冲击载荷下磁流变缓冲器半主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着结构设计思想和方法的不断改进以及高新技术的应用,工程中所遇到的冲击问题的强度越来越大,在航空、航天、军工、交通运输和工程建筑领域都不同程度的存在着亟待解决的冲击问题,因而冲击缓冲的研究日益引起人们的关注和重视。磁流变减振器具有阻尼连续可调、动态范围宽、响应速度快、低功耗等特点,成为振动控制中非常有应用前景的智能器件。目前,国内外对于磁流变减振器在随机载荷(如汽车悬架、建筑和桥梁抗震设计)振动控制中得到了很好的研究和使用,然而冲击载荷下磁流变缓冲器的动力学特性和半主动控制研究仍存在空白。
     本文利用理论分析、数值仿真和实验验证的方法,对磁流变缓冲器在冲击载荷下的动力学模型、冲击载荷下磁流变缓冲器的动力学特性以及半主动控制策略和控制系统设计与实现进行研究。具体工作包括以下几个方面:
     (1)阐述了冲击载荷下振动控制的重要意义,回顾了磁流变技术的研究历史和当前最新研究动态,对磁流变技术在军事领域的研究作了综述,并提出了当前磁流变技术领域存在的问题。针对冲击缓冲的实际需要,提出了本文将要开展的主要工作和任务。
     (2)应用流体力学理论,根据Bingham模型和Herschel-Bulkley模型,利用平行板模型理论推导出磁流变缓冲器的动力学模型;结合冲击载荷下磁流变缓冲器的特点,提出了冲击载荷下缓冲器的模型需要考虑惯性力的影响,推导出适合其使用的Bingham-Inertia模型和Herschel-Bulkley-Inertia模型。
     (3)利用自行设计的冲击实验台架对冲击载荷下磁流变缓冲器的动力学特性进行实验研究,并对Bingham-Inertia模型和Herschel-Bulkley-Inertia模型的待定参数进行参数识别,结果显示修正的Bingham-Inertia模型和Herschel-Bulkley-Inertia模型能够很好地反映冲击载荷下磁流变缓冲器的动力学特性。
     (4)根据建立的Bingham-Inertia模型和Herschel-Bulkley-Inertia模型建立了冲击载荷作用下磁流变减振系统的模型。根据冲击载荷控制的实际需要,提出了基于压力反馈的双态控制策略、PID控制策略和模糊控制策略,利用dSPACE半实物仿真系统对三种控制策略在实际冲击载荷下的控制有效性进行了实验研究,并对三种控制策略进行了分析和比较。
     (5)构建了用于冲击载荷下磁流变缓冲器实验的的冲击实验台架和控制系统,对密爆发生器、磁流变缓冲器、所用的传感器、dSPACE半实物仿真系统和ControIDesk软件进行了说明,着重分析了电流控制器的输出响应特性。
     最后,对全文工作进行了总结,介绍了论文的特色和创新之处,指出了今后工作有待深入研究的问题。
With the development of structure design and the applications of hi-technology,more and more impact issues within high impact loading occurs in real applications. Itis familiar in the aeronautic and aerospace engineering, military engineering,transportation and civil engineering. The researches on vibration reduction underimpact load have been proved to having a promising future and should be paid moreattentions. Magnetorheological (MR) shock absorber is a smart devices, which has theadvantages of good controlibility, wide dynamic range, rapaid reponse time andlow-energy cost. It is a promising device in vibration control. Till now, lots ofresearches have been carded out to explore the structure design, dynamic andvibration control when MR shock absorber subjected to random load, such as vehiclesuspensions and anti-wind-vibration in civil engineering. However, little explorationhas been focus on the dynamic characteristics and vibration control when MR shockabsorber subjected to impact load.
     In this dissertation, theoretical analysis, dynamic simulation and test verificationwere used to investigate the dynamic performance and vibration control of MRshock absorber under impact load. The main contributions of this dissertationinclude the followings:
     1. The significance of vibration control under impact load is introduced inchapert one of this dissertation. The history and updated development of MRtechnology is reviewed. Several applications of MR technology arespecified in the military engineering. Moreover, some deficiencies, such asthe character of MR fluids and control methold are brought forward. Thispaper also summarized the main tasks of this dissertation.
