双层皮玻璃幕墙通风性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机的爆发及建筑高能耗为传统玻璃幕墙的使用带来了空前的压力,然而双层皮玻璃幕墙(Double Skin Fa?ade,简称DSF)的出现为建筑师们提供了另外一种选择,其优越的美学性能、隔声性能和采光性能使其深受建筑设计师们的喜爱。另外一个方面,与传统玻璃幕墙及其他围护结构相比,DSF的使用增强了围护结构对气候变化的适应性,同时改变了建筑自然通风的利用策略及建筑室内热环境等。本文从DSF通风性能角度,分别对1)DSF与房间之间未设置风口,2)DSF与房间之间设置风口两种情况:DSF内及与其相连房间内通风情况、室内热环境、空气品质、空调能耗进行了深入的分析和探讨。
     本文首先运用理论分析方法,通过建立经验计算公式,深入研究分析了热压和风压作用下DSF自然通风的作用原理,建立热压作用下自然通风量和风压作用下DSF外表皮压力经验计算公式。然后,以重庆某新建DSF建筑作为工程案例,分别在冬季(2月)和夏季(7月)对其DSF内通风情况、温度及室内热环境进行现场测试,分析测试结果,发现该工程案例DSF设计合理及不合理的地方。最后,运用动态流体模拟软件(CFD)Airpark,以该工程案例为载体,选取7月25日为代表日,从DSF内及室内通风情况、室内空气品质的角度,对其进行模拟研究,根据研究结果提出了DSF设置措施;运用能耗模拟软件EnergyPlus,以该工程案例为载体,选取7月25日为代表日,从室内空调能耗角度,对其进行模拟研究;利用能耗模拟软件EnergyPlus烟囱效应模块,当DSF与房间设置风口时,深入研究分析了风口尺寸对空调能耗的影响。
     DSF内通风性能受到室外风向分布、室外风速、DSF风口设置及DSF朝向的影响。根据重庆气象特征,针对通风性能而言,西北向为DSF设置的最佳朝向。DSF在夏季降低室内温度及控制室内温度作用明显,夏季室外温度达到37℃时,室内内热源较小的情况下,DSF可调控室内温度到30℃以下,且室内温度集中在25℃~30℃,并未随室外温度的变化而变化。提高DSF内风速不仅可以迅速移走DSF内得热量,同时还能增加DSF太阳辐射得热量,减少与其相连房间太阳辐射得热量。当DSF与房间设置风口时,DSF及室内通风情况和室内空气品质受DSF开口设置影响较大,且DSF烟囱效应和建筑空调能耗都受到该风口尺寸的影响。
In recent years, the architects have a great deal of interest in double-skin facades ( DSF ) due to the advantages claimed for this technology in terms of energy saving, aesthetic, daylight, protection from external noise. Comparing to the traditional glass curtain wall, the double-skin fa?ade is more suite for the change of the climate. It improves the natural ventilation utilized and the indoor thermal environment. This article study how natural ventilation can be utilized in the DSF and the room, 1) when there have no openings between DSF and the room, 2) when there have openings between DSF and room.
     Firstly, this paper takes the theoretical analysis method to analyses the flow action principle of DSF by the stack effect and the wind pressure, and has established the experience formula of ventilation rate for DSF by stack effect and the out-skin pressure of DSF by wind pressure. Then, experiments have been performed, to a new building with DSF in February and July in Chongqing, which is taken as project case. The results obtained from the experiments and analysis, indicate that there are some design problems for the DSF of the building in winter. At last, simulations have been performed, to the project case. CFD software is used to analyses the flow of the DSF and the room, the indoor air quality. Energyplus is used to analyses the energy consumption of the building without DSF and with DSF.
     The flow of the DSF is influenced by the outdoor wind direction distribution, outdoor wind speed, the opening of the DSF and the direction of the DSF. According the weather in Chongqing, as for the ventilaton, the best direction for the DSF is northwest. The DSF have good ability for reducing the indoor temperature and controling the indoor temperature, and it can control the indoor temperature to 25℃~30℃for the building with low internal heat, when the outdoor temperature is 37℃. Improving the speed of the flow is not only removing the heat gain of the DSF quickly, but also increase the solar radiation heat gain of the DSF, so that it can reduce the solar radiation heat gain of the room which with the DSF. The opening of the DSF influences the flow of the room and the DSF, but also the air quality of the room, when there have opeenings between DSF and room. The flow of the DSF can be improved by change the opening of the DSF, and the energy consumption of the building with DSF also can be reduced. The stack effect of the DSF and the energy consumption of the building are both influenced by the size of the openings between the DSF and the room.
引文
[1]李楠,人员行为对住宅建筑能耗的影响研究:[D],重庆:重庆大学,2011.
    [2]中国统计年鉴2010[M],中华人民共和国国家统计局,2010.
    [3]涂逢祥,建筑节能势在必行,建筑装饰材料世界[J],2004,(4):16-17.
    [4]中国建筑节能年度发展研究报告2009[M],清华大学建筑节能中心,中国建筑工业出版社,2009.
