微结构纤芯光子晶体光纤基本特性及暗中空光束的产生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤作为目前光电子器件领域的研究热点之一,除了它的导光机制、制备方法和基本性质等被广泛研究外,它的应用也逐渐成为研究的焦点。论文设计了几种具有微结构纤芯的光子晶体光纤,利用电磁场散射的多极理论数值研究了微结构纤芯对光子晶体光纤特性的影响及其暗中空光束的产生。
     首先,设计了两种具有微结构纤芯的光子晶体光纤(PCFs)——矩形芯和椭圆芯PCFs,数值研究了这两种光纤的基本特性.发现在光纤包层气孔不变的情况下,仅通过调节纤芯气孔的大小就可以灵活地调节光纤的双折射、色散和非线性特性.椭圆芯PCFs可以出现三个分别位于可见、近红外和中红外波段零色散波长.在结构参数相似的情况下,椭圆芯PCFs比矩形芯PCFs更容易实现高双折射和高非线性.
     其次,通过在微结构纤芯光子晶体光纤中选择性填充液体的方法产生了高质量的暗中空光束,空心光束的暗斑大小可以通过在不同层气孔中填充液体或改变光纤参数来调节。有望利用液体填充的光子晶体光纤制成一种方便灵活的捕获和操纵原子的全光纤光镊。最后对暗中空光束应用前景进行了展望。
     最后,在纤芯中引入一个小圆孔形成了微结构纤芯光子晶体光纤,数值研究了纤芯气孔大小或者在其中填充不同折射率的物质对暗中空光束特性的影响;研究发现无论有无中心气孔都可以产生质量很好的暗中空光束,但当中心气孔存在时,可以通过调节中心气孔半径的大小来调节暗中空光束暗斑的大小。也可以通过在纤芯孔填充不同折射率的物质改变暗中空光束的大小和质量。
Photonic crystal fiber(PCF) as one of the focus that studied by many people in the photoelectron fields, including the characters、guide-light mechanism and fabrication. PCF is also studied as the focus. This paper designs all kinds of micro-structured core Photonic crystal fibers. Influence of micro-structured core on characteristics of photonic crystal fibers are studied by electromagnetic scattering theory of multipole method at the theory, and produce of dark hollow beam is also studied.
     Firstly, Photonic crystal fiber(sPCFs)with rectangle core and elliptical core have been designed in this paper. Their fundamental characteristics are studied by electromagnetic scattering theory of multipole method. It is found that the fiber birefringence, dispersion and nonlinear characteristics can be flexibly adjusted by changing the radius of the air holes in the core. The three zero-dispersion-wavelength of elliptical core PCFs locate in visible, near-infrared and mid-infrared band, respectively. For similar structural parameters, elliptical core PCFs are easier to achieve high birefringence and high nonlinear than rectangular core PCFs.
     Secondly, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fiber. A dark spot size of the liquid-filled photonic crystal fiber -generated hollow beam can be tuned by inserting liquid in the cladding region and varying photonic crystal fiber structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and creation of all-fiber optical tweezers. Finally, the application of dark hollow beams in the atomic optics and the other fields are also discussed.
     Finally, a method by employing circular air-hole in the fibre core was proposed to form micro- structure fibre core photonic crystal fiber. we Study properties of dark hollow beams produced by the micro-structure fiber core photonic crystal fiber by changing the radius of the air holes in the core and filling with medium for a different effective refractive index in the fibre core air-holes. It is found that: the micro-structure fiber can produce good quality of the dark hollow beam with or without center holes, but when the center air-hole exists, we can adjust a dark spot size of the dark hollow beam by changing the radius of the air holes in the core. The further study shows filling with medium for a different effective refractive index in the fibre core air-hole not only can adjust the size of dark spot of the dark hollow beam, but can adjust quality of dark hollow beams. Finally, the application of dark hollow beams in the atomic optics and the other fields are also discussed.