     2. Using the theory of hydrodynamics and the rheology govern equations of MRfluids, Bingham model and erschel-Bulkley model were deduced to explainthe dynamic behavior of MR shock absorber. For the dynamic of MR shockabsorber under impact load, an inertia factor was introduced to Binghammodel and Herschel-Bulkley model, which leading to two revised model,named as Bingham-Inertia model and Herschel-Bulkley-Inertia model.
     3. Dynamic characteristics of MR shock absorber subjected to impact andimpulsive load is investigated using the test rig we designed. The parameter recognization was accomplished to revise the Bingham-Inertia model andHerschel-Bulkley-Inertia model.
     4. Three control stratigies, they are on-off control, PID control and fuzzy logiccontrol are designed using the MATLAB and Simulink. According to thepractical need of vibration control under impact load. Three control metholdswere revised to be pressure-feedback ones. To evaluate the control effect ofthe control metholds, a hardware-in-loop simulation and test was finished.
     5. A specific introduction of impact test system was done in last chapter. Somedetail for practical use is explained.
     Finally, the work of this dissertation was concluded. The innoviations andcontributions of this work were introduced. And a/so, the potential issues of thisresearch were pointed out.
引文
[1] Carlson J.D. MR fluids and devices in the real world [A]. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc. of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensiofis. Singapore: World scientific Publication, 2005, 531-538
    [2] 廖昌荣,余淼,陈伟民等.磁流变材料与磁流变阻尼器的潜在工程应用.机械工程材料.2001(25):31-34
    [3] 刘丁雷,李德才,袁祖贻.磁流变液的发展及应用.新技术新工艺.1999(06):14-15
    [4] G. Yang, B.F. Spencer Jr., J.D. Carlson, and M.K. Sain. Large-scale MR fluid dampers: modeling and dynamic performancecon siderations. Engineering Structures. 2002(24): 309-323
    [5] 潘双夏,杨礼康,冯培恩.磁流变液减振控制应用的研究动态.汽车工程.2002(03):254-258
    [6] 关新春,欧进萍,李金海.磁流变液组分选择原则及其机理探讨.化学物理学报.2001(05):592-596
    [7] 张正勇,张耀华,虞承端等.磁流变液的特性研究.功能材料与器件学报.2001(04):340-344
    [8] Carlson J.D.,夏毅敏译.日益引人注目的磁流变液.机床与液压.1996(10):52-53
    [9] 张平,刘奇,王东亚等.磁流变体的制备及性能.化学物理学报.2001(14):559-561
    [10] 魏铁华,杨晓红.电流变技术与磁流变技术.水利电力机械.2002(24):57-60
    [11] 黄俊,赵宏声,姜德生.电流变液和磁流变液及其应用.国外建材科技.1996(17):31-33
    [12] 夏毅敏,郭勇,何清华.磁流变液——种新型的流体传动介质.润滑与密封.1998(11):56-58
    [13] 翁建生,胡海岩,张庙康.磁流变液体的流变力学特性试验和建模.应用力学学报.2000(17):1-5
    [14] 房小翠,刘璇,熊光洁等.新型磁流变材料的特性与应用展望.北京轻工业学院学报.2000(18):1-5
    [15] Shtarkman E. M. Fluid responsive to a magnetic field. US Patent. No.4992190,1991
    [16] Carlson J. D. and Spencer B. F. Magnetorheological fluid dampers: scalability and design issues for application to dynamic hazard mitigation. Proc. Of 2th Intel workshop-on structure control. Hong Kong: Hongkong University of Science and Technology, 1996: 99-109
    [17] Carlson J D arid Weiss K D. A growing attraction to magnetic fluids. Machine design. 1996(66): 61-64
    [18] Carlson J D. What makes a good MR fluid? Journal of intelligent material system and structure. 2003 (13): 431-435
    [19] Carlson J D, Catanzarite D M, Clair K A St. Commercial MR fluid devices. In: Bullogh W A. Proc of the 5th Int Conf on ER Fluids, MR Suspensions and Associated Technology. Singapore:WorldScientific, 1996:20-28
    [20]Carlson J D, Matthis W and James R T. Smart prosthetics based on magnetorheological fluids. Proc. Of SPIE Conf on Smart Structures and Materials, Newport Bea'ch:SPIE. 2001,44-48
    [21]Dyke, S.J., Spencer, B.F., Sain, M.K., Carlson, J.D. Modeling and control of magnetorheological dampers for seismic response. Smart Materials and Structures. 1996 (11):565-575
    [22] 汪建晓,孟光.磁流变液研究进展.航空学报.2002(23):6-12
    [23]Lim S.T., Cho M.S. and Choi H.J. Magnetorheological characterization of organoclay added carbonyl-iron suspension. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc, of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions. Singapore: World scientific, 2005, 80-85
