氢化萜烯基环氧树脂及其多元醇衍生物的合成、交联反应与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以松节油及其合成樟脑等产品的副产物双戊烯为原料,研究了饱和萜烯基环氧树脂的合成及其固化产物性能和环氧树脂基多元醇的合成及其交联产物的性能。主要内容和结论如下:
     1.以萜烯-马来酸酐加成物的氢化产物(HTMA)为原料与环氧氯丙烷(ECH)反应合成了氢化萜烯酯型环氧树脂(HTME)。通过研究合成反应影响因素,确定了HTME最佳合成反应条件:酯化反应阶段,ECH与HTMA摩尔比为10:1,加入HTMA质量的1%~1.5%催化剂,在100℃左右共沸回流反应2 h:闭环反应阶段,采用ECH为闭环溶剂,以固体NaOH闭环,用量为HTMA摩尔量的1.8~1.9倍,在2 h内分批加入,加碱时反应温度为50℃,加碱后再反应2 h,反应温度为70℃。并经FT-IR及NMR光谱表征了HTME的化学结构为具有桥环结构的缩水甘油酯型饱和脂环基环氧树脂。该环氧树脂为浅黄色透明液体,环氧值0.35~0.39 mol/100g、黏度1.7 Pa·S(50℃)、酸值<0.5 mg/g。
     2.通过DSC热分析测得HTME与酸酐固化剂甲基六氢苯酐(MeHHPA)的固化反应放热焓为153.5J/g。通过凝胶时间的测定研究了HTME/MeHHPA体系的固化反应活性。经FT-IR光谱法定性分析与固化度测定法定量分析,表征了HTME/MeHHPA体系的固化反应行为及固化反应条件。比较了HTME、TME及环氧树脂6101与MeHHPA固化产物的冲击强度、弯曲强度等机械力学性能,实验结果表明三者的机械性能相似。
     3.将HTME与带活泼氢的(羟基)化合物(二乙醇胺,N-甲基单乙醇胺,二乙胺)在一定条件下反应,制备了3种环氧树脂基多元醇,分别为HTME-DEA多元醇(羟值300±20mg/g),HTME-MEA多元醇(羟值260±20 mg/g),HTME-DeA多元醇(羟值200±10mg/g)。通过合成反应影响因素分析,确定了环氧树脂基多元醇的最佳合成反应条件:反应温度为60-70℃,反应时间为2 h,以无水乙醇为反应溶剂,用量为反应物总质量的40%。采用化学分析和红外光谱方法表征了环氧树脂基多元醇的化学结构。
     4.通过粘度测定、FT-IR光谱分析方法表征了环氧树脂基多元醇与聚二异氰酸酯交联反应的特性。通过对交联反应影响因素分析,发现多元醇分子结构中的叔胺基团可自催化羟基与异氰酸酯基快速反应。测定了交联固化产物(涂膜)的机械性能和耐液体介质性能。实验结果表明,环氧树脂基多元醇与聚异氰酸酯交联产物具有优异的柔韧性、附着力、抗冲击性能和耐水、耐盐水、耐碱性能。
     本论文的主要创新点如下:
     1.利用林产品可再生资源松节油为原材料合成了具有饱和桥环结构的萜烯基环氧树脂,与通用的双酚A型环氧树脂相比,其分子结构以饱和的桥环骨架代替了苯环骨架,因而该环氧树脂除具有通用环氧树脂优良的机械力学性能,还具有良好的耐紫外、耐候性能。该合成方法工艺简单,反应效果好,产率高。
     2.传统的聚氨酯增韧环氧树脂的方法主要是通过形成环氧树脂/聚氨酯互穿网络聚合物实现的。该方法涉及环氧树脂及其固化剂、多元醇及二异氰酸酯四种反应物共同反应,过程复杂,反应难以控制。本文从分子设计入手,利用HTME与带活泼氢的(羟基)化合物合成环氧树脂基多元醇,再与聚异氰酸酯交联,形成环氧树脂/聚氨酯复合材料,使饱和萜烯脂环结构环氧树脂的刚性、耐候性与聚氨酯树脂的弹性、韧性有机结合,实现对环氧树脂的增韧改性。
     上述思路和基础研究成果为特种环氧树脂的制备与应用、环氧树脂的增韧改性以及林产品可再生资源制备高分子材料的应用创造良好的理论基础。
In this paper, it was reviewed on the applications of synthesis of epoxy resin andpolyurethane from turpentine, and the development and progress of epoxy resin andpolyurethane modified with eath other. A novel idea of synthesis, crosslinking reaction andproperties of alicyclolic epoxy resin with endocyclic structure from turpentine or dipentene andits polyol derivatives was provided. The main contents and conclusions of this paper are listedas follows:
     1. An alicyclolic epoxy resin with endocyclic structure, hydrogenated terpinene-maleic estertype epoxy (HTME), was synthesized from the raw material hydrogenated terpinene-maleicanhydride (HTMA). The best synthesis conditions were confirmed by studying about theeffects on synthesis reaction of ratio of material, reaction temperature and time, dosage ofcatalyst, the dosage and concentration of alkali and the type of solvents. In the stage ofesterification reaction, when reacted at about 100℃for longer than 2h, the esterification cantake place more completely at the epichlorohydrin (ECH) /HTMA mol ratio of 10/1 and byadding catalyst in amount from 1% to 1.5% by weight based on the weight of HTMA. At thering-closing reaction stage, when using ECH as solvent and solid alkali at the OH/HTMA molratio of 1.8~1.9, more desirable effects can be obtained by adding solid alkali in batches in 2hat 50℃and after finishing it maintaining at 70℃for additional 2h. The epoxy resin wastransparent pale yellow liquid with epoxy value 0.35~0.39 mol/100g, viscosity at 50℃1.7Pa.S and acid value<0.5 mg/g determined by chemical analysis methods, and its chemicalstructure was also characterized by FT-IR and NMR spectra.
