松脂催化歧化反应动力学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在CQF-2型搅拌釜中,以松脂为原料进行催化歧化反应研究。在线跟踪分析松脂催化歧化反应过程中主要化学组成随时间和温度变化的关系,分析歧化反应产物的组成,寻找最佳歧化反应工艺条件,建立松脂催化歧化反应动力学模型。主要研究内容如下:
     采用1102型气相色谱仪、BP-5石英毛细管色谱柱分析歧化松脂的组成,色谱条件为:BP-5毛细管色谱柱;载气及流速:氮气,70 mL·min~(-1);氢气:17mL·min~(-1);空气:160mL·min~(-1);载气柱前压:0.07MPa;检测器温度:523.15K;汽化室温度:523.15K;分流比:50:1;进样量:0.2μL;灵敏度:8;柱温为三阶程序升温:
     55℃(?)90℃(?)200℃(?)250℃(2min)
     用均匀设计法对松脂催化歧化同时制备高含量脱氢枞酸的歧化松香和对伞花烃的工艺条件进行研究,考察了反应温度、催化剂用量、反应时间和搅拌速度对松脂催化岐化反应的影响,经4因素8水平的均匀设计回归分析,得到最佳工艺条件为:催化剂用量0.28%(占松脂液的wt%),反应温度260℃,反应时间180 min,搅拌转速500 r·min~(-1),在此条件下制得的歧化松香中脱氢枞酸含量为88.6%,歧化松节油中对伞花烃含量为63.0%。
     以Pd/C为催化剂,在483.15K~523.15K五个水平下,对松脂催化歧化反应动力学进行研究,根据Arrhenius方程,经线性回归得到单萜烯脱氢、加氢,枞酸型树脂酸脱氢、加氢和海松酸型树脂酸加氢反应过程的指前因子和活化能,其值分别为k_(01)=3.8789×10~(11)min~(-1),k_(02)=1.2181×10~8min~(-1),k_(03)=7.6476×10~(13)L·mol~(-1)·min~(-1),k_(04)=3.3234×10~(12) L·mol~(-1)·min~(-1),k_(05)=2.533×10~(13) L·mol~(-1)·min~(-1)和Ea_1=130.4 KJ·mol~(-1),Ea_2=100.11KJ·mol~(-1),Ea_3=143.16 KJ·mol~(-1),Ea_4=133.95 KJ·mol~(-1),Ea_5=141.44KJ·mol~(-1),则反应速率常数k_1=3.8789×10~(11)exp(-15684/T),k_2=1.2181×10~8exp(-12041/T),k_3=7.6476×10~(13)exp(-17219/T),k_4=3.3234×10~(12)exp(-16111/T),k_5=2.533×10~(13)exp(-17012/T)。结果表明,k值随着温度的升高而增大。在所考察温度范围内,单萜烯反应可看作一级反应(α_1≈α_2≈1),枞酸型树脂酸反应可看作是二级反应(α_3≈α_4≈2),海松酸型树脂酸反应可看作是二级反应(α_5≈2),说明浓度对歧化松香部分反应影响更大。根据建立的动力学方程及关联出的各参数进行模型检验,模型计算值与实验数据吻合良好。
The kinetics of catalytic disproportionation reaction of pine gum as rawmaterial in a agitated autoclave(type CQF-2) were investigated.On-line trackinganalysis for the changes of major chemical components during catalyticdisproportionation of pine gum were study. And the optimal process conditionsfor preparation of disprotionated rosin and p-cymene from pine gum weresearched. Main chemical components of disproportionated products weredetermines. And the kinetic model of catalytic disproportionation from pine gumwere discussed. The main contents as follows:
     The article chooses gas chromatography to analyse the components indisproportionated pine gum.The settled conditions of chromatogram wereshowed as: BP-5 capeillary column of chromatogram;carrier gas and its flowrate:nitrogen gas,70 mL·min~(-1); hydrogen gas flow rate: 17 mL·min~(-1);air flow rate:160 mL·min~(-1);pressure before columniation: 0.07MPa; temperature of checkmachine:523.15K;temperature of boil room:523.15K;split stream ratio: 50: 1;sample volume: 0.2μL;range: 8; raising temperature by three steps program:
     55℃(?)90℃(?)200℃(?)250℃(2min)
     The process for preparation of high content dehydroabietic acid ofdisprotionated and p-cymene from masson pine gume on Pd/C catalyst wasinvestigated.The effects of reaction temperature, the amount of catalyst,agitating velocity and reaction time on the conversation of dehydroabietic acid have examined with the experimental method of Uniform Design.At last, theoptimal process conditions for preparation of disprotionated rosin and p-cymenefrom masson pine gum were obtained as follows: Pd/C catalyst content 0.28%(based on pine gum weight), reaction temperature 260℃, reaction time 180 min,agitating velocity 500 r/min.An experiment was made to validate the besttechniques condition and the quantitative analysis of product disproportionatedwere carried out by capillary gas chromatography, the content of dehydroabieticacid was 88.6%(wt%), the content of p-cymene was 63.0%(wt%).