    [24] Zhang Ping, Liu Qi, Tang Long et.al. Synthesis and properties of practical MR fluid. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc, of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions. Singapore: World scientific, 2005, 94-99
    [25]Tao R. and Xu X. Viscosity reduction in liquid suspensions by electric or magnetic fields. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc, of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions. Singapore: World scientific, 2005, 299-305
    [26]Metayer C, Coquelle E., Sterligov V.A, Meunier A. et al. Importance of controlling interparticle gaps for novel material properties. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc, of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions. Singapore: World scientific, 2005,306-313
    [27] Sheng Ping. Mechanism of the giant electrorheological effect. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc, of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions. Singapore: World scientific, 2005, 143-148
    [28]Gordaninejad F., Kavlicoglu B.M. and Wang X.J. Friction factor of magnetorheological fluid flow in grooved channels. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc, of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions. Singapore: World scientific, 2005,314-320
    [29]Bullough W.A., Ellam D.J. and Atkin R.J. Pre prototype design of ER/MR devices using computational fluid dynamics: unsteady flow. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc, of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions. Singapore: World scientific, 2005, 859-865
    [30]Lim S.C., Park J.S., Sohn J.W.and Choi. S.B. Design program in graphic user interface environment for automobile ER devices. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc, of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions. Singapore: World scientific, 2005, 866-872
    
    
    [31]Seung-Bok Choi, Byoung-Kyu Lee, Moo-Ho Nam, and Chae-Cheon Cheong. Vibration control of a MR seat damper for commercial vehicles. Smart Structures and Materials 2000: Smart Structures and Integrated Systems. Proceedings of SPIE. 2000 (3985):55-62
    [32]Seung-Bok Choi, Hwan-Soo Lee, Sung-Ryong Hong, and Chae-Cheon Cheong. Control and response characteristics of a magneto-rheological fluid damper for passenger vehicles. Smart Structures and Materials 2000: Smart Structures and Integrated Systems. Proceedings of SPIE. 2000 (3985):438-443
    [33]Seung-Bok Choi, Hyun-Hee Lee, Hyun-Jeong Song, and Jong-Sung Park. Vibration Control of a Passenger Car Using MR Engine Mounts. Smart Structures and Materials 2002: Smart Structures and Integrated Systems. Proceedings of SPIE. 2002 (4701): 1-8
    [34]David E. Simon. An Investigation of the Effectiveness of Skyhook Suspensions for Controlling Roll Dynamics of Sport Utility Vehicles Using Magneto-Rheological Damper. Doctoral Dissertation of Virginia Tech. 2001
    [35]Mehdi Ahmadian and Nader Vahdati. Effect of Hybrid Semiactive Control on Steady State and Transient Dynamics of Vehicle Suspensions. Smart Structures and Materials 2004: Smart Structures and Integrated Systems. Proc, of SPIE. 2004(5390):34-45
    [36] John W. Masi. Effect of Control Techniques on the Performance of Semiactive Dampers. Master Dissertation of Virginia Tech. 2001
    [37]Fernando D. Goncalves. Dynamics Analysis of Semi-Active Control Techniques for Vehicle Applications. Master Dissertation of Virginia Tech. 2001
    [38]James C. Poynor. Innovative Designs for Magneto-Rheological Damper. Master Dissertation of Virginia Tech. 2001
    [39]Mehdi Ahmadian and John Gravatt. A Comparative Analysis of Passive Twin Tube and Skyhook MRF Dampers for Motorcycle Front Suspension. Smart Structures and Materials 2004: Damping and Isolation. Proc, of SPIE. 2004 (5386):238-249.