    [5]宋秋芝,我国玻璃幕墙发展现状及趋势,玻璃深加工[J],2009,(2):29-31.
    [6]刘猛,绿色建筑透明围护结构性能研究:[D],上海:同济大学,2009.
    [7]王振,夏热冬冷地区双层皮玻璃幕墙的气候适应性设计策略研究:[D],武汉:华中科技大学,2004.
    [8]李保峰,“双层皮”幕墙类型分析及应用展望[J],建筑学报,2001:28-31.
    [9] E. Oesrle, R. Lieb, M. Lutz, W. Heusler, Double-Skin Facades-Integrated Planning[J], Pretel, Germany, 2001.
    [10] R. Hoseggen, B.J. Wachefeldt, S.O. Hanssen, Building simulation as an assisting tool in decision making Case study: With or without a double-skin fa?ade?[J], Energy and Buildings, 2008: 821-827.
    [11] Cheol-Soo Park, Godfried Augenbroe, Calibration of a lumped simulation model for double-skin fa?ade systems [J], 2004: 1117-1130.
    [12] Teshome Edae Jiru, Fariborz Haghighat, Modeling ventilated double skin fa?ade—A zonal approach [J], Energy and Buildings, 2008: 1567-1576.
    [13] P.C.Wang, D. Prasad, M. Behnia, A new type of double-skin fa?ade configuration for the hot and humid climate [J], Energy and Buildings, 2008: 1941-1945.
    [14] Elisabeth Gratia, Andre De Herde, The most efficient position of shading devices in a double-skin fa?ade [J], Energy and Buildings, 2007: 364-373.
    [15] W.J. Stec, A.H.C. van Paassen, A. Maziarz, Modelling the double skin fa?ade with plants [J], Energy and Buildings, 2005: 429-427.
    [16] M. Hasse, F. Marques da Silva, A. Amato, Simulation of ventilated in hot and humid climates[J], Energy and Buildings, 2009(41): 361-373.
    [17] Juan Zhou, Youming Chen, A review on applying ventilated double-skin fa?ade to builindings in hot-summer and cold-winter zone in China[J], Renewable and Sustainable Energy Reviews, 2010(14): 1321-1328.
    [18] W.K. Chow, W.Y. Hung, Effect of cavity depth on smoke spreading of double-skin fa?ade[J],BUILING AND ENVIRONMENT, 2006: 970-979.
    [19] Alexandra Pappas, Zhiqiang Zhai, Numerical investigation on thermal performance and correlations of double skin fa?ade with buoyancy-driven airflow[J], Energy and Buildings, 2008: 466-475.
    [20] Ali Fallahi, Fariborz Haghighat, Hafia Elsadi, Energy performance assessment of double-skin fa?ade with thermal mass[J], Energy and Buildings, 2010(42): 1499-1509.
    [21] Lei Xu, Toshio Ojima, Field experiments on natural energy utilization in a residential house with a double skin fa?ade system[J], BUILDING AND ENVIRONMENT, 2007(42): 2014-2023.
    [22] M.A. Shameri, M.A. Alghoul, et al, Perspectives of double skin fa?ade systems in buildings and energy saving[J], 2011(15): 1468-1475.
    [23] W.J. Stec, A.H.C. van Paassen, Symbiosis of the double skin fa?ade with the HVAC system[J], Energy and Buildings, 2005(3): 461-469.
    [24] Peith Andras, Evaluation and optimization of a double skin facade with the help of computational simulations [J], BAUPHSIK, 2011, 32(2): 111-117.
    [25] Seok Ho-Tae, Establishing the Design Process of Double-Skin Facade Elements through Design Parameter Analysis [J], JOURNAL OF ARCHITECTURE AND BUILDING ENGINEERING, 2009, 8(1): 251-258.
    [26] Oesterle E, Lieb R-D, Lutz, et al, Double Skin Fa?ade-Intergrated Planning Munich[J]: New York: Prestel, 2001: 53-79.
    [27] Jorn von Grabe, A prediction tool for the temperature field of double fa?ades[J], Energy and Bulidings, 2002: 891-899.
    [28] A. Zallner, E.R.F. Winter, Expermental studies of combined heat transfer in turbulent mixed convection fluid flows in double-skin fa?ades [J], International Journal of Heat and Mass Transfer, 2002, 45(22): 4401-4408.
    [29] Zerrin Yilmaz, Ferit Cetintas, Double skin fa?ades effects on heat losses otottice buildings in Instanbul [J], Energy and Bulidings, 2005(37): 691-697.
    [30] Rayment, Energy savings from sealed double and heat reflecting glazing units[J], Building Services Engineering Reseacrh&Technology, 1989, 10(3): 691-697.
    [31] Elisabeth Gratia, Andre De Herde, Greenhouse effect in double-skin fa?ade[J], Energy and Buildings, 2007: 199-211.
    [32] N. Hashmi, R.Fayaz, M.Sarshar, Thermal behaviour of a ventilated double skin fa?ade in hot arid climate[J], Energy and Buildings, 2010(42): 1823-1832.
