水电站泄洪雾化深化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对水电站泄洪雾化问题进行了研究。泄洪雾化是近二十多年来水电工程中所提出的一个新课题,指的是泄水建筑物泄水时所引起的一种非自然降雨过程与水雾弥漫现象。我国有些水利枢纽,由于受地形条件的限制,每遇泄流,坝下游相当大的范围内有如狂风暴雨、水雾迷漫,形成具有严重危害性的雾化水流,影响了建筑物的正常运行,这方面的事例还是不少的。如有的因雾化水流影响电站的正常运行,甚至出现停电、淹没厂房等事故;有的因雾化水流导致库区交通或居民生活受到影响,以至于不得不迁移部分建筑物;有的因雾化水流导致下游两岸山坡失稳。研究雾化问题的目的正在于防范雾化水流的危害,确保工程安全。已有研究成果表明:对100米以上水头的大型泄水建筑物,挑流消能带来的下游雾化问题即已相当严重,而我国正在规划设计的溪落渡与锦屏一级水利枢纽为坝高达到300米级的超高坝,并还具有落差大、泄洪流量大、河谷狭窄等特点,雾化问题更加突出,从某种程度上来讲甚至关系到工程的成败。因此,雾化水流的研究已成为高坝建设中新的水力学关键技术问题之一,对其进行研究不仅具有十分重要的意义,也有广阔的应用背景。此外,雾化水流中的水舌段属水气两相流,而其雾流降雨区又属气水两相流,研究雾化水流也有助于拓宽两相流的研究范围。本文根据目前雾化水流研究的现状,通过理论分析、模型试验和数值计算,对影响雾化水流预报精度的两个关键问题,即挑流水舌问题和溅水问题进行了研究,以进一步完善雾化水流的数学模型,提高预报精度,为工程上采用适当的措施防范雾化水流的危害提供依据,其主要工作是:
     1、由于工程应用所限,过去人们一般仅重视挑流水舌的挑距,而对其临界掺气条件则鲜有涉及。考虑到挑流水舌的界面是水气界面,其能卷吸掺气的必要条件即为水气界面失去稳定,在波破碎过程中将空气卷入水流中,本文引用流动稳定性理论中的K-H不稳定性理论对挑流水舌的卷吸掺气条件进行了分析,得到了临界流速与临界韦伯数的表达式。因明渠水流外区的流动与挑流水舌临近水气交界面的运动在一定程度上均可视为自由湍流,本文用明渠水流的掺气条件对所建立的挑流水舌临界掺气条件进行了近似验证。此外,油水分界面与水气分界面同属两种流体的分界面,其临界失稳机理相同,本文
The characteristics of atomized flow in hydropower station have been studied in this paper. The atomized flow is a new subject issued in recent twenty years, which means an unnatural rain process and mist flow while water flows through the discharge structure at high-speed. In some hydraulic projects once flood discharges there exists a relatively large area downstream of the dam where violent wind and driving rain occurs, and the sky turns dark, thence normal operation of the hydraulic projects may be heavily affected, and sometimes power failure, building inundation and landslide even occur. The purpose to study the atomized flow is just to prevent its harm. For the dam with water head of 100m scale the atomized flow problem is relatively severe, the planning Xiluodu Hydropower Station and Jingping Hydropower Station are super dam with the dam height of 300m scale, the atomized flow problem would be more severe. Therefore, the investigation of the atomized flow is of great importance in engineering. On the other hand, the water jet in atomized flow is water-air two phase flow, yet in the diffusion region the atomized flow is air-water two phase flow, thence the investigation of atomized flow is also significant in multi-phase flow theory. On the basis of the previous work, a systematic study has been done for the atomized flow problems by theoretical analysis, model test and numerical simulation, and the atomized flow problems in Nuozadu Hydropower Station has also been investigated. The main results got in this paper are as follows:1. People previously only want to know the jumping distance of the water jet owing to application in engineering, the criterion for air entrainment into the water jet has not been taken into account, yet this condition is very important in the study of atomized flow. In this paper the criterion for air entrainment into the water jet was analyzed based on the Kelvin-Helmholtz instability theory, both the critical velocity and the critical Weber number were got. The experimental results for air entrainment into the open channel flow and the instability of the interface of oil and water were used to verify the theoretical results for the critical velocity of air entrainment.