    [40] Guan Xinchun Li Jinhai, Ou Jinping. The influence effect of accumulator of magnetorheological fluid damper. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc, of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions. Singapore: World scientific, 2005,687-693
    [41] Wang Jiong, Wang Qianlong and Li Yancheng. Finite element analysis of magnetorheological damper. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc, of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions. Singapore: World scientific, 2005, 722-727
    [42] Ai H.X., Wang D.H. and Liao W.H. Design and modeling of a MR valve with both annular and radial flow paths. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc. of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions. Singapore: World scientific, 2005,836-842
    [43] S. J. Mcmanus, K. A. St. Clair, P. E. Boileau, J. Boutin, and S. Rakheja. Evaluation of Vibration and Shock Attenuation Performance of a Suspension Seat with a Semi-Active. Magneto-Rheological Fluid Damper. Journal of Sound and Vibration. 2002 (253): 313-327.
    [44] Duan Y.F., Ni, Y.Q. Ko J.M. Cable vibration control using magnetorheological (MR) dampers. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc. of the Ninth International-Conference-Electrorheological fluids and magnetorheological suspensions. Singapore: World scientific, 2005, 829-835
    [45] Y. F. Duan, Y. Q. Ni, and J. M. Ko. Theoretical and experimental studies on semi-active feedback control of cable vibration using MR dampers. Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. Proc. of SPIE. 2004 (5391):543-554
    [46] Y. Q. Ni, Y.F. Duan, Z. Q. Chen, and J. M. KO. Damping identification of MR-damped bridge cables from in-situ monitoring under wind-rain-excited conditions. Smart Structures and Materials 2002: Smart Systems for Bridges, Structures, and Highways. Proceedings of SPIE. 2002 (4696):41-51
    [47] Z G. Ying, Y. Q. Ni, and J.M. Ko. Non-clipping optimal control of randomly excited nonlinear systems using semi-active ER/MR dampers. Smart Structures and Materials 2002: Smart Systems for Bridges, Structures, and Highways. Proceedings of SPIE. 2002 (4696):209-218.
    [48] J.M.Ko, G. Zheng, Z. Q. Chen, and Y.Q.Ni. Field vibration tests of bridge stay cables incorporated with magneto-rheological (MR) dampers. Smart Structures and Materials 2002: Smart Systems for Bridges, Structures, and Highways. Proceedings of SPIE. 2002 (4696):30-40.
    [49] 欧进萍.结构振动控制-主动、半主动和智能控制.北京:科学出版社,2003
    [50] D C Batterbee and N D Sims. Skyhook damping with linearised magnetorheological dampers. Smart Structures and Materials 2004: Damping and Isolation. Proc. of SPIE, 2004 (5386):72-82.
    [51] Andrew N. Vavreck. Control of a Dynamic Vibration Absorber. with Magnetorheological Damping, Fifth European Conference on Smart Structures and Materials. Proceedings of SPIE. 2000 (4073):252-263
    [52] Young-Tai Choi and Norman M. Wereley. Shock isolation systems using magnetorheological dampers. Smart Structures and. Materials 2004: Damping and Isolation. Proc. of SPIE. 2004 (5386): 51-62
    [53] Hiu Fung Lam and Wei Hsin Liao. Semi-Active Control of Automotive Suspension Systemswith Magnetorheological Dampers. Smart Structures and Materials 2001: Smart Structures and Integrated Systems. 2000:125-136
    [54] Li Zhou and Chih-Chen Chang. Adaptive Fuzzy Control for a Structure-MR Damper System. Smart Structures and Materials 2000: Smart Systems for Bridges, Structures, and Highways. Proceedings of SPIE. 2000 (3988): 105-115