     2. It is widely known that the excellent properties of epoxy resin could not be obtained untilcured with curing agents, such as amine and anhydride. In this paper, the activity of curingreaction between HTME and methyl hexahydrophthalic anhydride (MeHHPA) wasinvestigated by means of DSC and gelatin time determination. The enthalpy of the curingreaction is 153.5J/g. The curing behaviors of HTME/MeHHPA system were studied byqualitative analysis of FT-IR spectrum and quantitative analysis of curing degreedetermination. The mechanic properties of HTME cured with MeHHPA were compared withthat of TME and epoxy resin 6101 at the same condition and found that all of them were aboutthe same.
     3. To improving the toughness of epoxy resin with polyurethane, three kinds of polyols weresynthesized by reacting HTME with active hydrogen containing compounds, such asdiethylamine(DEA), N-methylethanolamine(MEA) and diethanolamine(DeA). They can beused in place of the commonly used polyols, such as polyether glycols and polyester polyols, toprepare two-component polyurethanes. The best synthesis conditions were confirmed bystudying about the effects on synthesis reaction of the ratio of material, reaction temperatureand time, the type and the dosage of solvents. When reacted at 60~70℃for about 2h, betterquality products can be obtained by using ethanol as solvent which desirably accounts for 40%by weight based on the weight of reactants. The chemical structures of the polyols from HTMEwere characterized by chemical analysis methods and FT-IR spectra.
     4. The effects of catalyst,temperature and polarity of solvents on reactivity of the threepolyols crosslinked with polyisocyanate were examined by viscosity method. It was found thatthe reactions could be catalyzed by the tertiary amine groups included in the polyols. And thecrosslinking processes of the reactions between the polyols and polyisocyanate werecharacterized with FT-IR spectra by observing the change of -N=C=O stretch peaks. Themechanical, water-resistant and chemicals-resistant properties of the crosslinked products wereevaluated according to standard tests.The results showed the crosslinked products which can becalled epoxy-urethane polymers had excellent impact strength, flexibility and water-resistant,chemicals-resistant properties. It is indicated that these epoxy-urethane polymers have madeepoxy resin and polyurethane modified with each other successfully.