    2. Based on the statistical theory of turbulent flow an expression for the amount of air entrained into the jet was got, and the experimental results for oil entrained into water and the variation of the jet thickness were used to verify the theoretical results.3. The velocity of jumping jet and the surrounding air in high dam is generally very high, the governing equations for the jumping jet were got based on the multi-phase flow theory in two cases : with air entrainment and without air entrainment. Under the assumption that there exist no shift velocity between water and air and there exist similarity during the development of the jet, the simplified ID and 2D model for the jumping jet were got. Air entrainment and air resistance were considered in the mathematical model. For the ID model, the prototype observation data of six hydropower stations including Zhexi Hydropower Station, Huanren Hydropower Station and Fengman Hydropower Station, was used to test the mathematical model. For the 2D model the experimental results and prototype observation data of Zhexi Hydropower Station, the experimental results of Nuozadu Hydropower Station, and the experimental results of energy dissipation in the open air were used to verify the mathematical model.4. Theoretical analysis and model test were carried for the evolution of the configuration of the jumping jet. For the theoretical results the trajectory and vertical thickness of broad and thin jet were got. In the experiment the overflow spillway of Dongjiang Hydropower Station was used for study background, the main characteristics of the variation of the section topography were got. The experimental results shows that the lateral width of the jumping jet would increase while the jet jumps from the bucket, and based on the vertical variation the jet can be classified into three stages: dense stage, diffusion stage and breaking stage. The relative increase of cross section would be larger than that of wet length, and the higher the upstream water level, the larger the relative increase of cross section and wet length would be.5. The impact of the water drop at the outer edge of the aerated jet against the downstream water surface was analyzed, and the motion of the splash water drop
    was investigated with the momentum and energy equation. Furthermore, a new formula for the calculation of the splash length was suggested, which is in good agreement with the data of model test and prototype observation.6. Prototype observation is the very important tool to study atomized flow. The results for the jumping jet and splash were used to correct the original mathematical model of atomized flow, and the prototype observation data of Wujiangdu Hydropower Station, Dongjiang Hydropower Station as well as Xiangkeyan Hydropower Station were used to verify the new mathematical model of atomized flow. The numerical results are all in close agreement with the prototype observation data in rain area and rain intensity distribution. For example, the prototype observation data for rain length in Wujiangdu Hydropower Station is 80-450m, the numerical one is 74.6-431.7m, the predicted rain intensity in 2* and 3# measuring station is also in close agreement with the observed one. For Xiangkeyan Hydropower Station, prototype observation is carried out in 1998 for the atomized flow with seven sluices of uniform opening, the calculated rain area is in close agreement with the observed one.7. Nuozadu Hydropower Station has large installed capacity, large storage and large energy output in the eight cascade hydropower stations of Nanchang River. The new mathematical model for atomized flow were used to study the following problems of this hydropower station: (1) The atomized flow in five operational rules were predicted by the new mathematical model, the extent of rain and the rain intensity distribution were got. The results shows that the region with the rain intensity above drizzling rain in 1044.51 long, 910.95m wide, and the maximum elevation for the lifting of atomized flow is as high as 790.42m. (2) the possible effect of the atomized flow on the transmission system(switch station) , traffic system(downstream bridge, road on the right bank) of this hydropower station were discussed. (3) suggestions were made for the prevention design of downstream bank slope based on the predicted results of atomized flow.
引文
1、梁在潮,刘士和等,小湾水电站泄流雾化水流深化研究,面向21世纪中国电力可持续发展研究,2001年6月,P1152-1156,中国环境科学出版社。
    2、Liu Shihe, Liang Zaichao, Hu Minliang, simulation of the aerated flow in hydroelectric engineering, Proceedings of 29-th IAHR Congress, Theme D, pp.734-739, 2001.
    3、中南勘测设计研究院,乌江渡水电站高速水流原型观测成果总报告,北京:水利电力出版社,1983年。
    4、武汉水利电力学院,雾化课题调查报告,1985年11月。
    5、南京水利科学研究院水工研究所,漫湾水电站泄流雾化原体观测试验研究,1995年5月。
    6、中国水利水电科学研究院,二滩水电站高双曲拱坝泄洪雾化原型观测报告,2000年3月。
    7、中南勘测设计研究院等,东江水电站滑雪式溢洪道水力学原型观测报告,1993年。
    8、郑艳爽,泄洪雾化同类型工程的模糊聚类分析,武汉大学毕业论文,2004年。
    9、李奇伟,库区雾化运动规律研究,武汉水利电力学院硕士论文,1985年6月。
    10、梁在潮等,坝下游雾化问题的研究,武汉水利电力学院研究报告,1985年11月。
    11、梁在潮,雾化水流理论,中国水利水电工程技术进展,pp.656-675,海洋出版社,1999年。
    12、Liu Shihe, Study of the atomized flow in hydraulic engineering, J. Hydrodynamics, 1999, Ser. B, 2, pp. 77-83.
    13、陈惠玲,小湾水电站泄洪雾化研究,云南水力发电,第14卷,第4期,51-55。
    14、吴持恭,杨永森,空中自由射流断面含水浓度分布规律研究,水利学报,1994年,第7期,1-11。
    15、刘宣烈,张文周.空中水舌运动特性研究[J].水力发电学报,1988,(2):46-54。
    16、姜信和、张任,挑射水股空中掺气扩散特性的研究,水利学报,1987年第7期,49-53。
    17、刘宣烈、刘均.三元空中水舌掺气扩散的试验研究[J].水利学报,1989,第11期,10-17。
    18、刘宣烈、刘钧《空中掺气水舌运动轨迹及射距》,《天津大学学报》,1989年第2期。
    19、胡小宝,挑流水舌断面形态的发展,武汉水利电力学院毕业论文,1983年。
    20、 刘士和、梁在潮,平面掺气散裂射流特性,水动力学研究与进展,A缉第10卷3期,1995年。
    21、王翔,挑流雾化溅水区范围的确定,武汉水利电力学院硕士论文,1989 年4月。
    22、刘永川,安康水电站厂区雾化预报,水电部西北水科所研究报告,1988年6月。
    23、Drazin, P.G. & Reid W.H., Hydrodynamic Stability, Cambridge University Press, 1981。
    24、Rayleigh, Lord. On the instability of a cylinder of viscous liquid under capillary force[J], Phil. Mag., 1892, vol.34, p.145.