引文
1 J. C. Knight, T. A. Birks, P. St. J. Russell, et al. All-Silica Single-Mode Optical Fiber with Photonic Crystal Cladding, Opt. Lett., 1996, 21(19):1547-1549
    2 T. A. Birks, J. C. Knight , P. St. J. Russell, et al. Endlessly Single-Mode Photonic Crystal Fiber, Opt. Lett., 1997,22(13):961-963
    3 J. C. Knight, J. Broeng, T. A. Birks, et al. Photonic Band Gap Guidance in Optical Fibers, Science, 1998, 282(5393): 1476-1478
    4 J. Limpert, T. Schreiber, S. Nolte, et al. All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber, Opt. Exp., 2003, 11(24): 3332-3337
    5 W. J. Wadsworth, J. C. Knight, Reeves W. H., et al. Yb3+-doped photonic crystal fibre laser, Electron. Letters., 2000, 36(17): 1452-1453
    6 T. Sondergaard. Photonic crystal distributed feedback fiber lasers with Bragg gratings, J. Lightwave. Technol., 2000, 18(4): 589-597
    7 K. Furusawa, T. M. Monro, P. Petropoulos, D. J.Richardson, Modelocked laser based on ytterbium doped holey fibre, Electron. Letters, 2001, 37(9): 560-561
    8 K. Furusawa, A. Malinowski, J. H. V. Price, et al. Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding. Opt. Exp., 2001, 9(13): 714-720
    9 P. Glas and D. Fischer, Cladding pumped large-mode-area Nd-doped holey fiber laser, Opt. Exp., 2002, 10(6): 286-290
    10 W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, et al. High power air-clad photonic crystal fibre laser, Opt. Exp., 2003, 11(1): 48-53
    11 A. Cucinotta, F. Poli, S. Selleri, et. al. Amplification properties of Er3+-doped photoniccrystal fibers, J. Lightwave. Technol., 2003, 21(3): 782-788
    12 J. Limpert, T. Schreiber, S. Nolte, et al., High-power air-clad large-mode-area photonic crystal fiber laser, Opt. Exp., 2003, 11(7): 818-823
    13 K. G. Hougaard, J. Broeng and A. Bjarklev, Low pump power photonic crystal fibre amplifiers, Electron. Lett., 2003, 39(7): 599-600
    14 Z. Yusoff, J. H. Lee, W. Belardi, et al. Raman effects in a highly nonlinear holey fiber: amplification and modulation, Opt. Lett., 2002, 27(6): 424-426.
    15 J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, et al. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation, Opt. Exp., 2003, 11(22): 2982-2990
    16 C. S. Zhang, G. Y. Kai, Z. Wang, et al. Simulations of effect of high-index materials on highly birefringent photonic crystal fibres, Chinese Physics Letters, 2005, 22 (11): 2858-2861
    17 M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, et al. Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber, IEEE Photonics Technology Letters, 2005, 17 (4): 819-821
    18 L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers, Opt. Exp., 2005, 13 (19): 7483-7496
    19 F. Du, Y. Q. Lu, S. T. Wu, Electrically tunable liquid-crystal photonic crystal fiber, Appl. Phys. Lett., 2004, 85(12): 2181–2183
    20 C. Kerbage, P. Steinvurzel, P. Reyes, et al. Highly tunable birefringent microstructured optical fiber, Opt. Lett., 2002, 27(10): 842-844
    21 D. C. Zografopoulos, E. E Kriezis, T. D. Tsiboukis, Photonic crystal-liquid crystal fibers for single-polarization or high- birefringence guidance, Opt. Exp., 2006, 14 (2): 914-925
    22 S. John.Strong Localization of Photons in Certain Disordered Dielectric Superlattices,Phys. Rev. Lett., 1 987, 58(23):2486-2489
    23 E. Yablonovitch,T. J. Grnitter, Photonic Band Structure:The Face-entered-cubic Case, Phys. Rev. Lett., 1989, 63(18):1950-1953
    24 J. C. Knight, T. A. Birks, P. S. J. Russell, D. M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, opt. Lett., 1996, 21(19):1547-1549
    25 J. C. Knight, J. Brceng, T. A. Birks, P. S. J. Russell, Photonic band gap guidance in optical fibers, Science, 1998, 282(5393):1746-1748
    26 T. A. Birks, J. C. Knight, P. S. J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett., 1997, 22(13):961-963
    27 J. C. Knight, T. A. Birks, P. S. J. Russell, et al. Properties of photonic crystal fiber and the effective index model, Opt. Soc. Am. A, 1998, 15(3): 748-752
    28 J. C. Knight, J. Arriaga, T. A. Birks, et al. Anomalous dispersion in photonic crystal fiber, IEEE Photon. Technol. Lett., 2000, 12(7): 807-809
    29 A. Ferrando, E. Silvestre, P. Andres, et al. Designing the properties of dispersion-flattened photonic crystal fibers, Opt. Exp., 2001, 9(13): 687-697
    30 G. Renversez, B. Kuhlmey, R. McPhedran, Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses, Opt. Lett, 2003, 28(12): 989-991
    31 A. Ferrando, E. Silvestre, J. Miret, et al. Nearly zero ultraflattened dispersion in photonic crystal fibers, Opt. Lett., 2000, 25(11): 790-792
    32 K. P. Hansen, Dispersion flattened hybrid-core nonlinear photonic crystal fiber, Opt. Exp, 2003, 11(13): 1503-1509
    33 J. K. Ranka, R. S. Windeler, A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Opt. Lett., 2000, 25(1): 25-27
    34 C. Kerbage, B. J. Eggleton, Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber, Opt. Exp., 2002,10(5): 246-255
    35 J. Ju, W. Jin, M. S. Demokan, Properties of a highly birefringent photonic crystal fiber, IEEE Photon. Technol. Lett., 2003,15(10):1375-1377
    36 C. S. Zhang, G. Y. Kai, Z. Wang, et al. Simulations of effect of high-index materials on highly birefringent photonic crystal fibres, Chinese Physics Letters, 2005, 22 (11): 2858-2861.