     The creative achievements of this work are summarized as follows:
     1. An alicyclolic epoxy resin with endocyclic structure, HTME, has been synthesized fromturpentine, one of the renewable resource of forest products. In contrast to the commonly usedbisphenol A epoxy resin, HTME has excellent weatherability property, because it containssaturated endocyclic structure instead of the structure of the benzene ring in bisphenol A epoxyresin. And this synthetic method of HTME is superior with uncomplicated technology and highyield.
     2. The normally methods to modify epoxy resin with polyurethane are the EP/PUinterpenetrating polymer networks, the processes of which are quite complex and difficult tocontrol. In this paper polyols based on HTME have been synthesized to crosslink withpolyisocyanate in place of the commonly used polyols. The crosslinked systems which can becalled epoxy-urethane polymers combine the rigidity and weatherability of the saturated terpinene alicyclic epoxy resin(HTME) with the flexibility and tenacity of the polyurethaneperfectly.
     The purpose of the present study was to provide favorable theoretical basis for the synthesismethod, toughening technology of epoxy resin, and the application of the renewable resourceof forest products on preparation for special polymers.
引文
[1] Matynia. Diels-Alder adducts as epoxy resin hardeners. J Appl Polym Sci, 1980, 25(1): 1~13.
    [2] 高南,金其良,黄晨等.液态萜烯马来酸酐(TM)固化环氧树脂性能的研究.应用科技学报,1991,9(1):79~85.
    [3] 高南,潘鹏程,郁文.α-蒎烯-马来酸酐加成物同分异构体体的研究—分离与性能.应用科学学报,1994,12(1):61~66.
    [4] 高南,金其良,王明渭等.萜烯酯型环氧树脂合成及其性能的研究.上海科技大学学报.1990,(1):57~61.
    [5] 高南,金其良,田箐等.α-蒎烯-马来酸酐环氧树脂合成新方法:中国专利,1034211A,1989.
    [6] 哈成勇,沈敏敏.环氧树脂及其制备方法:中国专利,1415641A,2003.
    [7] 陆占国,小林直,笠井博子.α-松油烯为原料的单萜衍生物合成及其构造解析.化学试剂,2005, 27(10):585~588.
    [8] 孔振武,汪浩,杜予民等.萜烯马来酸酐催化加氢反应的研究.林产化学与工业,2006,26(4):48~50.
    [9] 孔振武,汪浩,陈健等.氢化萜烯马来酸酐与环氧树脂固化反应特性研究.林产化学与工业,2007,27(1):25~28.
    [10] 汪浩,杜予民,孔振武.氢化萜烯马来酸酐的制备及其固化反应特征与性能研究.武汉大学硕士学位论文,2006,38~50.
    [11] 孙曼灵.环氧树脂应用原理与技术.北京:机械工业出版社,2002.
    [12] 钱军民,李旭祥.环氧树脂改性研究进展.工程塑料应用,2001,29(10):50~53。
    [13] 吴良义,马丽,沈大理等.环氧树脂”十五”发展规划建议.热固性树脂,1994,14(4):11~22.
    [14] 曾鸿鸣,薛忠民,邓海岸等.环氧树脂研究开发现状.玻璃钢复合材料,2000,(1):44~48.
    [15] 郝惠军,许晶晶,肖卫东.耐高温及阻燃型环氧树脂的研究进展.第十一界全国环氧树脂应用技术学术交流会论文集,2004,78~87.
    [16] 孔振武,黄焕,周浩.改性松香脂环基环氧树脂的固化反应特性.林产化学与工业,2004,24:29~32.
    [17] 孔振武,黄焕,周浩.改性松香脂环基环氧树脂的机械性能及其影响因素分析.林产化学与工业,2004,24(4):21~23.
    [18] C. Farren, M. Akatsuka, Y. Takezawa, Thermal and mechanical properties of liquid crystalline epoxy resins as a function of mesogen concentration. Polymer, 2001,42(4): 1507~1514.
