Machine Theory,1998,33(8):1135-1152.
    [96].G Lebret, K Liu, F L Lewis. Dyamic Analysis and Control of A Stewart Platform Manipulator [J].Journal of Robotic Systems,1993,10(5):629-655.
    [97].Wang J, Gosselin CM. A New Approach for The Dynamic Analysis of Parallel Manipulators[J].Multibody System Dynamics,1998,2(3):317-334.
    [98].吕帮俊,朱石坚,邢继峰,等.基于虚功原理的Stewart机构逆动力学模型修正[J].机械设计与研究,2010,26(4):42-53.
    [99].Lu Y, Hu B. Unification and Simplification of Dynamics of Limited-dof Parallel Manipulatorswith Linear Active Legs [J].International Journal of Robotics and Automation,2010,25(2):45-53.
    [100].李兵,王知行,李建生.基于凯恩方程的新型并联机床动力学研究[J].机械科学与技术,1999,18(1):41-43.
    [101].李新友,陈五一,韩先国.基于Kane方程的3UPS/S并联机构动力学研究[J].机床与液压,2011,39(13):1-5.
    [102].Wang S C, Hikita H, Kubo H, et al. Kinematics and Dynamics of A6Degree-of-Freedom FullyParallel Manipulator with Elastic Joints[J].Mechanism and Machine Theory,2003,38(5):439-461.
    [103].SugimotoK. Kinematic and Dynamic Analysis of Parallel Manipulators by Means of MotorAlgebra [J]. ASME Journal of Mechanical Design,1987,109(1):3-7.
    [104].Wu F X, Zhang W J, Li Q, et al. Integrated Design and PD Control of High-Speed Closed-LoopMechanisms[J].J Dyn Syst Meas Control,2002,124(4):522-528.
    [105].Ouyang P R, Zhang W J, Wu F X. Nonlinear PD Control for Trajectory Tracking withConsideration of The Design for Control Methodology[C].Proc IEEE Int Conf Robot Autom,Washington, DC,2002:4126-4131.
    [106].Begon P, Pierrot F, Dauchez P.Fuzzy Sliding Mode Control of A Fast Robot[C]. Proc IEEE IntConf Robot Autom,Nagoya, Japan,1995:1178-1183.
    [107].Li Q, Wu FX. Control Performance Improvement of A Parallel Robot Via The Design forControl Approach[J]. Mechatronics,2004,14(8):947-964.
    [108].Liu G F, Li Z X.A Unified Geometric Approach to Modeling and Control of ConstrainedMechanical Systems[J]. IEEE Trans Robot Autom,2002,18(4):574-587.
    [109].Aghili F.A unified Approach for Inverse and Direct Dynamics of Constrained MultibodySystems Based on Linear Projection Operator:Applications to Control and Simulation[J].IEEETrans Robot Autom,2005,21(5):834-849.
    [110].Kim H S, Cho Y M, Lee K I. Robust Nonlinear Task Space Control for6-DOF ParallelManipulator[J].Automatica,2005,41:1591-1600.
    [111].Vivas A, Poignet P.Predictive Functional Control of A Parallel Robot[J].Control Eng Pract,2005,13:863-874.
    [112].Shang W W, Cong S, Zhang Y X.Optimal Control on Parallel Mechanism with Planar2-DOFRedundant Drives[J].J Mach Des,2006,23(8):16-19.
    [113].Walker M W. Adaptive Control of Manipulator Containing Closed Kinematic Loops[J]. IEEETrans Robot Autom,1990,6(1):10-19.
    [114].Honegger M, Codourey A, Burdet E.Adaptive Control of The Hexaglide, A6-DOF ParallelManipulator[C]. Proc IEEE Int Conf Robot Autom, Albuquerque, NM,1997:543-548.
    [115].Sirouspour M R, Salcudean S E.Nonlinear Control of Hydraulic Robots[J]. IEEE Trans RobotAutom,2001,12(2):173-182.
    [116].Yiu Y K, Li Z X. PID and Adaptive Robust Control of A2-DOF Over-Actuated ParallelManipulator for Tracking Different Trajectory[C].Proc IEEE Int Symp Comp Intell Robot Autom,Kobe, Japan,2003:1052-1057.
    [117].Weiwei Shang, Shuang Cong. Nonlinear Adaptive Task Space Control for A2-DOFRedundantly Actuated Parallel Manipulator[J]. Nonlinear Dyn,2010(59):61-72.
    [118].Andreas Müller. Problems in The Control of Redundantly Actuated Parallel Manipulators Causedby Geometric Imperfections[J]. Meccanica,2011,(46):41-49.
    [119].A Müller, T Hufnagel. Model-Based Control of Redundantly Actuated Parallel Manipulators inRedundant Coordinates[J]. Robotics and Autonomous Systems,2012,(60):563-571.
    [120].Li Cheng,Hongbin Wang,Yongsheng Zhao.Analysis and experimental investigation of parallelmachine tool with redundant actuation.ICIRA2008,Part I,LNAI5314,2008:179-188.
    [121].张荣,薛国民.修正的三次收敛的牛顿迭代法[J].大学数学,2005,21(1):80-82.
    [122].段艳宾,梁顺攀,曾达幸,等.6-PUS/UPU并联机器人运动学及工作空间分析[J].机械设计,2011,28(3):36-40.
    [123].Clément M. Gosselin.The Optimum Design of Robotic Manipulators Using DexterityIndices[J].Robotics and Autonomous Systems,1992,9(4):213-226.
    [124].Y Koren.Cross-Coupled Biaxial Computer Controls for Manufacturing Systems[J].ASMEJournal of Dynamic Systems, Measurement, and Conrrol.1980,102(2):256-272.
    [125].兰天,刘伊威,陈养彬,等.机器人灵巧手基于关节交叉耦合同步控制[J].机器人,2010,32(2):150-156.
    [126].王志军.双层预紧式六维力传感器理论与应用研究[D].秦皇岛:燕山大学机械电子工程学科博士学位论文,2012:119-121,64.
    [127].吴遥.基于六维力传感器的柔顺装配理论与实验研究[D].秦皇岛:燕山大学机械电子工程学科硕士学位论文,2012:9-20.
    [128].郑魁敬,赵永生.基于PMAC的并联机床运动控制技术.[J].机床与液压,2004,(8):36-39.
    [129].Lianhe Guo, Shuai Wang, Shunpan Liang, et al.Error Analysis and Measurement of6PUS-UPSParallel Machine Tool[J].Applied Mechanics and Materials.2012,317-319(2012):2016-2020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700