外来入侵植物黄顶菊中活性成分的分离分析、结构鉴定及活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外来入侵植物黄顶菊是我国危害最为严重的恶性杂草之一,具有发生量大、繁殖迅速、传播速度快的特点。相比简单的防治方法,资源化利用黄顶菊具有更大优势。为综合防控黄顶菊,开发和利用其巨大的生物资源,需对黄顶菊的活性成分进行深入细致的研究。活性成分的分离纯化是关键。逆流色谱(Counter-current chromatography,CCC)是近几十年发展起来一种连续有效的液液分配色谱技术,它不使用固态支撑体或载体,从而避免了不可逆吸附造成的化学变性及失活等问题,具有样品回收率高,重现性好,溶剂消耗量少,洗脱方式多样等优点。近年来一系列逆流色谱新方法及新仪器的研发,改进了逆流装置,扩展了逆流色谱的应用范围,提高了逆流色谱的分离效率。因此广泛应用于天然产物中有效成分的分离和纯化。本论文主要采用逆流色谱法分离纯化黄顶菊中的活性物质。
     本论文系统的研究了外来入侵植物黄顶菊中活性物质的分析方法和分离提纯方法。建立了黄顶菊活性物质的回流粗提工艺;建立了逆流色谱分离纯化黄顶菊中活性物质单体的方法,实现了黄顶菊中活性物质十种单体的分离纯化及结构鉴定;建立了高效液相色谱法定量分析黄顶菊中主要活性物质单体的方法和黄顶菊叶的高效液相色谱指纹图谱;初步评价了从黄顶菊中分离得到的主要黄酮类物质的抗氧化活性。主要研究成果如下:
     1.通过单因素和正交实验确定了黄顶菊总黄酮最佳提取工艺:80%乙醇,料液比1:30(w/v),每次回流75min,回流2次。应用最优提取工艺分别提取不同部位,不同生长期,不同地区黄顶菊样品,并测定其总黄酮含量。黄顶菊中黄酮类化合物含量较高的的部位是花部和叶部,含量较高的生长期是开花期,河北省采集的黄顶菊叶中总黄酮含量较其它地区的高。
     2.使用逆流色谱和制备液相色谱分离纯化了黄顶菊中四种主要的黄酮苷,并通过ESI-MS,~1H NMR,~(13)C NMR,HSQC和HMBC等方法进行了结构鉴定。对比了高速逆流色谱(HSCCC)与高效逆流色谱(HPCCC)的分离效率,研究了洗脱-推出逆流色谱法(EECCC)分离黄顶菊粗提物的方法。使用GS10AB-A型HSCCC仪,乙酸乙酯-甲醇-水(25:1:25, v/v)体系,一次可分离约400mg黄顶菊粗品,得到3.6mg纯度97%以上的万寿菊素-3-O-葡萄糖苷,4.4mg纯度98%以上的紫云英苷以及4.2mg纯度97%以上的异槲皮苷和6-甲氧基山奈酚-3-O-葡萄糖苷的混合物,采用制备高效液相色谱法进一步将两种物质分离。采用HSCCC二氯甲烷-甲醇-水(5:3:2, v/v)体系,从逆流分离黄酮苷回收样品中分离出高纯度的四种黄酮醇。研究结果表明逆流色谱是一种从黄顶菊中分离活性物质的有效手段。
     3.采用逆流色谱两种溶剂系统从黄顶菊中分离纯化了异鼠李素-3-硫酸酯,并鉴定结构。相比传统的多组分有机溶剂-水体系,单组分有机溶剂-盐水体系更适合极性物质异鼠李素-3-硫酸酯的分离。采用正丁醇-0.25%NaCl(1:1,v/v)溶剂体系,一次HSCCC实验可从约400mg未经任何前处理的黄顶菊粗品中分离纯化出2.1mg纯度大于97%的异鼠李素-3-硫酸酯。研究结果表明单组份有机溶剂-盐水逆流色谱体系特别适合制备分离大极性物质异鼠李素-3-硫酸酯。
     4.建立了一种简单灵敏的HPLC-DAD同时测定黄顶菊样品中六种主要物质含量的方法,并进行了方法学考察。测定了不同部位,不同生长期,不同地区黄顶菊样品中活性物质的含量,明确了其动态变化规律。首次建立了黄顶菊叶的HPLC指纹图谱,评估和鉴别了十二批来自中国四个不同地区的黄顶菊叶样品,并计算其相似度。将HPLC指纹图谱研究和主成分含量测定结合在一起,可以为黄顶菊的物种鉴别提供化学依据。
     5.将黄顶菊中含量最高的黄酮苷紫云英苷研制成国家标准样品,资源化利用黄顶菊。采用连续进样逆流色谱法大量制备分离了黄顶菊中的紫云英苷,并进行了多种手段的结构确证以及HPLC纯度检查。对其进行了均匀性与稳定性考察,均符合标准样品要求,最后通过多家实验室共同定值,确定紫云英苷标准样品纯度定值结果为98.49%。
     6.对黄顶菊中分离得到的五种主要黄酮类物质进行初步抗氧化性研究,评价了其清除DPPH自由基,总抗氧化能力T-AOC,清除超氧阴离子自由基和羟自由基的能力。结果表明五种物质均具有一定的自由基清除能力和抗氧化能力,为综合开发利用黄顶菊为天然抗氧化剂提供基础。
Flaveria bidentis (L.) Kuntze was one of the most harmful invasive weedin China. It has very strong reproductive and survival abilities, and spreadsfast. Compared with simple controlling methods, utilization of the weed inuseful purposes might give more benefits. In order to utilize and control F.bidentis, bioactive compounds from F. bidentis should be deeply studied. Themost important point is separation and purification. Counter-currentchromatography (CCC), being a support-free liquid–liquid partitionchromatography, eliminates irreversible adsorption of sample onto the solidsupport, and has been widely used in preparative separation of naturalproducts. CCC is an advanced technique that it needs minimum samplepre-treatment and cleanup procedures, and permits many elution modes. Inaddition, a series of new CCC assays and apparatus extends the applicationfields of CCC and improves the separation efficiency of CCC separation and devices. CCC was mainly used for the separation of bioactive compoundsfrom F. bidentis in this thesis.
