帘式折流片换热器入口流场均化及其壳程结构优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换热器在石油、化工等生产过程中应用广泛。提高换热器流体流动均匀性,改变和优化换热器结构,是节能降耗的重要途径。
     本文采用实体模型,对带有变截面导流筒装置的常规换热器进口截面上流体流动均匀性进行了研究,并根据导流筒装置不同几何参数下换热器进口截面上流体流动均化状态,确定了优化流动状态下变截面导流筒装置的结构参数。结果表明,选取合理的结构参数对换热器进口流体流动有较好的均化效果,同时还可以有效降低换热器壳程压力损失。
     将变截面导流筒装置安装到常规帘式折流片换热器中,采用FLUENT软件,研究常规帘式换热器在安装导流筒装置前后其壳程流体流动特性的变化,对比了安装变截面导流筒装置前后常规帘式换热器的壳程压降及进口截面上流体均匀性状态。通过对比分析,证明了安装有变截面导流筒装置的帘式折流片换热器具有较好的流动性能,并能够显著降低壳程压降。
     针对常规帘式折流片换热器,通过交错调整折流栅间距、折流片的倾角和宽度,建立计算模型,得到不同结构参数下帘式折流片换热器壳程的流体流动性能和传热特性。通过对比,得到了帘式折流片换热器内部流体优化传热状态下,换热器的结构参数。为进一步改进常规帘式折流片换热器的壳程结构提供了参考依据。
     针对文中所用的数值模拟方法和所得到的模拟结果,开发了帘式折流片换热器的实验装置,对其进行流体流动特性实验。结果表明,在相同的几何参数和工况条件下,数值模拟结果和实验结果吻合良好。
Heat exchanger is widely used in the production process of oil industry and chemical industry, etc. Improving heat exchanger fluid flow homogeneity, changing and optimizing the structure of heat exchanger are important way of saving energy and reducing consumption.
     In this paper, on the basis of numerical simulation, the entity model has been used to study the homogeneity of inlet fluid in the conventional heat exchanger with variable cross-section guide cylinder device, And the better fluid flow state based on the inlet cross-section of heat exchanger of the guide cylinder device under the different geometric parameters are determined to the structure parameters of the variable cross-section guide cylinder. Results show that, for inlet fluid flow on the heat exchanger, selecting reasonable structure parameters has good homogenization effect. At the same time, It could effectively reduce the pressure drop of heat exchanger shell.
     The variable cross-section guide cylinder has been loaded into the shutter baffles heat exchanger, the flow characteristic in the shell side of heat exchanger with guide cylinder device before and after has been studied by FLUENT. Comparison of the pressure drop on the shell side and homogeneity of the fluid on the inlet section of the shutter baffles heat exchanger before and after the installation of variable cross-section guide cylinder device. Through comparative analysis, it proved that the variable cross-section draft tube device has good flow properties for the shutter baffles heat exchanger, and it can significantly reduce the pressure drop of shell side.
     By adjusting the rod-baffle pitch, the angle and the width of baffling, and establishing the calculation model, the fluid flow properties and heat transfer characteristics on the shell of shutter baffles heat exchanger is found under the different structural parameters. And contrast to the conventional shutter baffles heat exchanger, the structure parameters of heat exchanger are obtained when the internal heat transfer state is optimized, which provide a reference for the further improvement structure of shell of the conventional shutter baffles heat exchanger.
     In order to prove the numerical simulation results and methods are correct which are used in the paper, and research on its flow characteristics of the fluid flow field, the experimental device base on the shutter baffles heat exchanger are manufactured. The results show that, under the same set of parameters and operating conditions, the numerical simulation results and experimental results of the heat exchanger are in good agreement.
引文
[1]Pletcher L S. Andrews M J. Technicl/market assessment of heat exchanger technology for users of natural gas[M]. GRI Report GRI-94/0248,1994.
    [2]聂清德.化工设备设计[M].北京:化学工业出版社,1991.
    [3]兰州石油机械研究所主编.换热器[M].北京:烃加工出版社,1986.
    [4]钱颂文.换热器设计手册[M].北京:化学工业出版社,2002.