    [19] Jun Yeob Lee, Jyongsik Jang. The effect of mesogenic length on the curing behavior and properties of liquid crystalline epoxy resins. Polymer, 2006,47(9):3036~3042.
    [20] 余志伟,陈泉水,周萍华等.硅微粉增韧环氧树脂的研究.华东地质学院学报,1998,21(2):137~142.
    [21] Farzana Hussain, Jihua Chen, Mehdi Hojjati. Epoxy-silicate nanocomposites: Cure monitoring and characterization. Materials Science and Engineering, 2007,445-446(15):467~476.
    [22] R. Sarathi, R.K. Sahu, P. Rajeshkumar. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites. Materials Science and Engineering,2007,445-446(15):567~478.
    [23] A.Yasmin, J.J.Luo, J.L.Abot, I.M. Daniel. Mechanical and thermal behavior of clay/epoxy nanocompositesComposites. Science and Technology,2006,66(14):2415~2422.
    [24] Yuan-Qing Li, Shao-Yun Fu, Yiu-Wing Mai. Preparation and characterization of transparent ZnO/ epoxy nanocomposites with high-UV shielding efficiency. Polymer, 2006, 47(6,8):2127~2132.
    [25] 耿奎士,唐明义.聚氨酯材料的研究进展.天津商学院学报,1995, (1):35~41.
    [26] 朱吕民.聚氨酯合成材料.南京:江苏科学技术出版社,2002.
    [27] 傅明源.聚氨酯弹性体及其应用.北京:化学工业出版社,2005.
    [28] Frisch, K. C.Polyurethane-a versatile material in a changing world. Plastics and Rubber International, 1983, 8(1) : 17~19.
    [29] 李立民,黄象安.应用原子力显微镜研究热塑性聚氨酯的微相分离.东华大学学报(自然科学版),2004,30(2):9~13.
    [30] 郭锦棠,林芳茜,刘冰.聚碳酸酯聚氨酯的结构及性能.化工学报,2006,57(7):1704~1709.
    [31] 赵孝彬,杜磊.聚氨酯的结构与微相分离.聚氨酯工业,2001,16(1):4~8.
    [32] 赵菲,孙学红.聚氨酯弹性体的力学性能影响因素研究.聚氨酯工业,2001,16(1):9~12.
    [33] Ken Kojio, Shohei Nakashima, Mutsuhisa Furukawal. Microphase-separated structure and mechanical properties of norbornane diisocyanateobased polyurethanes.Polymer,2007,48(4):997~1004.
    [34] V. Melnig, M.O. Apostu, V. Tura and C. Ciobanu.Optimization of polyurethane membranes: Morphology and structure studies. Journal of Membrane Science,2005,267(1-2):58~67.
    [35] Mutsuhisa Furukawa, Yoshitaka Mitsui, Tomoya Fukumaru.Microphase-separated structure and mechanical properties of novel polyurethane elastomers prepared with ether based diisocyanate. Polymer, 2005,46(24): 10817~10822.
    [36] 刘少兵,赵彦生,贾林才等. 聚氨酯弹性体新型扩链剂的合成及应用. 化工中间体,2006,(2):21~25.
    [37] Randhir Parmar, et al.High-performance waterborne coatings based on epoxy-acryli c-graft-copolymer-modified polyurethane dispersions.Polymer International, 2005, 54: 488~494.
    [38] 顾国芳,柳丽君,李晓明.水可分散多异氰酸酯的研制.建筑材料学报,2002,5(4):364~369.
    [39] 权衡,易有彬,朱建华.PU/PA互穿网络聚合物.印染,2006,32(16):48~53.
    [40] 商士斌,夏建陵,谢晖.松香基环氧树脂/松节油基聚氨酯互穿聚合物网络结构与性能研究.林产化学与工业,2004,24(增刊):33~36.