     In this thesis, multiple separation and analysis methods were studied forthe bioactive compounds from F. bidentis. The optimized extraction method,CCC separation methods of10compounds, HPLC analysis of the maincompounds and fingerprint of F. bidentis leaves were established. In addition,the antioxidant properties of the main flavonoids were estimated. The mainresearch results were as follows:
     1. The optimized extraction method of total flavonoids from F. bidentiswas established by single factor and orthogonal design experiments: F.bidentis powder was extracted (refluxed) with80%(v/v) ethanol for75min (2times). The total flavonoids in F. bidentis samples from different origins,different parts of the plant and different growing periods were tested. Resultsshowed that the highest flavonoids contents were flower and leaf, the bloomperiod and the leaf sample from Hebei province.
     2. CCC and preparative HPLC (pre-HPLC) were successfully used for theseparation of four main flavonol glycosides from F. bidentis, and the fourcompounds were identified by ESI-MS,~1H NMR,~(13)C NMR,HSQC andHMBC. The separation efficiency of the high-speed counter-currentchromatography (HSCCC) was compared with the high performancecounter-current chromatography (HPCCC). Using GS10AB-A HSCCC bythe two-phase solvent system ethyl acetate-methanol-water (25:1:25, v/v), about400mg of the crude extract was separated, yielding3.6mg ofpatuletin-3-O-glucoside at a purity of over97%;4.4mg of astragalin at apurity of over98%and4.2mg of a mixture of quercetin-3-O-glucoside and6-methoxykaempferol-3-O-glucoside constituting over97%of the fraction.Then the mixture was separated by pre-HPLC. Four pure flavonol wereseparated using dichloromethane-methanol-water (5:3:2, v/v) by HSCCC.
     3. The first preparative separation of a flavonoid sulphateisorhamnetin-3-sulphate from F. bidentis by counter-current chromatography(CCC) was presented. Two kinds of solvent systems were used. Aone-component organic/salt-containing system composed of n-butanol-0.25%sodium chloride aqueous solution (1:1, v/v) was used. As a result,2.1mg ofisorhamnetin3-sulphate with a purity of over97%has been isolated from400mg of crude extract without pre-enrichment. Compared with the conventionalorganic/aqueous system, the one-component organic/salt-containing aqueoussystem was more suitable for the separation of isorhamnetin-3-sulphate, andpurer target compound was obtained from the crude extract withoutpre-enrichment using the new solvent system.
     4. A simple and sensitive high performance liquid chromatography methodcoupled with photodiode array detection (HPLC-DAD) was developed forsimultaneous determination of6major constituents in F. bidentis. The contentsof the6compounds in F. bidentis samples from different origins, differentparts of the plant and different growing periods were tested. The chemical fingerprint of F. bidentis leaves was established using raw materials of12batches in China. The results indicate that this multi-component determinationmethod in combination with chromatographic fingerprint analysis is suitablefor quantitative analysis and identification of F. bidentis.
     5. Astragalin which content was the highest in F. bidentis was developedas a national reference material. A gram scale of astragalin was separated bycontinuous injection HSCCC. It was identified by many methods and thepurity was determined by HPLC. The uniformity and stability were inspected,and results fitted the requirement of reference material. The definite value wasfinally determined by combined value determination, and was98.49%.
     6. The antioxidant properties of the main flavonoids were estimated.DPPH scavenging activity, T-AOC, superoxide radicals scaving effect andhydroxyl radicals scaving effect were tested. Results showed that the5flavonoids processed a certain ability of antioxidation.
引文
[1]万方浩,郭建英,王德辉.中国外来入侵生物的危害与管理对策[J].生物多样性,2002,10(1):119-125.
    [2]高贤明,唐廷贵,梁宇,等.外来植物黄顶菊的入侵警报及防控对策[J].生物多样性,2004,12(2):274-279.
    [3]刘全儒.中国菊科植物一新归化属——黄菊属[J].植物分类学报,2005,43(2):178-180.
    [4] McKown A D, Moncalvo J M, Dengler N G. Phylogeny of Flaveria (Asteraceae) and inference ofC4photosynthesis evolution [J]. Am. J. Bot.,2005,92(11):1911-1928.
    [5] Agnese A M, Guglielmone H A, Cabrera J L, in: S. Singh, V.K. Singh, J.N. Govil (Eds.). Flaveriabidentis and Flaveria haumanii-effects and bioactivity of sulphated flavonoids. Recent Progressin Medicinal Plants [M]. Houston: Sci. Tech. Publishing lnc.,2009:1-17.