    [33]张桂先,陈立东,丁鸥,CFD流体模型在双层换热幕墙传热分析中的应用[J].工程建设与设计,2003(9):4-7.
    [34]朱清宇,杜国付,邹瑜,内呼吸玻璃幕墙综合传热系数CFD模拟计算[J],暖通空调,2005,35(6):101-106.
    [35] A.L.S. Chan, T.T. Chow, K.F. Fong, Z. Lin, Invsetigation on energy performance of double skin fa?ade in Hong Kong[J], Energy and Buildings, 2009(41): 1135-1142.
    [36] K.A.R.Ismail,J.R.Henriquez. Two-dimensional model for the double glass naturally ventilated window[J]. International Journal of Heat and Mass Transfer. 2005(48): 461-475.
    [37] Saelens D, Energy Performance assessment of multiple-shin fa?ade: [Ph.D.dissertation]. Leuven Laboratory for Building Physics, Department of Civil Engineering, Catholic University of Leuven, 2002.
    [38] Haifa EI-Sadi, Fariborz Haghighat, Ali Fallahi, CFD Analysis of Turbulent Natural Ventilation in Double-Skin Fa?ade: Thermal Mass and Energy Efficency [J], JOURNAL OF ENERGY ENGINEERING, 2010: 68-75.
    [39] Nicola Mingotti, Torwong Chenvidyakarn, Andrew W. Woods, The fluid mechanics of the nature ventilation of a narrow-cavity double-skin facade[J], Building and Environment, 2011(46): 807-823.
    [40] Till Pasquay, Nature ventilation in high-rise buildings with double facades, save or wast of energy[J], Energy and Buildings, 2004(36): 381-389.
    [41] Elisabeth Gratia, Andre De Herde, Guidelines for improving natural daytime ventilation in an office building with a double-skin fa?ade[J], Solar Energy, 2007(81): 435-448.
    [42] Elisabeth Gratia, Andre De Herde, Natural ventilation in a double-skin fa?ade[J], Energy and Bulidings, 2004(36): 137-146.
    [43] Elisabeth Gratia, Andre De Herde, Optimal operation of a south double-skin fa?ade[J], Energy and Buildings, 2004(36): 41-60.
    [44] Elisabeth Gratia, Andre De Herde, Is day natural ventilation still possible in office buildings with a double-skin fa?ade[J], Building and Environment, 2004(39): 399-409.
    [45] Elisabeth Gratia, Andre De Herde, Natural cooling strategies efficiency in an office building with a double-skin fa?ade[J], Energy and Buildings, 2004(36): 1139-1152.
    [46] Wenting Ding, Yuji Hasemi, Tokiyoshi Yamada, Natural ventilation performance of a double-skin facade with a solar chimney[J], Energy and Buildings, 2005(37): 411-418.
    [47]卢旦,楼文娟,邹瑜,双幕墙建筑通风性能的数值模拟研究[J],浙江大学学报(工学版),2005,39(1):46-50.
    [48]楼文娟,圆形建筑双幕墙风荷载特性试验[J],华中科技大学学报,2009,37(5):90-93.
    [49]李荣敏,顾建明,玻璃幕墙热通道内气流组织的模拟与分析[J],暖通空调,2007,37(1):23-28.
    [50] Xiaoli Xu, Zhao Yang, Natural ventilation in the double skin facade with venetian blind[J], Energy and Buildings, 2008(40): 1498-1504.
    [51]丁勇,李百战,刘红,重庆某双层皮外围护结构通风效果测试及分析[J],暖通空调,2007,8(37):42-45.
    [52]彦启森.赵庆珠.建筑热过程[M].北京:中国建筑工业出版社.1986.
    [53]钟军立,曾艺君,建筑的自然通风设计浅析[J],重庆建筑大学学报,2004,2(62):18-21.
    [54]彭小勇,自然通风计算方法和计算参数的应用研究[J],暖通空调,2000:27-29.
    [55]李楠,李百战,沈艳等,住宅建筑自然通风对室内热环境的影响[J],重庆大学学报,2009,7(32):736-742.
    [56] US Department of Energy. EnergyPlus Energy Simulation Software Schedule. http: //apps1. eere. energy. gov/buildings/energyplus/schedule. cfm,2008-11-15.
    [57] Dear, R. J., G. S. Brager and D. J. Cooper. Developing an Adaptive Model of Thermal Comfort and Preference– Final Report[C]. Sydney: MRL,1997.
    [58]闫斌,郭春信,程宝义等.舒适性空调室内设计参数的优化[J].暖通空调,1999(1):44-45.
    [59] 2003暖通空调技术措施[M].北京:中国建筑标准设计研究所. 2003.
    [60]何天祺.供暖通风与空气调节[M].重庆:重庆大学出版社. 2008.
    [61] Kwang Ho Lee, Richard K. Strand, Enhancement of natural ventilation in buildings using a thermal chimney[J], Energy and Buildings, 2009(41):615-621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700