    37 M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, et al. Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber, IEEE Photonics Technology Letters, 2005, 17 (4): 819-821
    38 L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, Continuously tunable devicesbased on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers, Opt. Exp., 2005,13 (19): 7483-7496.
    39 F. Du, Y. Q. Lu, and S. T. Wu, Electrically tunable liquid-crystal photonic crystal fiber, Appl. Phys. Lett., 2004, 85(12):2181–2183.
    40 C. Kerbage, P. Steinvurzel, P. Reyes, et al. Highly tunable birefringent microstructured optical fiber, Opt. Lett. 2002, 27(10): 842-844.
    41 D. C. Zografopoulos, E. E. Kriezis, T. D. Tsiboukis Photonic crystal-liquid crystal fibers for single-polarization or high- birefringence guidance, Opt. Exp., 2006, 14 (2): 914-925
    42 Y. Huang, Y. Xu, A. Yariv. Fabrication of functional microstructured optical fibers through a selective-filling technique, Applied Physics Letters, 2004, 85 (22): 5182-5184
    43 J.C. Knight, T.A. Birks, R. F. Cregan, et al. Large Mode Area Photonic Crystal Fibre , Electron. Lett. ,1998, 34(13):1347-1348
    44 N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, et al. Improved Large-Mode-Area Endlessly Single-Mode Photonic Crystal Fibers, Opt. Lett., 2003, 28(6): 393-395
    45 J. Limpert, A. Liem, M. Reich, et al. Low-Nonlinearity Single-Transverse-Mode Ytterbium-Doped Photonic Crystal Fiber Amplifier, Opt. Exp, 2004, 12(7):1313-1319
    46 W.S. Wong, X. Peng, J.M. McLaughlin, Breaking the Limit of Maximum Effective Area Forrobust Single-Mode Propagation in Optical Fibers, Opt. Lett., 2005, 30(21): 2855-2857
    47 L. Li, A. Schülzgen, V. L. Temyanko, et al. Short-Length Microstructured Phosphate Glass Fiber Lasers with Large Mode Areas, Opt. Lett., 2005, 30(10): 1141-1143
    48 D. Ferrarini, L. Vincetti, M. Zoboli. Leakage properties of photonic crystal fibers, Opt. Exp., 2002, 10(23), 1314-1319
    49 K. Saitoh, N. A. Mortensen, M. Koshiba. Air-core photonic band-gap fibers: the impact of surface modes, Opt. Exp., 2004, 12(3):394-400
    50 K. K. Hyang, J. F. D.Michel, Gordon S. K, et al. Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers, Opt. Exp., 2004,12(15):3436-3442.