    [5]库潘(T. Kuppan)著,钱颂文译.换热器设计手册[M].北京:中国石化出版社,2003.
    [6]Tarun K P, Graham T P. Optimize shell-and-tube heat exchanger design[J]. Chemical Engineering Progress 2000,96(9):41.
    [7]谈天恩,麦本熙,丁慧华.化工原理(上册)[M].北京:化学工业出版社,1984:292-292.
    [8]刘月芹.浅谈换热器的分类和特点[J].化工设计通讯,2003,29(3):39-42.
    [9]刘振斌.换热器的分及特点[J].现代化农业,1991,6:38-40.
    [10]秦叔经,叶文邦,化工设备设计全书-换热器[M].北京:化学工业出版社,2003:1-4.
    [11]李洪亮.强化换热技术及其应用[J].化工设备与防腐蚀,2002,5(2):111-113.
    [12]李向明,叶国兴,邓颂九等.高效换热元件-螺旋槽管的研究及应用[J].化工学报,1982,(4):359-367.
    [13]Vicente P G, Garcia A, Viedma A. Experimental investigation on heat transfer and frictional characteristics of spirally corrugated tubes in turbulent flow at different Prandtl numbers[J]. International Journal of Heat and Mass Transfer,2004, (47):671-681.
    [14]Gentry C C, Small M. Rod-baffle heat exchanger thermal-hydraulic prediction methods[C]. Seventh Int. Heat Transfer Conference,1982,(6):197-202.
    [15]Gentry C.C.著.张大中译.折流杆换热器[M].石油炼制译丛.1991,(4):34-39.
    [16]冯志力,郭丽华,冯兴奎等.内导流筒折流杆换热器可行性研究[J].石油化工设备,2000,29(4):1-4.
    [17]董其伍,张垚等.换热器[M].北京:化学工业出版社,2008:50.
    [18]ColD, Muzzolon A, Piubello P, et al. Measurement and prediction of evaporator shell-side pressure drop[J]. International Journal of Refrigeration,2005, (28):320-330.
    [19]Ayub Z H. A new chart method for evaluating single-phase shell side heat transfer coefficient in a single segmental shell and tube heat exchanger[J]. Applied Thermal Engineering,2005, (25):2412-2420.
    [20]贾臻,龚自力,邱金荣.核级换热器强化传热方式与选择[C].中国核科学技术进展报告-中国核学会2009年学术年会论文集(第一卷.第3册),2009.
    [21]丁训慎.坎杜堆蒸汽发生器设计综述[J].核动力工程,1998,19(06):534-542.
    [22]李安军,邢桂菊,周丽雯.换热器各种管束支撑的结构与传热性能[J].化工设备与管道,2008,45(2):28-31.
    [23]华南理工大学.空心环支撑异性强化管冷凝器及传热强化方法[P].中国: CN03113743.1,2003-02-13.
    [24]邓先和,陈祥明,张志孝.空心环管壳式换热器工业化应用回顾[J].有色冶炼,2001,30(30):4-5.
    [25]Brown F(US). Improved For Heat Exchangers[P]. America:WO2000US23121,2000-08-23.
    [26]西安交通大学.组合螺旋折流板管壳式换热器[P].中国:CN200710017395.6,2007-02-09.
    [27]郑津洋,董其伍.过程设备设计[M].北京:化学工业出版社,2005.
    [28]Taborek J. Shell and tube heat exchangers:Single phase flow. Heat Exchanger Design Handbook[M],Section 3.3. New York:Hemisphere,1982.
    [29]Soltan B K, Saffar-Avval M. Damangir E. Minimization of capital and operating costs of shell and tube condensers using optimum baffle spacing[J]. Appl Thermal Eng 2004; 24: 2801-2810.
    [30]Dogan E. Thermo economic optimization of baffle spacing for shell and tube heat exchangers[J].Energy Conversion and Management.2006,47:1478-1489.
    [31]Tinker,T. Shell side characteristics of shell and tube heat exchanger, Parts Ⅰ, Ⅱ, Ⅲ, General Discussion on Heat Trans Jer[M]. The Institution of Mechanical Engineers,1951:89-116.