    [6] Zhang X, Boytner R, Cabrera J L, et al. Identification of yellow dye types in pre-ColumbianAndean textiles [J]. Anal. Chem.,2007,79:1575-1582.
    [7]李香菊,王贵启,张朝贤,等.外来植物黄顶菊的分布、特征特性及化学防除[J].杂草科学,2006,4:58-61.
    [8]刘玉升,刘宁,付卫东,等.外来入侵植物——黄顶菊山东省发生现状调查[J].山东农业大学学报(自然科学版),2011,42(2):187-190.
    [9] Ashton A R. NADP–Malic enzyme from the C4plant Flaveria bidentis: nucleotide substratespecificity [J]. Arch. Biochem. Biophy.,1997,345(2):251-258.
    [10] Cavallaro A, Ludwig M, Burnell J. The nucleotide sequence of a complementary DNA encodingFlaveria bidentis carbonic anhydrase [J]. FEBS Letters,1994,350:216-218.
    [11]万方浩,谢炳炎,杨国庆.入侵生物学[M].北京:科学出版社,2011.
    [12]任艳萍,江莎,古松,等.外来植物黄顶菊(Flaveria bidentis)的研究进展[J].热带亚热带植物学报,2008,16(4):390-396.
    [13] Pereyra de Santiago O J, Juliani H R. Isolation of quercetin3,7,3',4'-tetrasulphate from Flaveriabidentis L. Otto Kuntze [J]. Experientia,1972,28:380-381.
    [14] Cabrera J L, Juliani H R. Quercetin3acetyl7,3',4'-trisulphate from Flaveria bidentis [J].Lloydia,1976,39:253-254.
    [15] Cabrera J L, Juliani H R. Isorhamnetin3,7-disulphate from Flaveria bidentis [J]. Phytochemistry,1977,16:400.
    [16] Cabrera J L, Juliani H R. Two new quercetin sulphates from leave of Flaveria bidentis [J].Phytochemistry,1979,18:510-511.
    [17] Cabrera J L, Juliani H R, Gros E G. Quercetin3,7,3'-trisulphate from Flaveria bidentis [J].Phytocemistry,1985,24:1394-1395.
    [18] Agnese A M, Montoya S N, Espinar L A, et al. Chemotaxonomic features in Argentinian species[J]. Biochem. Syst. Ecol.,1999,27:739-742.
    [19] Guglielmone H A, Agnese A M, Montoya S N, et al. Anticoagulant effect and action mechanismof sulphated flavonoids from Flaveria bidentis [J]. Thromb. Res.,2002,105(2):183-188.
    [20] Guglieknone H A, Agnese A M, Montoya S N, et al. Inhibitory effects of sulphated flavonoidsisolated from Flaveria bidentis on platelet aggregation [J]. Thromb. Res.,2005,115:495-502.
    [21] Barron D, Colebrook L D, Ibrahim R K. An equimolecular mixture of quercetin3-sulphate andpatuletin3’ sulphate from Flaveria chloraefolia [J]. Phytochemistry,1986,25:1719-1721.
    [22] Varin L, Barron D, Ibrahim R K. Identification and biosynthesis of glucosilated and sulfatedflavonols in Flaveria bidentis [J]. Z. Naturforsch,1986,41c:813-819.
    [23] Varin L, Barron D, Ibrahim R K. Enzymatic synthesis of sulphated flavonols in Flaveria [J].Phytochemistry,1987,26:135-138.
    [24] Barron D, Varin L, Ibrahin R K, et al. Sulphated flavonoids-an update [J]. Phytochemistry.1988,27:2375-2395.
    [25] Powell A M. Systematics of Flaveria (Flaveriinae-Asteraceae)[J]. Ann. Missouri Bot. Gard.,1978,65:590-636.
    [26]张培成.黄酮化学[M].北京:化学工业版社,2009.
    [27] Mariani C, Braca A, Vitalini S, et al. Flavonoid characterization and in vitro antioxidant activity ofAconitum anthora L.(Ranunculaceae)[J]. Phytochemistry,2008,69:1220-1226.
    [28] Sharififar F, Dehghn-Nudeh G, Mirtajaldini M. Major flavonoids with antioxidant activity fromTeucrium polium L [J]. Food Chem.,2009,112:885-888.
    [29] Rijke E, Out P, Niessen W, et al. Analytical separation and detection methods for flavonoids [J]. J.Chromatogr. A,2006,1112:31-63.
    [30] Harborne J B. Flavonoid sulphates: a new class of sulphur compounds in higher plants [J].Phytochemistry,1975,14:1147-1155.
    [31]张凯.黄顶菊中噻吩类和酚酸类物质的研究[D].北京:北京化工大学,2011.
    [32] Bardón A, Borkosky S, Ybarra M I, et al. Bioactive plants from Argentina and Bolivia [J].Fitoterapia,2007,78(3):227-231.
    [33]闫宏,张国良,付卫东,等.黄顶菊提取物抑菌活性的研究[J].山东农业大学学报(自然科学版),2011,42(3):376-378.
    [34] Broussalis A M, Ferraro G E, Martino V S. Argentine plants as potential source of insecticidalcompounds [J]. J. Ethnopharmacol.,1999,67:219-233.