    51 T. K. Tajima, J. Zhou, Y. Nakajima, et al. Ultra low loss and long length photonic crystal fiber, Journal of Lightwave Technology,2004, 22(1): 7-10
    52栗岩锋,刘博文,王子涵等.光子晶体光纤色散的有限差分法研究,中国激光, 2004, 31(10):1257-1260
    53 S. Guo, F. Wu, S. Albin, et al. Loss and Dispersion Analysis of Microstructured Fibers by Finite-Difference Method, Opt. Exp, 2004, 12(15):3341-3352
    54 J. B. Pendry, A. MacKinnon. Calculation of Photon Dispersion Relations. Phys. Rev. Lett., 1992, 69(9):2772-2775
    55 N. Guan, S. Habu, K. Takenaga, et al. Boundary Element Method for Analysis of Holey Optical Fibers. J. Lightwave Tech.., 2003, 21(8): 1787-1789
    56 Y. L. Hsueh, E. S. T. Hu, M. E. Marhic, et al. Opposite-parity orthonormal function expansion for efficient full-vectorial modeling of holey optical fibers.Opt. Lett., 2003 , 28(14): 1188-1190
    57 T. P. White, B. T. Kuhlmey, R.C. McPhedran, et al. Multipole Method For Micro Structured Optical Fibers, J. of Opt. Society of America B,2002, 19(10):2322-2330
    58 B. T. Kuhlmey, T. P. White, G. Renversez, et al. Multipole Method for Microstructured Optical Fibers. II. Implementation and results. J. of Opt. Society of America B,2002, 19(10):2331-2340
    59 H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, et.al. Bismuth glass holey fibers with high nonlinearity, Opt. Exp, 2004, 12(21): 5082-5087
    60 P. Falkenstain, C. D. Merritt, B. L. Justus et. al. Fused performs for the fabrication of photonic crystal fibers. Opt. Lett., 2004, 29(16): 1858-1860
    61 T. P. White, R. C. McPhedran, C. M. de Sterke, etal. Resonance and scattering in microstructured optical fibers, Optics Letters,2002, 27(22): 1977-1979
    62 M. Yan, P. Shum. Antiguiding in microstructured optical fibers, Opt. Exp, 2004, 12(1):104-116
    63 G. Kakarantzas, T. A. Birks, P. St. J. Russell. Structural long-period gratings in photonic crystal fibers. Optics Letters, 2002, 27(12):1013-1015
    64 K. Morishita, Y. Miyake, Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change, Journal of Lightwave Technology, 2004, 22(2):625-630
    65 L. Zhang, C. Yang, Polarization-dependent coupling in twin-core photonic crystal fibers, Journal of Lightwave Technology, 2004, 22(5):1367-1373
    66 D.A. Chestnut, J.R. Taylor. Gain-flattened fiber Raman amplifiers with nonlinearity-broadened pumps, Optics Letters, 2003, 28(23):2294-2296
    67 K. Suzuki, H. Kubota, S. Kawanishi, et al. High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarisation-maintaining photonic crystal fibre, Electronics Letters, 2001, 37 (23):1399~1401
    68 S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, et al. Limiting of microjoule femtosecond pulses in air-guided modes of a hollow photonic-crystal fiber, Physical Review A, 2004, 70(2): 023807-1--023807-6
    69延凤平,李一凡,王琳,龚桃荣等.近椭圆内包层高双折射偏振稳定光子晶体光纤设计及特性分析,物理学报, 2008, 57(9): 5735-5741
    70娄淑琴,简伟,任国斌等.一种新结构的高双折射光子晶体光纤,光电子·激光, 2005, 16(11):1265-1269
    71 K. Suzuki, H. Kubota, S. Kawanishi, et al. Optical properties of a low-loss polarization-maintaining photonic crystal fiber, Opt Express. 2001, 9(13): 676-680
    72娄淑琴,任国斌,延凤平等.类矩形芯光子晶体光纤的色散与偏振特性,物理学报, 2005, 54(3) :1229-1234
    73杜海龙,郑义,樊心民等.全反射导光型光子晶体光纤的基模损耗研究,半导体光电, 2008, 29(4):568-570
    74王建,雷乃光,于重秀.椭圆空气孔微结构光纤限制损耗的分析,物理学报, 2005, 56(2): 946-951
    75刘兆伦,刘晓东,李曙光等.大模面积色散平坦光子晶体光纤的优化设计,半导体光电, 2006, 27(6):725-732
    76赵兴涛,侯蓝田,刘兆伦等.改进的全矢量有效折射率方法分析光子晶体光纤的色散特性,物理学报, 2007, 56 (4):2275-2280
    77李曙光,冀玉领,周桂耀,侯蓝田等.多孔微结构光纤中非秒激光脉冲超连续谱的产生,物理学报. 2004, 53 (2):478-483