    [55] Yanming Liu, Faramarz-Gordaninejad, Cahit A. Evrensel, Gregory Hitchcock, and Xiaojie Wang. Variable Structure System Based Fuzzy Logic Control of Bridge Vibration Using Fail-Safe Magneto-Rheological Fluid Dampers. Smart Structures and Materials 2002: Smart Systems for Bridges, Structures, and Highways. Proceedings of SPIE. 2002 (4696):219-227
    [56] Michael J. Craft, Gregory D. Buckner, and Richard D. Anderson. Fuzzy Logic Control Algorithms for MagneShock Semi-Active Vehicle Shock Absorbers: Design and Experimental Evaluations. Smart Structures and Materials 2003: Modeling, Signal Processing, and Control. Proceedings of SPIE. 2003 (5049):577-588
    [57] Pin-Qi Xia. An inverse model of MR damper using optimal neural network and system identification. Journal of Sound and Vibration. 2003 (266): 1009-1023
    [58] Neil D. Sims, Roger Stanway, Andrew R. Johnson, David J. Peela, and William A. Bullough. Smart Fluid Damping: Shaping the force\velocity response through feedback control. Smart Structures and Materials 2000: Smart Structures and Integrated Systems. Proceedings of SPIE. 2000 (3985):470-481
    [59] 廖昌荣.汽车磁流变阻尼器设计原理与实验测试.中国机械工程.2002(13):1391-1394
    [60] 廖昌荣,陈伟明等.磁流变阻尼器件设计中若干问题探讨.功能与器件学报.2001(17):345-349
    [61] 廖昌荣,陈伟民,黄尚廉.磁流变技术与磁流变阻尼器件.新技术新工艺.2000(10):17-20
    [62] 廖昌荣.汽车悬架系统磁流变阻尼器研究.重庆大学博士论文.2001
    [63] 余淼.汽车磁流变半主动悬架控制系统研究.重庆大学博士论文.2003
    [64] 蒋光红.汽车半主动悬架非线性控制方法.重庆大学硕士论文.2003
    [65] 董雷.非线性系统应用MR阻尼器的半主动随机最优控制.浙江大学硕士论文.2004.
    [66] Anon. Magnetorheological fluids change army uniform to armor. Advanced Materials and Processes, 2004(162): 21-22
    [67] Goncalves F. D., Ahmadian M. Behavior of MR fluids at high velocities and high shear rates. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc. of the Ninth International Conference-Electrorheological. fluids and magnetorheological suspensions. Singapore: World scientific, 2005, 412-418
    [68] Ahmadian M., Appleton R. J. and Norris J. A. Designing magneto-rheological dampers in a fire out-of-battery recoil system. IEEE Transcations on Magnetics. 2003 (39): 21-25
    [69] Ahrnadian M., Appleton R. J. and Norris J. A. Norris. An analytical study of fire out of battery using magneto-rheological dampers. J. Shock and Vibration. 2002(9): 129-142
    [70] 靳争团,高跃飞,任建亭等.电流变阻尼器抗冲击性能研究.化学物理学报.2001(14):620-624
    [71] Facey W.B., Rosenfeld N.C., Choi Y.T., Werely N.M. et al.Design and testing of a compact magnetorheological damper for high impulsive loads. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc. of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions. Singapore: World scientific, 2005, 638-644
    [72] Wang Jiong and Li Yancheng. The dynamic simulation and test verification of MR shock absorber under impact load. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc. of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions[C]. Singapore: World scientific. 2005,822-828
    [73] Marathe S, Gandhi F, Wang K W. In: Regelbrugge M E ed. Proc of SPIE, Vol.3329. Washton: SPIE, 1998,390-401
    [74] Kamath G M, Werely N, Jolly M R. In: Regelbrugge M E ed. Proc of SPIE, 1998(3329):356-377
    [75] Hu Wei, Werely N. M. Magnetorheological fluid and elastomeric lag damper for helicopter stability augmentation. In: Lu Kunquan, Shen Rong and Liu Jixing. Proc. of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions. Singapore: World scientific, 2005, 539-545
    [76] Karakas E. S., Gordaninejad F, Evrensel C A et al. Control of a quarter HMMWV suspension. system using a magneto-rheological fluid damper. In: Kon-Well Wang. Proceedings of SPIE. 2004,204-213
    [77] Umit Dogrue, Gordaninejad F, and Evrensel C. A magneto-rheological fluid damper for high-mobility multi-purpose wheeled vehicle (HMMWV). In: Kon-Well Wang. Proceedings of SPIE. 2004, 195-203