    [32]Bell K.J. Final report of the cooperative research program on shell and tube heat exchangers[D]. University of Delaware Engineering Experimental Station, Bulletin NO.5,1963.
    [33]Palen J. W. Yaborek J. Solution of shell side flow pressure drop and heat transfer by stream analysis method[J]. Chemical Engineering Progress Symposium Series.1969,92:53-63.
    [34]Gaddis, E. S. Gnielinski, V. Pressure drop on the shell side of shell-and-tube heat exchanger with segmental baffle[J]. Chemical Engineering and Processing.1997,36:149-159.
    [35]Ahmet T. Effect of flow geometry parameters on transient heat transfer for turbulent flow in a circular tube with baffle inserts[J]. International Journal of Heat and Mass Transfer. 2006,49:1559-1567.
    [36]李红枫,周明连.管壳式换热器壳侧流动与传热的实验研究[J].发电设备,2001,1:18-21.
    [37]邓斌,陶文铨.换热器壳侧流动与传热的数值模拟及实验研究.西安交通大学学位论文[D],2003:6-10.
    [38]郭茶秀,李培宁.管壳式换热器壳侧流场研究进展[J].石油化工设备,1999,28(2):10-14.
    [39]吴金星,王定标等.管壳式换热器壳程流动和传热的数值模拟研究进展[J].流体机械,2002,30(5):28-32.
    [40]解衡,高祖瑛.管壳式换热器流场三维数值模拟[J].核科学与工程,2002,22(3):240-243.
    [41]Prithlviraj M, Andrews M J. Three dimensional numerical simulation of shell-and-tube heat exchanger[J]. Numerical Heat Transfer, Part A,1998,33:799-828.
    [42]王定标.纵流壳程换热器数值模拟技术与应用[D].上海:华东理工大学,1999.
    [43]王定标.纵流壳程换热器数值模拟的应用研究[J].郑州工业大学学报,1999,20(2):18-20.
    [44]黄兴华.管壳式换热器壳程流动的三维数值模拟[J].化工学报,2000,51(3):297-302.
    [45]黄兴华.换热器壳侧紊流流动特性的数值研究[J].上海交通大学学报,2000,34(9):1191-1194.
    [46]聂建虎.具有复杂结构的换热器出水管段内湍流的数值模拟[J].西安交通大学学报,2000,34(5):13-18.
    [47]邓斌,陶文铨.换热器壳侧流动与换热的数值模拟及实验研究[D].西安交通大学学位论文,2003:6-10.
    [48]刘敏珊,董其伍,刘乾.折流板换热器壳程流场数值模拟与结构优化[J].节能,2005,10:3-5,16.
    [49]Liu M.S, Dong Q.W, Wang D.B. Jacket type draft tube rod baffle heat exchanger with variable sections [P]:China, CN91219300.X,1993-08-11.
    [50]Dong Q.W. Heat exchanger with longitudinal flow of shell-side fluid [M]. Liu Minshan, Beijing:Chemical Industry Press,2007:226.
    [51]Zhang Z, Li Y.Z, Tian J.J. Numerical simulation of distributor configuration of plate-fin heat exchangers[J]. Journal of Chemical Industry and Engineering(China),2002,53(12): 1311-1314.
    [52]Jiao A.J, Li Y.Z, Zhang R, Chen C.Z. Flow distribution performance of different distributor's C on figuration in plate-fin heat exchanger[J]. Journal of Xi'an Jiaotong university,2001,35(11):1113-1117.
    [53]Jiao A J, Li Y.Z,Zhang R, Wang Z.J, Chen C.Z. Effects of different inlet angles on distributor performance[J]. Journal of Chemical Industry and Engineering(China),2001,52(9): 761-765.
    [54]Jiao A.J, Li Y.Z, Zhang R, Wang Z.J, Chen C.Z. Effects of different inlet angles on distributor performance[J]. Journal of Chemical Industry and Engineering(China),2001,52(9): 761-765.