    [35] Vladimír C, Jitka V, Lenka K. Phototoxic activity of a thiophene polyacetylene from Leuzeacarthamoides [J]. Fitoterapia,2006,77:194-199.
    [36]张玲敏,张倩,吕慧芳. α-三噻吩对白纹伊蚊抗溴氰菊酯品系幼虫的毒杀作用[J].暨南大学学报(医学版),2005,26(6):772-775.
    [37] Hooks C R, Wang K H, Ploeg A, et al. Using marigold (Tagetes spp.) as a cover crop to protectcrops from plant-parasitic nematodes [J]. Appl. Soil. Ecol.,2010,46:307-320.
    [38] Nivsarkar M, Cherian B, Padh H, et al. Alpha-terthienyl: a plant derived new generationinsecticide [J]. Curr. Sci.,2001,81:667-672.
    [39] Wang C X, Zhu M X, Chen X H, et al. Review on allelopathy of exotic invasive plants [J].Procedia Engineer.,2011,18:240-246.
    [40] Callaway R M, Aschehoug E T. Invasive plants versus their new and old neighbors: a mechanismfor exotic invasion [J]. Science,2000,290(5491):521-523.
    [41]李香菊,张米茹,李咏军,等.黄顶菊水提液对植物种子发芽及胚根伸长的化感作用研究[J].杂草科学,2007,4:15-19.
    [42]许文超,徐娇,陶哺,等.外来入侵植物黄顶菊的化感作用初步研究[J].河北农业大学学报,2007,6(30):63-67.
    [43]冯建永,陶晡,庞民好,等.黄顶菊化感物质释放途径的初步研究[J].河北农业大学学报,2009,30(1):72-77.
    [44] Haraguchi H, Ohmi I, Sakai S, et al. Effect of Polygonum hydropiper sulfated flavonoids on lensaldose reductase and related Enzymes [J]. J. Nat. Prod.,1996,59:443-444.
    [45] Haraguchi H, Hashimoto K, Yagi A. Antioxidative Substances in Leaves of Polygonumhydropiper [J]. J. Agric. Food Chem.,1992,40:1349-1351.
    [46] Duenas M, Surco-Laos F, Gonzalez-Manzano S, et al. Antioxidant properties of major metabolitesof quercetin [J]. Eur. Food Res. Technol.,2011,232:103-111.
    [47]Liang H, Li C F, Yuan Q P, et al. Separation and purification of sulforaphane from broccoli seedsby solid phase extraction and preparative high-performance liquid chromatography [J]. J Agric.Food Chem.,2007,55:8047-8053
    [48] Guiochon G. Preparative liquid chromatography [J]. J. Chromatogr. A,2002,965:129-161.
    [49] Jin Y, Xue X Y, Liu Y F, et al. A novel method of prediction and optimization for preparativehigh-performance liquid chromatography separation [J]. J. Chromatogr. A,2008,1183:76-86.
    [50]李瑞萍,黄骏雄.高效制备液相色谱柱技术的研究进展[J].化学进展,2004,16(2):274-283.
    [51] Du Q Z, Jiang Z G, Wang D J. Excellent combination of counter-current chromatography andpreparative high-performance liquid chromatography to separate galactolipids from pumpkin [J].J. Chromatogr. A,2009,1216:4176-4180.
    [52]曹学丽.高速逆流色谱分离技术及应用[M].北京:化学工业出版社,2005.
    [53]张天佑.逆流色谱技术[M].北京:北京科学技术出版社,1991.
    [54] Ito Y, Weinstein M, Aoki I, et al. The coil planet centrifuge [J]. Nature,1966,212:985-987.
    [55] Ito Y. High-speed countercurrent chromatography [J]. CRC. Crit. Rev. Anal Chem,1986,17:65-143.
    [56]柳仁民.高速逆流色谱及其在天然产物分离中的应用[M].青岛:中国海洋大学出版社,2008.
    [57] Cao X L, Huang D F, Dong Y M, et al. Separation of aloins A and B from Aloe vera exudates byhigh speed countercurrent chromatography [J]. J. Liq. Chromatogr.&Rel. Technol.,2007,30(11):1657-1668.
    [58] Berthod A, Ruiz-ángel M J, Carda-Broch S. Countercurrent chromatography: People andapplications [J]. J. Chromatogr. A,2009,1216:4206-4217.
    [59] Wei Y, Du S J, Ito Y. Enantioseparation of lomefloxacin hydrochloride by high-speedcounter-current chromatography using sulfated-β-cyclodextrin as a chiral selector [J]. J.Chromatogr. B,2010,878:2937-2941.
    [60] Guan Y H, Bourton E C, Hewitson P, et al. The importance of column design for proteinseparation using aqueous two-phase systems on J-type countercurrent chromatography [J]. Sep.Purif. Technol.,2009,65:79-85.
    [61] Marston A, Hostettmann K. Developments in the application of counter-current chromatographyto plant analysis [J]. J. Chromatogr. A,2006,1112:181-194.
    [62] Sutherland IA, Fisher D. Role of counter-current chromatography in the modernisation of Chineseherbal medicines [J]. J. Chromatogr. A,2009,1216,740-753.