    [41] H. Kumar, Siddaramaiah, R. Somashekar, S.S. Mahesh. Physico-mcchanical and WAXS studies of PU/PS semi interpenetrating polymer networks. European Polymer Journal, 2007, 42(2):611~619.
    [42] SM. Krishnan. Studies on corrosion resistant properties of sacrificial primed IPN coating systems in comparison with cpoxy-PU systems. Progress in Organic Coatings,2006, 57(4):383~391.
    [43] H. Kumar, A. Anti Kumar, Siddaramaiah. Physico-mcchanical, thermal and morphological bchaviour of polyurethanc/poly(mcthylmcthacrylatc) semi-interpenetrating polymer networks.Polymer Degradation and Stability, 2006,91 (5): 1097~1104.
    [44] 吴校彬,傅和青,黄洪等.聚氨酯接枝聚丙烯酸酯复合分散体的合成与表征.黄冈师范学院学报,2006,26(6):43~46.
    [45] Ouoquan Zhu,Tao Li. Properties of polyurethane-polystyrene graft copolymer membranes used for separating water-ethanol mixtures. European Polymer Journal, 2005,41(5): 1090~1096.
    [46] 张颖,侯文生,魏丽乔等.纳米SiO_2的表面改性及其在聚氨酯弹性体中的应用.功能材料,2006,37(8):1286~1288.1291.
    [47] 杨立红,刘福春,韩恩厚.纳米氧化锌改性聚氨酯复合涂层的防腐性能.材料研究学报,2006,20(4):354~360.
    [48] 侯孟华,刘伟区,陈精华.蒙脱土改性水性聚氨酯的研究.化学世界,2006, (2):88~90.
    [49] Shuxue Zhou, Limin Wu, Jian Sun. The change of the properties of acrylic-based polyurethane via addition of nano-silica. Progress in Organic Coatings,2002,45(1):33~42.
    [50] 刘云派,社海燕,罗序燕.我国松节油深加工的研究现状及其发展方向.南方冶金学院学报,2002,23(2):73~76.
    [51] 万嵘,曹玲.蒎酸二缩水甘油酯的合成.热固性树脂,1998, (3):3~6.
    [52] 陈慧宗.DPP环氧树脂的固化反应研究.中国胶粘剂,1995,5(5):17~21.
    [53] 朱柳生,陈慧宗,李希成。DPP环氧树脂的合成及其DSC研究.江西师范大学学报(自然科学版),1991,15(4):327~333.
    [54] 商士斌,谢晖,黄焕.松节油改性聚氨酯涂料的合成研究.林产化学与工业,2001,21(4):16~20.
    [55] 黄力堆,陈健,黄茂村等.新型松节油系列单组分聚氨酯涂料的研究.涂料工业,2001,31(12): 7~10.
    [56] 孙涛,官建国,余剑英等.端氨基聚氨酯的合成及增韧环氧树脂的研究.高分子材料科学与工程,2005,21(1):117~120.
    [57] 官建国,王维,龚荣洲.环氧树脂用柔性固化剂Ⅰ的研究.中国胶粘剂,2000,9(5):10~12.
    [58] 李坚.端胺基聚氨酯液体橡胶增韧环氧树脂.塑料工业,1995, (5):27~29.
    [59] 窦东友,金建锋,王得宁等.环氧树脂加成多元醇增强聚氨酯软质泡沫塑料.合成橡胶工业,2001,24(3):139~143.
    [60] 朱爱萍,陆瑞珠.聚氨酯防腐蚀涂料.涂料技术,2000, (4):36~39.
    [61] 刘广容,郭稚弧.环氧聚氨酯型彩色阴极电泳涂料.涂料工业,1996,26(3):5~8.
    [62] 李天政,曾锡炳,骆建武.环氧—聚氨酯阴极电泳涂料的研制.化学研究与研究,1994,6(2):23~27.
    [63] 王朝阳,于俊元,任碧业等.氨基硅油改性环氧阴极电泳涂料.合成材料老化与应用,2004,33(2):1~5.