    [78] Umit Dogruer, Gordaninejad F and Evrensel C. A new magneto-rheological fluid damper for high-mobility multi-purpose wheeled vehicle (HMMWV). In: Gregory S. Agnes, Kon-Well Wang. Proceedings of SPIE. 2003, 198-206
    [79] Liu, Y. M., Gordaninejad, F., Evrensel, C. A., and Hitchcock, G. An Experimental Study on Fuzzy Logie Vibration Control of a Bridge Using Fail-Safe Magneto-Rheological Fluid Dampers, In: Chi Liu. Proceedings of SPIE Conference on Smart Materials and Structures. Bellingham: SPIE. 2001, 281-288
    [80] Liu Y M, Gordaninejad F and Evrensel C et al.Experimental study on fuzzy skyhook control of a vehicle suspension system using a magneto-rheological fluid damper. In: Kon-Well Wang. Proceedings of SPIE. 2004, 338-347
    [81] 林忠华,胡国清,刘文艳.磁流变微加速度传感器的分析.厦门大学学报.2004(43):369-372
    [82] 邵炫.磁流变引信延期解除保险机构的研究.南京:南京理工大学,2005
    [83] Glen A. Dimock, Jason E. Lindler, and Norman M. Wereley. Bingham Biplastic Analysis of Shear Thinning and Thickening in Magnetorheological Dampers. Smart Structures and Materials 2000: Smart Structures and Integrated Systems. Proceedings of SPIE. 2000 (3985):444-455.
    [84] 李金,张华良.磁流变液研究和应用.上海大学学报(自然科学版).2004,(10):21-29
    [85] 王炅,黄文良,陆静.磁流变阻尼器动力学模型及其应用.弹道学报.2003(3):46-50
    [86] 都俊超,张元培,朱立军.磁性流体的制备方法及其在工程上的主要应用.北京工商大学学报(自然科学版).2003(21):49-53
    [87] 司鹄.磁流变体的磁流变效应.重庆大学学报.2003(26):72-75
    [88] Jin Dejiang, Chen Jiaqi, and Huang Jun. Analysis and design of device using electrorheological magnetorheological fluid with variable stiffness.Proceedings of SPIE. 2004(2303)201-212
    [89] Howard See. Transient response of a magneto-rheological suspension after a double-step shears strain. Colloid Polym Sci. 2003 (281):788-793
    [90] Howard See and Roger Tanner. Shear rate dependence of the normal force of a magnetorheological suspension. Rheol Acta. 2003 (42): 166-170
    [91] G. Bossis, P. Khuzir, S. Lacis, and O. Volkova. Yield behavior of magnetorheological suspensions. Journal of Magnetism and Magnetic Materials. 2003 (258):456-458
    [92] G. Bossis, S. Lacis, A. Meunier, and O. Volkova. Magnetorheological fluids. Journal of Magnetism and Magnetic Materials. 2002 (252):224-228
    [93] Stanislaw Bednarek. Non-linearity and hysteresis of Hall Effect in magnetorheological suspensions with conducting carrier. Journal of Magnetism and Magnetic Materials. 2003 (264): 251-257
    [94] T. M. Simon, F. Reitich, M. R. Jolly, K. Ito, and H. T. Banks. The Effective Magnetic Properities of Magnetorheological Fluids. Mathematical and Computer Modelling. 2001 (33):273-284
    [95] Liu Jingnan, Shu Hongyu, Tang Aitao, and Xiang Ping. Operational Model of Magnetorheological transmission. Fifth International Symposium on Instrumentation and Control Technology. Proceeding of SPIE. 2003 (5253):901-904
    [96] K.C. Chen and C.S. Yeh. A mixture model for magneto-rheological materials. Continuum Mech. Thermodyn. 2002 (15):495-510
    [97] C.S. Yeh and K.C. Chen. A thermodynamic model for magnetorheological fluids. Continuum Mech. Thermodyn. 1997 (9):273-291
    [98] H. V. Ly, F. Reitich, M. R. Jolly, H. T. Banks, and K. Ito. Simulations of Particle Dynamics in Magnetorheological Fluids. Journal of Computational Physics. 1999 (155): 160-177
    [99] W.H. Li, H. Du, and N.Q. Guo. Dynamic behavior of MR suspensions at moderate flux densities. Materials Science and Engineering. 2004 (371):9-15
    [100] Y. Rong, R. Tao, and X. Tang. Flexible Fixturing with Phase-Change Materials. Part 1. Experimental Study on Magnetorheological Fluids. Int J Adv Manuf Technol, 2000 (16):822-829.