    [63] Wei Y, Xie Q Q, Dong W T, et al. Separation of epigallocatechin and flavonoids from Hypericumperforatum L. by high-speed counter-current chromatography and preparative high-performanceliquid chromatography [J]. J. Chromatogr. A,2009,1216,4313-4318.
    [64] Berthod A, Friesen J B, Inui T, et al. Elution-extrusion countercurrent chromatography: theory andconcepts in metabolic analysis [J]. Anal. Chem.,2007,79:3371-3382.
    [65] Lu Y B, Berthod A, Hu R L, et al. Screening of Complex Natural Extracts by CountercurrentChromatography Using a Parallel Protocol [J]. Anal. Chem.,2009,81:4048-4059.
    [66] Sutherland I A, Hewitson P, Siebers R, et al. Comparing multilayer toroidal coil chromatographywith centrifugal partition chromatography [J]. J. Chromatogr. A,2011,1218:5527-5530.
    [67] Sutherland I A, Hewitson P, Ignatova S. New18-l process-scale counter-current chromatographycentrifuge [J]. J. Chromatogr. A,2009,1216:4201-4205.
    [68] Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-currentchromatography [J]. J. Chromatogr. A,2005,1065:145-168.
    [69] Friesen J B, Pauli G F. Rational development of solvent system families in counter-currentchromatography [J]. J. Chromatogr. A,2007,1151:51-59.
    [70] Wei Y, Zhang K, Zhang G L, et al. Isolation of five bioactive compounds from EupatoriumAdenophorum Spreng using stepwise elution by high-speed counter-current chromatography [J]. J.Liq. Chromatogr.&Rel. Technol.,2011,34(20):2505-2515.
    [71] Wang X, Zheng Z J, Guo X F, et al. Preparative separation of gingerols from Zingiber officinaleby high-speed counter-current chromatography using stepwise elution [J]. Food Chem.,2011,125:1476-1480.
    [72] Zhou X, Peng J Y, Fan G R, et al. Isolation and purification of flavonoid glycosides from Trolliusledebouri using high-speed counter-current chromatography by stepwise increasing the flow-rateof the mobile phase [J]. J. Chromatogr. A,2005,1092(2):216-221.
    [73] Agnely M, Thiébaut D. Dual-mode high-speed counter-current chromatography: retention,resolution and examples [J]. J. Chromatogr. A,1997,790:17-30.
    [74] Berthod A, Ruiz-Angel M J, Carda-Broch S. Elution-extrusion countercurrent chromatography.Use of the liquid nature of the stationary phase to extend the hydrophobicity window [J]. Anal.Chem.,2003,75(21):5886-5894.
    [75] Lu Y B, Liu R, Berthod A, et al. Rapid screening of bioactive components from Zingibercassumunar using elution-extrusion counter-current chromatography [J]. J. Chromatogr. A,2008,1181:33-44.
    [76] Li S C, He S C, Zhong S J, et al. Elution–extrusion counter-current chromatography separation offive bioactive compounds from Dendrobium chrysototxum Lindl [J]. J. Chromatogr. A,2011,1218:3124-3128.
    [77] Cheng Y J, Zhang M, Hu P, et al. Two-step preparation of ginsenoside-Re, Rb1, Rc and Rb2fromthe root of Panax ginseng by high-performance counter-current chromatography [J]. Sep. Purif.Technol.,2011,77:347-354.
    [78] Lu Y B, Pan Y J, Berthod A. Using the liquid nature of the stationary phase in counter-currentchromatography V. The back-extrusion method [J]. J. Chromatogr. A,2008,1189:10-18.
    [79] Lu Y B, Ma W Y, Hui R L, et al. Rapid and preparative separation of traditional Chinese medicineEvodia rutaecarpa employing elution-extrusion and back-extrusion counter-currentchromatography: Comparative study [J]. J. Chromatogr. A,2009,1216:4140-4146.
    [80] Berthod A, Bully M. High-speed countercurrent chromatography used for alkylbenzeneliquid-liquid partition coefficient determination [J]. Anal. Chem.,1991,63:2508-2512.
    [81] Wei Y, Xie Q Q, Fisher D, et al. Separation of patuletin-3-O-glucoside, astragalin, quercetin,kaempferol and isorhamnetin from Flaveria bidentis (L.) Kuntze by elution-pump-outhigh-performance counter-current chromatography [J]. J. Chromatogr. A,2011,1218:6206-6211.
    [82] Wood P, Ignatova S, Janaway L, et al. Counter-current chromatography separation scaled up froman analytical column to a production column [J]. J. Chromatogr. A,2007,1151:25-30.
    [83] Guzlek H, Wood P, Janaway L. Performance comparison using the GUESS mixture to evaluatecounter-current chromatography instruments [J]. J. Chromatogr. A,2009,1216:4181-4186.
    [84] Zhang M, Ignatova S, Hu P, et al. Cost-efficient and process-efficient separation of geniposidefrom Gardenia jasminoides Ellis by high-performance counter-current chromatography [J]. Sep.Purif. Technol.,2012,89:193-198.
    [85] Luo H D, Peng M, Ye H Y, et al. Predictable and linear scale-up of four phenolic alkaloidsseparation from the roots of Menispermum dauricum using high-performance counter-currentchromatography [J]. J. Chromatogr. B,2010,878:1929-1933.