    [55]Xia L.R, Yue X.M, Liu M.S. Numerical simulation and structural optimization of tapered jacket-type flow distributor in heat exchanger[J]. Petro-chemical Equipment,2007,36(5): 46-50.
    [56]Zhao X.D. Numerical simulation and structural optimization of tapered jacket-type flow distributor in heat exchanger[D]. Zhengzhou:Zhengzhou University,2005.
    [57]Bavarian F, Chia-Jui Linn, T. S. Ramesh, Liang-Shihn. Effect of static liquid height on gas-liquid mass transfer in a draft-tube bubble column and three-phase fluidized bed[J]. Chemical Engineering Communications,1991,108(1):347-364.
    [58]Ahamed A, Vermette P. Effect of mechanical agitation on the production of cellulases by Trichoderma reesei RUT-C30 in a draft-tube airlift bioreactor[J]. Biochemical Engineering Journal,2010,49(3):379-387.
    [59]Flor de Maria Guillen-Jimenez, Alma Rosa Netzahuatl-Muoz, Liliana Morales-Barrera, Eliseo Cristiani-Urbina. Hexavalent Chromium Removal by Candida sp. in a Concentric Draft-Tube Airlift Bioreactor[J]. Water, Air, and Soil Pollution,2009,204(1).
    [60]Xu L, Liu R, Wang F, Zhao L.C. Development of a draft-tube airlift bioreactor for Botryococcus braunii with an optimized inner structure using computational fluid dynamics[J]. Bioresource technology,2012,119C:300-305.
    [61]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [62]Qian S.W. The desigh handbook of heat exchanger [M] Jiang Min(江敏), Beijing:Chemical Industry Press,2003:30.
    [63]Chen M.H. Principles of chemistry engineering [M]. Cong Dezi, Fang Tunan.3rd ed. Beijing: Chemical Industry Press,2006:231.
    [64]董其伍,刘敏珊.纵流壳程换热器[M].北京: 化学工业出版社,2006.
    [65]古新.管壳式换热器数值模拟与斜向流换热器研究[D].郑州大学博士学位论文,2006.
    [66]陶红歌,陈焕新,谢军龙等.基于面积加权平均速度和质量加权平均速度的流体流动均匀性指标探讨[J].化工学报,2010,61(S2):116-120.
    [67]Cheng M, Liu G R, Lam K Y, Cai W J, Lee E L, Approaches for improving airflow uniformity in unidirectional flow cleanrooms. Building and Environment,1999,34:275-284.
    [68]Noh K C, Oh M D, Lee S C, A numerical study on airflow and dynamic cross-contamination in the super cleanroom for photolithography process. Building and Environment,2005,40(11):1431-1440.
    [69]Sadjadi Reza S M, Liu Benjamin Y H, Supply plenum and airflow uniformity in cleanroomslJournal of Institute of Environmental Sciences,1991, March/April:56-60.
    [70]Cheng L. Numerical simulation for flow pattern and hydraulic performance of pumping systems [D]Nanjing:Haihe University,2006.
    [71]Lian Z W, Zhang G R, Liu H M, Ye X Jl Presentation and evaluation of a new type of air supply system in a passenger carriage in ChinalApplied Thermal Engineering,2004,24: 703-715.
    [72]张少维,桑芝富.结构和操作参数对螺旋折流板换热器性能影响[J].石油化工设备,2004,33(3):17-20.
    [73]古新,董其伍,刘敏珊等.导向型折流栅强化传热换热器壳程传热的数值模拟[J].核动力工程,2010,31(2):113-117.
    [74]刘冰.帘式折流片换热器壳程结构优化[D].郑州大学硕士学位论文,2012.
    [75]古新,董其伍,刘敏珊.周期性模型在管壳式换热器数值模拟中的应用[J].热能动力工程,2008,23(1):64-68.
    [76]王永庆.一种基于混沌对流传热强化流道的研究与应用[D].上海:华东理工大学,2009.
    [77]王丹.一种双曲波纹流道的传热强化机理与应用研究[D].郑州:郑州大学博士学位论文,2006.
    [78]李海凤.板翅式换热器倾斜波纹翅片传热与流动特性研究[D].济南:山东大学硕士学问论文,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700