    [64] 沈秀芳,钱建华.911混凝土结构外防水涂料的研制.地下工程与隧道,1993, (1):10~15.
    [65] 姚微,牟润强,刑政等.缩水甘油封端聚氨酯的合成及其改性环氧树脂的粘合性能.青岛化工学院学报,1997,18(3):243~248.
    [66] Hamid Yeganeh, Moslem Mansour Lakouraj, Sadegh Jamshidi. Synthesis and properties of biodegradable elastomeric epoxy modified polyurethanes based on poly(ε-caprolactone) and poly(ethylene glycol ). European Polymer Journal,2005,41:2370~2379.
    [67] Hamid Yeganeh, Sadegh Jamshidi, Pejman Hojati Talemi. Synthesis, characterization and properties of novel thermally stable poly(utethane-oxazolidone) elastomers. European Polymer Journal, 2006,42:1743~1754.
    [68] Hsieh KH,何涌.聚氨酯—环氧接技互贯网络聚合物Ⅰ机械特性.化学与粘合,1995,(4):236~238,242.
    [69] Qing-ming Jia, Mao-sheng Zheng,Hong-xiang Chen. Morphologies and properties of polyurethane/ epoxy resin interpenetrating network nanoeomposites modified with organoclay. Materials Letters, 2006, 60(9-10):1306~1309.
    [70] Li Chen, Su Chen. Latex interpenetrating networks based on polyurethane, polyacrylate and epoxy resin. Progress in Organic Coatings,2004,49(3):252~258.
    [71] 王颖,韩孝族.网间交联型增韧环氧树脂╱蓖麻油聚氨酯互穿网络.高分子学报,1991,(4):405~408.
    [72] 茅素芬,肖丽.聚氨酯/环氧树脂共混物的形态结构及其力学性能.高分子材料科学与工程,2002, 12(1):85~90.
    [73] 耿同谋,柴淑玲.聚氨酯环氧浆材的制备及性能的研究.中国胶粘剂,2004,13(2):15~18.
    [74] 卢德宏,苏高申,管桂生等.聚氨酯改性环氧树脂的浆液冲蚀磨损研究.昆明理工大学学报,2005,30(4):35~37.
    [75] Kircher K., Mrotzek W.,Menges G Polymer blends from polyurethane and poly(methyl methacrylate) by reaction injection molding. Polymer Engineering and Science, 1984, 24(123):974~979.
    [76] Frisch K.C., Klempner D.,Frisch H.L.,Recent advances in interpenetrating polymer networks. Polymer Engineering and Science, 1982,22(17): 1143~152.
    [77] 高大维,赵天琦,顾强等.聚氨酸—环氧树脂堵水剂的研究与应用.吉林大学自然科学学报,2001,(2):72~76.
    [78] 杨军,宋洁,李天虎.聚氨酯改性环氧树脂耐磨涂料的研制.电镀与涂饰,2006,25(6):27~30.
    [79] 董炎明.高分子分析手册.北京:中国石化出版社,2004.
    [80] 吴国民,孔振武,储富祥.氢化萜烯马来酸酐合成环氧树脂的研究.林产化学与工业,2007,27(3):57~62.
    [81] 中国腐蚀与防护学会主编.合成树脂及玻璃钢.北京:化学工业出版社,1989.
    [82] 张荣辉,王泳道.聚硫橡胶改性环氧树脂特性及在桥面防水中的应用.新型建筑材料, 2001, (11):34~36.
    [83] McEwan.lain, Pethrick.Richard A, Shaw.Stephen J. Water absorption in a rubber- modified epoxy resin; carboxy terminated butadiene acrylonitrile-amine cured epoxy resin system. Polymer,1999, 40(15):4213~4222.
    [84] Sun.S.L, Tan.Z.Y, Xu.X.F, Toughening of nylon-6 with epoxy-functionalized acrylonitrile-butadiene-styrene copolymer, Journal of Polymer Science, 2005,43 (16):2170~2180.
    [85] Zeno.W,Frank.N,S.Peter,有机涂料科学和技术.北京:化学工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700