     The kinetics of catalytic disproportionation of pine gum on Pd/C catalystwere investigated at temperature 483.15K~523.15K.The kinetic modelparameters in Arrhenims equation were also determined, and pre-exponentialparameters were k_(01)=3.8789×10~(11)min~(-1), k_(02)=1.2181×10~8min~(-1), k_(03)=7.6476×10~(13)L·mol~(-1)·min~(-1), k_(04)=3.3234×10~(12) L·mol~(-1)·min~(-1), k_(05)=2.533×10~(13) L·mol~(-1)·min~(-1),and the activation energies were Ea_1=130.4 KJ·mol~(-1), Ea_2=100.11KJ·mol~(-1), Ea_3=143.16 KJ·mol~(-1), Ea_4=133.95 KJ·mol~(-1), Ea_5=141.44KJ·mol~(-1), and the rate constants were k_1=3.8789×10~(11)exp(-15684/T),k_2=1.2181×10~8exp(-12041/T), k_3=7.6476×10~(13)exp(-17219/T),k4=3.3234×10~(12)exp(-16111/T), k_5=2.533×10~(13)exp(-17012/T) for themonoterpene hydrogenation and dehydrogenation, abietic-type acidhydrogenation and dehydrogenation and pimaric-type resin acid hydrogenationrespectively. The final results demonstrated that k increase with temperatureincreasing. In the scope of temperature monoterpene hydrogenation and dehydrogenation can be regarded as the first order (α_1≈α_2≈1),the abietic-typeresin hydrogenation and dehydrogenation can be regarded as the second order(α_3≈α_4≈2), and pimaric-type resin acid hydrogenation can be regarded as thesecond order (α_5≈2) , the results showed that concentration influence the rate ofdisproportionated rosin action. The models were verified according to the kineticmodel and parameters. The experimental and calculated results showed thatkinetic model tally with experimental data.
引文
[1] 程芝.天然树脂生产工艺学(第二版)[M].北京:中国林业出版社,1996:69~77,47~51,240~241.
    [2] 孟广芹,王建兰.宋湛谦:我国松脂工业处于世界先进水平.中国绿色时报绿色产业2005,10,20 B04版
    [3] 王涛,粟子安.枞酸自动氧化产物的研究[[J].林产化学与工业,1991,11(3):173~181
    [4] 钟国华.松香的结构、氧化和脱色[J].广西林业科学,1997,26(2):77~78,98.
    [5] Halbrook N J, Lawrence R V. The isolation of dehydroabietic acid from disproportionated rosin [J]. Journal of Organic Chemistry, 1966, (31): 4246~4247.
    [6] 宋湛谦.利用松脂资源,发展精细化工[J].林产化学与工业,1994,14(1):67~74.
    [7] 张静夏,周永言,蔡干.右旋脱氢松香酸降解胺的合成[J].合成化学,1997,5(2):120~122.
    [8] Fonseca T, Giganta B, Marques M M, et al. Synthesis and antiviral evaluation of benzirnidazoles,quinoxalines and indoles from dehydroabietic acid [J]. Bioorganic & Medicinal Chemistry, 2004, 12(1): 103~112.
    [9] 贺近恪,李启基.林产化学工业全书[M].北京:中国林业出版社,2001:1096~1103.
    [10] Piispanen P S, Kjellin U R M, Hedman B. Synthesis and Surface Measurements of Surfactants Derived from dehydroabietic acid[J], Journal of Surfactants and Detergents [J]. Journal of Surfactants and Detergents, 2003, 16(2): 125-130.
    [11] 赵淑英,范玉华,许崇娟等.去氢枞酸合成两性表面活性剂及其性质[J].林产化学与工业,1995,15(2):19~24.
    [12] 南京林产工业学院.林产化学工业手册(上册)[M].北京:中国林业出版社,1980:362
    [13] 刘全志.对异丙基甲苯的制备[J].现代应用药学,1996,13(5):39~40.
    [14] 李佶辉,哈成勇.对异丙基甲苯的合成研究进展[J].化学通报,2004,(1):21~25.
    [15] 叶德胜,张玉华.松香工业的现状、应用和发展[J].江西化工,2003,(3):65~66.
    [16] 赵振东.1995-2002年中国脂松香质量调查研究与统计分析[J].林产化学与工业,2002,22(4):71~74.
    [17] Fleck E E, Palkin S. A catalytic method for the preparation of α-pyroabietic acid [J]. Science, 1937, 85(2196): 126
    [18] 唐亚贤,张运明,陈小鹏等.溶剂法制歧化松香[J].林产化学与工业,1996,16(4):47~52.
    [19] Fraenkel D, Levy M. Comparative study of shape-selective toluene alkylations over HZSM-5[J]. Journal of Catalysis, 1989, 118(1): 10~21.