    78刘兆伦,刘晓东,倪正华等.高非线性色散平坦光子晶体光纤的研究,激光与红外, 2006, 36(1): 47-50
    79李曙光,邢光龙,周桂耀等.空气孔正方形排列的低损耗高双折射光子晶体光纤的数值模拟,物理学报, 2006, 55(1):238-2
    80王清月,胡明列,柴路等.光子晶体光纤非线性光学研究新进展,中国激光, 2006, 33 (1): 57-66
    81印建平等.空心光束的产生及其在现代光学中的应用,物理学进展, 2004, 24(3): 336-380
    82 J. P. Yin, Y. Zhu, Y. Z. Wang, et al. Atom guiding and cooling in a dark hollow laser beam, Phys Rev A. 1998, 58(1 ): 509-513
    83 K. Svoboda, S. M. Block, Biological applications of optical force, Annu Rev. Biophys Biomol struct., 1994, 23 (2): 247-285
    84 K. T. Gahagan, Jr. G. A. Swartzlander, Optical vortex trapping of particles, Opt. Lett., 1996, 21 (11) :827-829
    85 A. E. Siegman, Laser. Mill Valley, CA: University Science. 1996, P. 685-695
    86 J Arlt, K Dholakia. Generation of high-order Bessel beams by use of an axicon, Opt. commum., 2000, 177(1-6 ): 297-301
    87 Y. J. Cai, X. H. Lu, Q. Lin. Hollow Gaussian beams and their propagation properties, Opt. Lett., 2003, 28 (13 ): 1084-1086
    88 J. S. de. M. Christiano, M. B. C. Cristiano, M. dos S. Eliane, Liquid-core, liquid-cladding photonic crystal fibres. Opt. Exp., 2007, 15 (18):11207-11212
    89 M. G. Krishna, K. Miroslav, V. M. Jerome, Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers, Opt Exp. 2006, 14(15): 6870-6878
    90 C. P. Yu, J. H. Liou, S. S. Huang, H. C. Chang, Tunable dual-core liquid-filled photonic crystal fibres for dispersion compensation, Opt. Exp., 2008, 16(7): 4443-4451
    91 T. Larsen, A. Bjarklev, D. Hermann, J. Broeng. Optical devices based on liquid crystal photonic bandgap fibres, Opt Exp. 2003, 11(20): 2589-2596
    92 C. P. Yu, J. H. Liou, Selectively liquid-filled photonic crystal fibres for optical devices,Opt. Exp., 2009, 17(11): 8729-8734
    93 A. E. Vasdekis, G. E. Town, G. A. Turnbull, D. W. Samuel, Fluidic fibre dye laser, Opt. Exp., 2007, 15(7 ): 3962-3967
    94 J. M. Fini, Microstructure fibres for optics sensing in gases and liquids. Meas, Sci. Technol, 2004, 15(6 ): 1120-1128
    95 M. Sasaki, T. Ando, S. Nogawa, K. Hane, Direct Photolithography on Optical Fibre End. Jpn. J. Appl. Phys. 2002, 41(6B): 4350-4355
    96 L. Xiao, W. Jin, M. S. Demokan, H. L.Ho, etal. Fabrication of selective injection microstructured optical fibres with a conventional fusion splicer, Opt. Exp., 2005, 13(22): 9014-9022
    97 A. V. Mamaev, M. Saffman, A. A. Zozulya, Vortex Evolution and Bound Pair Formation in Anisotropic Nonlinear Optical Media Phys, Rev. Lett., 1996, 77(22 ):4544-4547
    98 J. P. Yin, Y. F. Zhu, Y. Z. Wang, et al. A tandem hollow-fiber, hollow-beam approach Evanescent light-wave atomic funnel, Phys. Rev. A, 1998,57(3):1957-1966
    99 J. P. Yin, Y. F. Zhu, W. Jhe, et al. Atom guiding and cooling in a dark hollow laser beam, Phys. Rev. A, 1998,58(1 ):509-513
    100 K. T. Gahagan, Jr. GA. Swartzlander, Optical vortex trapping of particles, Opt. lett., 1996, 21(11):827-829
    101 K. Svoboda, S. M. Block, Biological applications of optics forces, Annu Rev. Biophys Biomol Struct, 1994, 23(2):247-285
    102 H. Ito, K. Sakaki, W. Jhe, et al. Atomic funnel with evanescent light, Phys. Rev. A, 1997, 56(1):712-718
    103 W. L. Power, L. Allen, M. Babiker, et al. Atomic motion in light beams possessing orbital angular momentumPhys, Rev. A, 1995, 52(1 ):479-488
    104 H. S. Lee, B. W. Stewart, K. Choi, et al. Holographic nondiverging hollow beam, Phys. Rev. A, 1994, 49(6 ):4922-4927
    105闫长春,薛国刚,刘诚等.产生纳米级暗中空光束方法研究,物理学报, 2007, 56(01):0160-0164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700