    [101] Mark R. Jolly, Jonathan W. Bender, and J. David Carison. Properties and Applications of Commercial Magnetorheological Fluids.Proceedings of SPIE. 2004(3327):262-275
    [102] Young-Tai Choi and Norman M. Wereley. Comparative analysis of Bingham characteristics of ER/MR fluids with different viscometers. Smart Structures and Materials 2002: Damping and Isolation. Proceedings of SPIE. 2002 (4697):533-541
    [103] Roger Stanway, Neil D Sims, and Andrew R Johnson. Modelling and control of a magnetorheological vibration isolator. Smart Structures and Materials 2000: Damping and Isolation. Proceedings of SPIE. 2000 (3989): 184-193
    [104] N.D. Sims, R. Stanway, A. R. JohnSon, and P.Mellor. Design, testing and model validation of an MR squeeze-flow vibration damper. Smart Structures and Materials 2001: Damping and Isolation. Proceedings of SPIE. 2001 (4331):610-622
    [105] N.D. Sims, R. Stanway, AR. Johnson, and J.S. Yang. Vibration isolation using a magnetorheological damper in the squeeze-flow mode. The SPIE Conference on Smart Structures and Integrated Systems. Proceedings of SPIE. 1999 (3668):520-526
    [106] 周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证.地震工程与工程振动.2002(4):144-150
    [107] G.Young, B.F.Spencer Jr, J.D.Carlson, M.K.Sain.Large-scale MR fluid dampers: modeling and dynamic performance considerations. Engineering structures. 2002(24):309-323
    [108] B.F.Spencer Jr, S.J.Dyke, M.K.Sain, J.D.Carlson. Phenomenological model of a magnetorheological damper. Journal of engineering mechanics. 1996(3): 1-23
    [109] Yiu-Kee Lau and Wei-Hsin Liao. Design and analysis of a magnetorheological damper for train susperision. Smart Structures and Materials 2004: Damping and Isolation. Proc. of SPIE. 2004 (5386): 214-225
    [110] W.H. Li and H. Du. Design and Experimental Evaluation of a Magnetorheological Brake. Int J Adv Manuf Technol. 2003 (21) 508-515
    [111] W. H. Li, H. Du, and N. Q. Guo. Design and testing of an MR steering, damper for motorcycles. Int J Adv Manuf Technol. 2003 (22):288-294
    [112] Rail Bolter and Hartmut Janocha. Design Rules for MR Fluid Actuators in Different Working Modes. Proceedings of SPIE. 2003(3045): 148-159
    [113] Jason E. Lindler, Glen A. Dimock, and Norman M. Wereley. Design of a Magnetorheological Automotive Shock Absorber. Smart Structures and Materials 2000: Smart Structures and Integrated Systems. Proceedings of SPIE. 2000 (3985):426-437
    [114] Darrell G. Breese and Faramarz Gordaninejad. Heating of Magneto-Rheological Fluid Dampers: A Theoretical Study. Part of the SPE Conference on Smart Systems for Bridges, Structures, and Highways. Proceedings of SPIE. 1999 (3671 ):2-10
    [115] Darrell G. Breese, Faramarz Gordaninejad and Everet O. Ericksen. Heat generation of magneto-rheological fluid dampers. Smart Structures and Materials 2000: Smart Systems for Bridges, Structures, and Highways. Proceedings of SPIE. 2000 (3988):450-456
    [116] M. Bans Dogruoz, Faramarz Gordaninejad, Eric L. Wang, and Arthur J. Stipanovich. An Experimental Study on Heat Transfer from Fail-Safe Magneto-Rheological Fluid Dampers. Smart Structures and Materials 2001: Damping and Isolation. Proceedings of SPIE. 2001 (4331): 355-369
    [117] W. H. Li, H. Du, and N. Q. Guo. Finite Element Analysis and Simulation Evaluation of a Magnetorheological Valve. Int J Adv Manuf Technol. 2003 (21) 438-445
    [118] Ali K.E1 Wahed, John L.Sproston, and Graham K.Schleyer. Electrorheological and magnetorheological fluids in blast resistant design applications. Materials and Design. 2002 (23):391-404