    [86] Zhang Y C, Liu C M, Yu M, et al. Application of accelerated solvent extraction coupled withhigh-performance counter-current chromatography to extraction and online isolation of chemicalconstituents from Hypericum perforatum L.[J]. J. Chromatogr. A,2011,1218:2827-2834.
    [87] Mbeunkui F, Grace M H, Lila M A. Isolation and structural elucidation of indole alkaloids fromGeissospermum vellosii by mass spectrometry [J]. J. Chromatogr. B,2012,885-886:83-89.
    [88] Sutherland I, Ignatova S, Hewitson P, et al. Scalable Technology for the Extraction ofPharmaceutics (STEP): The transition from academic knowhow to industrial reality [J]. J.Chromatogr. A,2011,1216:6114-6121.
    [89] DeAmicis C, Edwards N A, Giles M B, et al. Comparison of preparative reversed phase liquidchromatography and countercurrent chromatography for the kilogram scale purification of crudespinetoram insecticide [J]. J. Chromatogr. A,2011,1218:6122-6127.
    [90] Ito Y, Ma Y. pH-zone-refining countercurrent chromatography [J]. J. Chromatogr. A,1996,753:1-36.
    [91]张天佑,王晓.高速逆流色谱技术[M].北京:化学工业出版社,2011.
    [92] Gutzeit D, Winterhalter P, Jerz G. Application of preparative high-speed counter-currentchromatography/electrospray ionization mass spectrometry for a fast screening and fractionationof polyphenols [J]. J. Chromatogr. A,2007,1172:40-46.
    [93] Ha Y W, Lim S S, Ha I J, et al. Preparative isolation of four ginsenosides from Korean red ginseng(steam-treated Panax ginseng C. A. Meyer), by high-speed counter-current chromatographycoupled with evaporative light scattering detection J. Chromatogr. A,2007,1151:37-44.
    [94] Wu T, Lin J B, Yang Y, et al. Preparative isolation of three flavonoids from Flos Gossypii byhigh-speed counter-current chromatography [J]. Sep. Purif. Technol.,2009,66:295-298.
    [95] Zhang Y P, Shi S Y, Wang Y X, et al. Target-guided isolation and purification of antioxidants fromSelaginella sinensis by offline coupling of DPPH-HPLC and HSCCC experiments [J]. J.Chromatogr. B,2011,879:191-196.
    [96] Costa F d N, Leit o G G. Evaluation of different solvent systems for the isolation ofSparattosperma leucanthum flavonoids by counter-current chromatography [J] J. Chromatogr. A,2011,1218:6200-6215.
    [97] Xiao X H, Si X X, Tong X, et al. Preparation of flavonoids and diarylheptanoid from Alpiniakatsumadai hayata by microwave-assisted extraction and high-speed counter-currentchromatography [J]. Sep. Purif. Technol.,2011,81:265-269.
    [98] Xu K, Lu H T, Qu B H, et al. High-speed counter-current chromatography preparative separationand purification of phloretin from apple tree bark [J]. Sep. Purif. Technol.,2010,72:406-409.
    [99] de Beer D, Jerz G, Joubert E, et al. Isolation of isomangiferin from honeybush (Cyclopiasubternata) using high-speed counter-current chromatography and high-performance liquidchromatography [J]. J. Chromatogr. A,2009,1216:4282-4289.
    [100] Du Q Z, Li B. Identification of antioxidant compounds of Mucuna sempervirens by high-speedcounter-current chromatographic separation–DPPH radical scavenging detection and theiroestrogenic activity [J]. Food Chem.,2012,131:1181-1186.
    [101] Cao X L, Wang C, Pei H R, et al. Separation and identification of polyphenols in apple pomace byhigh-speed counter-current chromatography and high-performance liquid chromatography coupledwith mass spectrometry [J]. J. Chromatogr. A,2009,1216:4268-4274.
    [102] Xiao G D, Li G W, Chen L, et al. Isolation of antioxidants from Psoralea corylifolia fruits usinghigh-speed counter-current chromatography guided by thin layer chromatography-antioxidantautographic assay [J]. J. Chromatogr. A,2010,1217:5470-5476.
    [103] Jiang Y, David B, Tu P F, et al. Recent analytical approaches in quality control of traditionalChinese medicines-A review [J]. Anal. Chim. Acta,2010,657(1):9-18.
    [104]谢培山.中药指纹图谱鉴别的概念、属性、技术与应用[J].中国中药杂志,2001,26(10):653-657.
    [105]杨桂芳,王鹏.中药指纹图谱的建立方法和作用[J].时珍国医国药,2004,15(1):21-25.
    [106] Ni L J, Zhang L G, Hou J, et al. A strategy for evaluating antipyretic efficacy of Chinese herbalmedicines based on UV spectra fingerprints [J]. J. Ethnopharma.,2009,124:79-86.
    [107]单鸣秋,姚晓东,池玉梅,等.侧柏叶红外指纹图谱共有峰率和变异峰率双指标序列分析法[J].光谱学与光谱分析,2009,29(8):2092-2095.
    [108] Politi M, Zloh M, Pintado M E, et al. Direct metabolic fingerprinting of commercial herbaltinctures by nuclear magnetic resonance spectroscopy and mass spectrometry [J]. Phytochem.Analysis,2009,20:328-334.