    25、梁在潮、刘士和等,多相流与紊流相干结构,华中理工大学出版社,1994。
    26、李建中、宁利中,高速水力学,西北工业大学出版社,1993年。
    27、R.G.扎洛兹等,被控制的水面油层形成油滴掺入水流的数字模型,查尔斯等主编,沈受百译,石油工业出版社,1980年。
    28、是勋刚主编,湍流,天津大学出版社。1994年。
    29、Turner, J.S., Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows, J. Fluid Mech., vol. 173, pp. 431-471,1986.
    30、周力行,多相湍流反应流体力学,国防工业出版社,2002年。
    31、赵坚行,燃烧的数值模拟,科学出版社,2002年。
    32、韩才元等,煤粉燃烧,科学出版社,2001年。
    33、郭子中,消能防冲原理与水力计算,科学出版社,1982年。
    34、Pinto, N.L. et. al, Aeration at high velocity flows, Water Power Dam Construction, Vol. 34, No. 1,1981。
    35、H.T.法尔维著,王显焕译,水工建筑物中的掺气水流,水利电力出版社,1984年。
    36、C.M.斯里斯基著,毛世民,扬立信译,高水头水工建筑物的水力计算,水利电力出版社,1984年。
    37、水利电力部长沙勘测设计院,柘溪溢流坝断面模型试验报告,1965年12月。
    38、水利电力部长沙勘测设计院,水利水电科学研究院,柘溪水电站溢流坝原型观测报告,1967年11月。
    39、国家电力公司昆明勘测设计研究院科学研究所,云南省澜沧江糯扎渡水电站可行性研究阶段堆石坝枢纽整体水工模型试验中间试验报告(溢洪道挑流消能方案),2002年9月。
    40、Engle, O.G., Crater depth in fluid impacts, J. Applied Physics, Vol. 37, No. 4, 1966.
    41、蔡一坤,液滴和液面碰撞,力学学报,第21卷3期,1989年,273-279。
    42、胡敏良,挑流雾化的原型观察研究,水利电力科技,1989年,第1期,10-17。
    43、王明康编著,云和降水物理学,科学出版社,1991年。
    44、刘士和,马有国,王国基:窄缝消能雾化水流研究,中国农村水利水电,1999年增刊。
    45、潘家铮,何璟,中国大坝50年,中国水利水电出版社,2000年9月。
    46、Simpson, R.L., et. al., Features of a separating turbulent boundary layer in the vicinity of separation. J. Fluid Mech., vol. 79, 553-594, 1977.
    47、Rajaratnam, N., Hydraulic Jumps, Advances in Hydro-sciences, vol. 4, 1967.
    48、Rajaratnam, N., Skimming flow in stepped spillways, Journal of Hydraulic Engineering, vol. 116, no. 4, 1990.
    49、Kathleen, L. H. & Alan, T. R., Energy dissipation characteristics of a stepped spillway for an RCC dam, Proceedings of International Symposium of Hydraulics for High Dams, 1988.
    50、Spurr, K.J.W., Energy approach to estimating scour downstream of a large dam, Water Power & Dam Construction, No. 7, 1985.
    51、Mason, P.J., Free jet scour below dams and flip buckets, Journal of Hydraulic Engineering, Vol.111, No. 2, 1985.
    52、Mason, P.J., Effects of air entrainment on plunge pool scour, Journal of Hydraulic Engineering, Vol. 115, No. 3, 1989.
    53、Rajaratnam, N.,The Forced Hydraulic Jump, Water Power, No.1,1964.
    54、Keller, R.J., Rastogi, A.K., Prediction of flow development on spillways, Proc. ASCE, J. Hyd. Div., vol. 101, No. HY9, pp. 1171-1184, 1975.
    55、高季章,窄缝式消能工的消能特性和体型研究,水利水电科学研究院科学研究论文集,第13集,1983年。
    56、水利电力部水利水电规划设计院,水工设计手册6,泄水与过坝建筑物,水利电力出版社,1982年。
    57、H.T.法尔维著,王显焕译,水工建筑物中的掺气水流,水利电力出版社,1984年。
    58、吴持恭,明渠水气二相流,成都科技大学出版社,1989年。
    59、梁在潮,溢流紊流边界层,武汉水利电力学院学报,1979年第2期。
    60、谢省宗,安康水电站宽尾墩—表孔—底孔—消力池联合消能工的试验研究,高速水流,1986年第1期。
    61、肖兴斌,宽尾墩在高坝消能中的研究应用与新发展综述,水电工程研究,2001年2期。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700