    [119] Shawn P. Kelso. Experimental Characterization of Commercially Practical Magnetorheological Fluid Damper Technology. Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies. Proceedings of SPIE. 2001 (4332):292-299
    [120] Ioan Bica. Damper with magnetorheological suspension. Journal of Magnetism and Magnetic Materials. 2002 (241): 196-200
    [121] James A Norris, Mehdi Ahmadian. Behavior of magneto-rheological fluids subject to impact and shock loading.IMECE.2003(42891):l-5
    [122] C. W. Maranville and J. M. Ginder. Magnetorheological fluid damper dynamics: models and measurements. Smart Structures and Materials 2003: Smart Structures and Integrated Systems. Proceedings of SPIE. 2003 (5056):524-533
    [123] Shaju John and Norman M. Wereley. Nondimensional Quasi-steady Analysis of Magnetorheological Dampers Utilizing a Herschel-Bulkley Model With Preyield Viscosity. Smart Structures and Materials 2003: Damping and Isolation. Proceedings of SPIE Vol. 5052 (2003)53-65
    [124] Dug-Young Lee and Norman M. Wereley. Analysis of electro- and magneto-rhelogical flow mode dampers using Herschel-Bulkley model. Smart Structures and Materials 2000: Damping and Isolation. Proceedings of SPIE. 2000 (3989):244-255
    [125] Rebecca A. Snyder and Norman M. Wereley. Characterization of a Magnetorheological Fluid Damper Using a Quasi-Steady Model. The Conference on Smart Structures and Integrated Systems. Proceedings of SPIE. 2002(3668):507-519
    [126] Liao Linqing, Liao Changrong, Cao Jiangguo, Fu L.J. A design methodology of magnetorheological fluid damper using Herschel-Bulkley model. Proceedings of SPIE. 2003(5253):710-717.
    [127] Dug-Young Lee, Young-Tai Choi, Norman M.Wereley. Performance analysis of ER/MR impact damper system using Herschel-Bulkley model. Journal of intelligent material systems and structures. 2002(1):525-531
    [128] Dug-Young Lee, Norman M.Wereley. Analysis of electro-and magneto-rheological flow mode dampers using Herschel-Bulkley model. Proceedings of SPIE. 2001(3989):244-255
    [129] Xiaojie Wang, Faramarz Gordaninejad. Study of field-controllable, electro-and magneto-rheological fluid dampers in flow mode using Herschel-Bulkley model. Proceedings of SPIE. 2000(3989):232-243
    [130] Xiaojie Wang, Faramarz Gordaninejad. Flow analysis of field-controllable, electro-and magneto-rheological fluid using Herschel-Bulkley model. Journal of intelligent materials, systems and structures. 1999, (08):601-608
    [131] Amit Shukla and Michael Bailey Van Kuren. Nonlinear dynamics of a magnetorheological-fluid-based active suspension system for a neonatal transport. Smart Structures and Materials 2004: Damping and Isolation. Proc. of SPIE. 2004(5386):83-92
    [132] G.Z. Yao, F.F. Yap, G. Chen, W.H. Li, and S.H. Yeo. MR damper and its application for semi-activecontrol of vehicle suspension system. Mechatronics. 2002 (12):963-973
    [133] Jerome Claracq, Jerome Sarrazin, and Jean-Pierre Monffort. Viscoelastic properties of magnetorheological fluids. Rheol Acta. 2004 (43):38-49
    [134] Jeong-Hoi Koo, Fernando D. Goncalves, and Mehdi Ahmadian. Investigation of the response time of magnetorheological fluid dampers. Smart Structures and Materials 2004: Damping and Isolation. Proc. of SPIE. 2004(5386):63-71
    [135] 李延成.冲击载荷下磁流变减振器的建模、仿真与实验.南京:南京理工大学,2004
    [136] 李士勇.模糊控制、神经控制和智能控制论,第3版.黑龙江:哈尔滨工业大学出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700