    [20] Cejka J, Gennadij A. Kapustin and Blanka Wichterlova. Factors controlling iso-/n- and para-selectivity in the alkylation of toluene with isopropanol on molecular sieves[J]. Applied Catalysis A, 1994, 108(2): 187~204.
    [21] Padkh P A, Subrahmanyam N, Bhat Y S. et al. Toluene isopropylation over zeolite β and metallosilicates of MFI structure[J]. Applied Catalysis A, 1992, 90(1): 1~10.
    [22] 胡贵贤,刘先章.双戊烯加工利用的研究(Ⅰ)—双戊烯的脱氢反应[J].林产化学与工业,1993,13(4):305~310.
    [23] 刘德臣,孙志强,郭清华.工业双戊烯气相催化脱氢制对伞花烃的研究[J].烟台大学学报(自然科学与工程版),1998,15(6):42~45.
    [24] 张庆,任艳惠.对-异丙基甲苯的实验室制备研究[J].林产化工通讯,2001,35(2):14~17.
    [25] 吴志平,杨国忠.双戊烯合成对伞花烃的工艺研究[J],中南林学院学报,2001,21(1):48~50.
    [26] 王廖沙.由α-蒎烯制取对伞花烃液相反应条件的确定及催化剂的选择[J].化学世界,2001,42(3):131~134,165.
    [27] Roberge D M, Buhl D, Niederer J P M. et al. Catalytic aspects in the transformation of pinenestop-cymene[J]. Applied Catalysis A, 2001, 215(1-2): 111~124.
    [28] 何凤仙.工业双戊烯的组成分析[J].林产化学与工业,1989,9(3):67~68.
    [29] 刘德臣,郭清华.工业双戊烯气相催化脱氢制对伞花烃的研究[J].精细化工,1998,18(6):38~41.
    [30] Loeblich V M, Lawrence R V. Chromatographic Investigation of Disproportionatde Rosin[J]. Journal of the American Oil Chemists' Society, 1956, 33(7): 320
    [31] Song Z Q, Zavarin E, Zinkel D F. On the Palladium-on-Charcoal Disproportion of Rosin[J]. Journal of Wood Chemistry and Technology, 1985, 5(4): 535~542.
    [32] 宋湛谦,梁志勤.中国脂松香歧化反应机理的研究[J].林产化学与工业,1997,17(3):13~17
    [33] 郭清华.工业双戊烯气相催化脱氢制对伞花烃机理初探[J].烟台大学学报(自然科学版),1999,12(1):51~56.
    [34] 宋湛谦.气相色谱法分析松脂.林产化学与工业[J].1988,8(2).10~17.
    [35] 史景江,马熙中.色谱分析法(第二版)[M].重庆:重庆大学出版社,1995.38~40.
    [36] 许国旺等.现代实用气相色谱法[M],北京:化学工业出版社,2004,1~3.
    [37] 何华,倪坤仪.现代色谱分析[M].北京:化学工业出版社,2004.55~56.
    [38] American Society for Testing and Materials (ASTM). Standard test methods for fatty and rosin acids in tall oil fractionation products by capillary gas chromatography[S]. ASTM Designation, ASTM-D-5974-2000.
    [39] 刘雁.歧化松香的制备与脱氢枞酸的提纯研究[D].广西大学,2004,10~15.
    [40] 张进平,雷振天,应浩等.钯-炭催化剂制备与回收工艺及设备设计[J].林产化工通讯,1996,(05):12~16.
    [41] 史建公,洪定一,韩春国.均匀设计及其在化工中的应用[J].石油化工,1995,24(4):264~267.
    [42] 夏之宁,湛其亭,穆小静.正交设计与均匀设计的初步比较[J].重庆大学学报,1999,22(5):112~116.
    [43] 方开泰,均匀设计—数论方法在实验设计的应用[J].应用数学学报,1980,3(4):363
    [44] 李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005.114~121
    [45] 方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.107
    [46] Fang K T. Uniform Design and Tables of Uniform Design[M]. Beijing: Science Press, 1994.
    [47] 贺近恪,李启基.林产化学工业全书(第二卷)[M].北京:中国林业出版社,2001:1268~1269,1098~1099.
    [48] 朱炳辰.化学反应工程(第三版)[M].北京:化学工业出版社,2001:46~50.
    [49] Brahme H, Doralswamy L K. Modeling of Slurry Reaction and Hydrogenation of Glucose on Raney Nickel [J]. Industrial & Engineering Chemistry Process Design and Development, 1976, 15(1): 130~132.
    [50] 李绍芬.化学与催化反应工程tM].北京:化学工业出版社,1982:476~479.
    [51] Hoelderich W F, Fischer R H, Mross W D F. Preparation of alkylbenzenes. USP 4665252. 1987.
    [52] Huang H J. Practical Computer Simulation of Chemical Processes[M]. Beijing: Chemical Industry Press, 2004. 201
    [53] 王正烈,周亚平,李松林.物理化学(下册)[M].北京:高等教育出版社,2001:218~223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700