    [109] Cozzolino D, Cynkar W, Dambergs R, et al. Two-dimensional correlation analysis of the effect oftemperature on the fingerprint of wines analysed by mass spectrometry electronic nose [J].Sensors and Actuators B: Chemical,2010,145:628-634.
    [110] Tian R T, Xie P S, Liu H P. Evaluation of traditional Chinese herbal medicine: Chaihu (BupleuriRadix) by both high-performance liquid chromatographic and high-performance thin-layerchromatographic fingerprint and chemometric analysis [J]. J. Chromatogr. A,2009,1216:2150-2155.
    [111] Zhu H B, Wang Y Z, Liang H, et al. Identification of Portulaca oleracea L. from different sourcesusing GC-MS and FT-IR spectroscopy [J]. Talanta,2010,81:129-135.
    [112] Li Yan, Wu T., Zhu J H, et al. Combinative method using HPLC fingerprint and quantitativeanalyses for quality consistency evaluation of an herbal medicinal preparation produced bydifferent manufacturers [J]. J. Pharmaceut. Biomed. Anal.,2010,52:597-602.
    [113] Ji Y B, Alaerts G, Cu C J, et al. Sequential uniform designs for fingerprints development ofGinkgo biloba extracts by capillary electrophoresis [J]. J. Chromatogr. A,2006,1128:273-281.
    [114] Gu M, Zhang S F, Su Z G, et al. Fingerprinting of Salvia miltiorrhiza Bunge by non-aqueouscapillary electrophoresis compared with high-speed counter-current chromatography [J]. J.Chromatogr. A,2004,1057:133-140.
    [115]韩晔华,霍飞凤,杨悠悠,等.中药指纹图谱研究的某些进展与展望[J].色谱,2008,62(2):142-152.
    [116]于世林.高效液相色谱方法及应用[M].北京:化学工业出版社.2005:122-142.
    [117] Wei H, Sun L N, Tai Z G, et al. A simple and sensitive HPLC method for the simultaneousdetermination of eight bioactive components and fingerprint analysis of Schisandra sphenanthera[J]. Anal. Chim. Acta,2010,662:97-104.
    [118] Cai M, Zhou Y, Gesang S L, et al. Chemical fingerprint analysis of rhizomes of Gymnadeniaconopsea by HPLC-DAD-MS [J]. J. Chromatogr. B,2006,844:301-307.
    [119]李文博,韩建平,高钧,等.养血清脑颗粒的高效液相色谱指纹图谱研究[J].分析化学,2011,39(3):387-391.
    [120] Pan G Y, Yu G Y, Zhu C H, et al. Optimization of ultrasound-assisted extraction (UAE) offlavonoids compounds (FC) from hawthorn seed (HS)[J]. Ultrasonics Sonochem.,2012,19:486-490.
    [121] Cheng X L, Wan J Y, Li P, et al. Ultrasonic/microwave assisted extraction and diagnostic ionfiltering strategy by liquid chromatography–quadrupole time-of-flight mass spectrometry for rapidcharacterization of flavonoids in Spatholobus suberectus [J]. J. Chromatogr. A,2011,1218:5774-5786.
    [122] Huma Z, Vian M A, Fabiano-Tixier A S, et al. A remarkable influence of microwave extraction:Enhancement of antioxidant activity of extracted onion varieties [J]. Food Chem.,2011,127:1472-1480.
    [123]董彩玉.密闭微波辅助萃取三七中的皂苷类化合物以及细梗胡枝子中的黄酮类化合物[D].北京:北京化工大学,2008.
    [124] Pan Y M, He C H, Wang H S, et al. Antioxidant activity of microwave-assisted extract ofBuddleia officinalis and its major active component [J]. Food Chem.,2010,121:497-506.
    [125]袁黎明.制备色谱技术及应用[M].北京:化学工业出版社,2011:119.
    [126]于德泉,杨峻山.分析化学手册第七分册:核磁共振波谱分析[M].北京:化学工业出版社,1999.
    [127] Ferreres F, Castaner M, Tomas-Barberan F A. Acylated flavonol glycosides from spinach leaves[J]. Phytochem.,1997,45:1701-1705.
    [128] Dai D M, He J M, Sun R X, et al. Nuclear magnetic resonance and liquid chromatography–massspectrometry combined with an incompleted separation strategy for identifying the naturalproducts in crude extract [J]. Anal. Chim. Acta,2009,632:221-228.
    [129] Merfort I. Acetylated and other flavonoid glycosides from Arnica Chamissonis [J]. Phytochem.,1998,27:3281-3284.
    [130] Yang F Q, Quan J, Zhang T Y, et al. Preparative separation of alkaloids from the root of Sophoraflavescens Ait by pH-zone-refining counter-current chromatography [J]. J. Chromatogr. A,1998,822:316-320.
    [131] Wang X, Cheng C G, Sun Q L, et al. Isolation and purification of four flavonoid constituents fromthe flowers of Paeonia suffruticosa by high-speed counter-current chromatography [J]. J.Chromatogr. A,2005,1075:127-131.
    [132] Romero-Gonzalez R R, Verpoorte R. Salting-out gradients in centrifugal partition chromatographyfor the isolation of chlorogenic acids from green coffee beans [J]. J. Chromatogr. A,2009,1216:4245-4251.
    [133] Zhi W B, Deng Q Y. Purification of salvianolic acid B from the crude extract of Salviamiltiorrhiza with hydrophilic organic/salt-containing aqueous two-phase system bycounter-current chromatography [J]. J. Chromatogr. A,2006,1116,149-152.
    [134] Guo M Z, Liang J L, Wu S H. On-line coupling of counter-current chromatography andmacroporous resin chromatography for continuous isolation of arctiin from the fruit of Arctiumlappa L.[J]. J. Chromatogr. A,2010,1217:5398-5406.
    [135] Ahmed F H, Hassan-Elrady A. S., Nadia E H. Flavonol glycosides from Nitraria Retusa [J].Phytochem.,1995,40:349-351.
    [136] Yagi A, Uemura T, Okamura N, et al. Antioxidative sulphated flavonoids in leaves of Polygonumhydropiper [J]. Phytochem.,1994,35:885-887.
    [137] Xie Q Q, Yin L, Zhang G L, et al. Separation and purification of isorhamnetin3-sulphate fromFlaveria bidentis (L.) Kuntze by counter-current chromatography comparing two kinds of solventsystems [J]. J. Sep. Sci.,2012,35:159-165.
    [138] Xie Q Q, Wei Y, Zhang G L. Separation of flavonol glycosides from Flaveria bidentis (L.) Kuntzeby high-speed counter-current chromatography [J]. Sep. Purif. Technol.,2010,72:229-233.
    [139] World Health Organization, Guidelines for the Assessment of Herbal Medicines, WHO, Geneva,1997.
    [140] Food and Drug Administration, Guidance for Industry Botanical Drug Products, Center for DrugEvaluation and Research (CDER), FDA,2004.
    [141] State Food and Drug Administration of China, Technical Requirements for the Development ofFingerprints of TCM Injections, SFDA, Beijing,2002.
    [142] Gong F, Liang Y Z, Xie P S, et al. Information theory applied to chromatographic fingerprint ofherbal medicine for quality control [J]. J. Chromatogr. A,2003,1002:25-40.
    [143] Kwon H J, Park Y D. Determination of astragalin and astragaloside content in Radix Astragaliusing high-performance liquid chromatography coupled with pulsed amperometric detection [J]. J.Chromatogr. A,2012,1232:212-217.
    [144] Deng S G, Deng Z Y, Fan Y W, et al. Isolation and purification of three flavonoid glycosides fromthe leaves of Nelumbo nucifera (Lotus) by high-speed counter-current chromatography [J]. J.Chromatogr. B,2009,877:2487-2492.
    [145] Li L, Peng Y, Xu L J, et al. Flavonoid glycosides and phenolic acids from Ehretia thyrsiflora [J].Biochem. Syst. Ecol.,2009,36:915-918.
    [146] Kim H Y, Moon B H, Lee H J, et al. Flavonol glycosides from the leaves of Eucommia ulmoidesO. with glycation inhibitory activity [J]. J. Ethnopharm.,2004,93:227-230.
    [147] Apers S, Huang Y, Miert S V, et al. Characterisation of new oligoglycosidic compounds in twoChinese medicinal herbs [J]. Phytochem. Anal.,2002,13:202-206.
    [148] Jeong H J, Ryu Y B, Park S J, et al. Neuraminidase inhibitory activities of flavonols isolated fromRhodiola rosea roots and their in vitro anti-influenza viral activities [J]. Bioorg. Med. Chem.,2009,17:6816-6823.
    [149] Kawasel M, Motohashi N, Satoh K, et al. Biological activity of persimmon (Diospyros kaki) peelextracts [J]. Phytotherapy Research,2003,17:495-500.
    [150] Garrard I J, Janaway L, Fisher D. Minimising solvent usage in high speed, high loading, and highresolution isocratic dynamic extraction [J]. J. Liq. Chromatogr.&Rel. Technol.,2007,30:151-163.
    [151]吴定芳.逆流色谱新方法在丹参和穿心莲活性成分分离中的应用[D].浙江:浙江大学,2010.
    [152]赵保路.自由基和天然抗氧化剂[M].北京:科学出版社,1999:133-136.
    [153] Caillet S, Yu N L, Lessard S, et al. Fenton reaction applied for screening natural antioxidants [J].Food Chem.,2007,100:542-552.
    [154] Mariani C, Mariani A, Vitalini S, et al. Flavonoid characterization and in vitro antioxidant activityof Aconitum anthora L.(Ranunculaceae)[J]. Phytochem.,2008,69:1220-1226.
    [155] Sharififar F, Dehghn-Nudeh G, Mirtajaldini M. Major flavonoids with antioxidant activity fromTeucrium polium L [J]. Food Chem.,2009,112:885-888.
    [156] Huang W, Xue A, Niu H, et al. Optimised ultrasonic-assisted extraction of flavonoids from Foliumeucommiae and evaluation of antioxidant activity in multi-test systems in vitro [J]. Food Chem.,2009,114:1147-1154.
    [157] Cai Y Z,Sun M,Xing J, et al. Structure-radical scavenging activity relationships of phenoliccompounds from traditional Chinese medicinal plants [J]. Life Sci.,2006,78:2872-2888.
    [158] Heim K E, Tagliaferro A R, Bobilya D J. Flavonoid antioxidants: chemistry, metabolism andstructure-activity relationships [J]. J. Nutri. Biochem.,2002,13:572-584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700