新型含钛矿物捕收剂TBC及其作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国金红石资源储量不足、砂矿少、原生矿多,特别是金红石粒度嵌布细、分选难度大,尤其是重选抛尾难度大。
     浮选和浮选捕收剂的研究是解决我国金红石资源利用的关键。本论文研究寻找到一种有效的含钛矿物浮选捕收剂--TBC。从分子动力学模拟、配位化学、浮选溶液化学、光谱检测等各个角度探讨了捕收剂对矿物,特别是新型药剂TBC与金红石矿物的作用机理。主要内容和结果如下:
     试验表明:TBC具有更强的捕收性能和极高的选择性。在最佳的浮选条件下,金红石单矿物的浮选回收率可以达到97.5%;金红石与石英混合矿浮选精矿中金红石的品位>80%,回收率>97%;金红石与方解石混合矿浮选精矿中金红石的品位和回收率均达到80%。对钛铁矿和钛辉石单矿物的浮选,TBC同样具有较强的捕收能力和选择性。pH=7、TBC的用量为8×10-5mol/L时两种矿物的回收率分别为91%和47%,两种矿物的可浮性在pH=5-9时有明显的差异。
     以TBC为捕收剂浮选富集德兴铜尾中的金红石并取得了一定的效果。给矿二氧化钛品位11.18%时,TBC与油酸混合使用浮选的攀枝花钛铁矿一次精选的品位和回收率可以达到42.78%和56.95%。TBC作为一种新型的金红石捕收剂,可以为含钛矿物的浮选提供技术参考。
     量子化学计算的结果从TBC作为一种硬碱的角度说明了它对钛矿物的捕收能力,而Ti(Ⅳ)和Ca(Ⅱ)离子的性质可以影响TBC对金红石和方解石浮选的选择性。分子动力学模拟和吸附作用能的计算表明:TBC与金红石的作用要强于与石英的作用,从而实现了对金红石浮选的选择性。
     结合分子模拟、溶液化学分析及光谱检测可以推断TBC与金红石表面的作用机理:在浮选矿浆中,TBC可能首先以未解离的形式向金红石表面靠近和发生物理吸附,而后继续靠近并与金红石表面的Ti质点发生化学键合,形成五元环稳定螯合物,从而具有了较强的选择性捕收能力。
Due to inadequate reserves of rutile, espeically the lack of placer deposits, the primary ore became the major rutile resources in China. And the separation of rutile from the other component minerals is difficult because the rutile grain size often appears very fine and it's difficult to realize tailings discarding.T hus the development of flotation collectors is of vital importance for the utilization of the rutile resources in China.
     In this paper, a new effective, selective chelating collector, TBC, was developed for titaniium minerals flotation based on pure mineral flotation and the applicatin to process two kinds of titanium ores.The mechanism was them studied in aspects of molecular dynamics, coordination chemistry, solution chemistry and also spectra dertermination. The following are the main work and results:
     In the pure mineral flotation, both of single and the mixtures, TBC shows much higher performance for rutile, compared with SHA and BHA, and no activation was needed. Under the optimum condition, the recovery of single mineral flotation reached 97.5%.In the mixture flotation of rutle and quartz, the recovery and grade of rutile reached to 92% and 80%, respectively. The results for the mixture flotation of rutile and calcite were both 80%.
     For the single mineral flotation of Panzhihua ilmenite and a gangue mineral,titanaugite,the performace was still high and the selectivity still very good. With the pH=7 and the dosage at 8×10-5mol/L, recoveries of 91% and 47% were achieved for the two minerals respectively and the flotability difference was remarkable at the pH range of 5-9.
     TBC shows a limit performance in batch scale flotation of a copper ore taling while the resulta were much better for Panzhihua ilmenite ores.
     The HOMO and LUMO energy of the seven collectors were calculated to evalute the ability of them to compex Ti(IV).The differerce of the stcuture of Ti(Ⅳ) and Ca(Ⅱ)may lead to the selectivity of chelating collectors in flotation of rutile and calcite.
     Adsorption model of TBC onto the rutile(110) surface and thea-quartz(100) surface were established and optimized by Molecular Dynamics, and the adsorption energies were calculated to find the lowest energy adsorption form of TBC on of the two mineral surfaces.It turned out that molelular adsorption and the complete dissociation form were the best form for rutile and quartz, respectively.
     The tendcy of TBC to adsorp on rutile surface is much stronger than to quartz surface, which explains the selectivity of the collector for tutile.
     An interaction mechanism was finally proposed based on moleculaer dynamics, IR spectrum and further analysis.In the flotation process, TBC may first moves close to rutile surface in the molecular form.Then it moves closer until chemical bonds are formed and TBC chelates to Ti atom to form a 5-membered ring.
引文
[1]车云霞,申泮文.化学元素周期系.天津:南开大学出版,2005.262,263-267
    [2]莫畏.钛.北京:冶金工业出版社,2008.33,36-37
    [3]http://minerals.usgs.gov/minerals/pubs/commodity/titanium/
    [4]马鸿文.工业矿物与岩石(第二版).北京:化学工业出版社,2003.189-193
    [5]吴贤,张健,康新婷,黄瑜.我国金红石矿资源分布、开发及技术现状.稀有金属,2007,31(专辑):146-150
    [6]张 瑛,李闻光. 我国金红石矿产资源特点及开发利用.中国化工,1997,4:19-20
    [7]雷必春.湖北枣阳金红石储量全国之冠.地球,1992(3):10.
    [8]张 云,管永诗,田玉珍.我国金红石资源开发利用现状.矿产保护与利用,2000,5:27-30
    [9]艾满乾.砂金选矿厂应用双曲波摇床的研究.冶金矿山设计与建设,1998,30(4):43-45
    [10]张东晨.新型双向尖灭直条摇床床面的研究.矿山机械,1996吗,5:7-9
    [11]丁勇.一种新型摇床面选别钽铌矿石的工业试验研究.江西有色金属,2000,14(2):26-28
    [12]张东晨.新型床面摇床分选机理及试验研究.煤炭学报,2003,28(5):542-546
    [13]王连成.摇床磁选机的研制及其应用.黄金,1996,17(2):38-41
    [14]孙伟,胡岳华.北美洲国家选矿.见:孙传尧,编.当代世界的矿物加工技术与装备(第十届选矿年评).北京:科学出版社,2006.557-560
    [15]岳铁兵,魏德州,曹进成等.细粒金红石矿浮选工艺研究.化工矿物与加工,2005,3:1.
    [16]刘付毓.金红石的选矿工艺.广东有色金属,1997(4):14.
    [17]王占歧.海滨砂矿中金红石矿综合利用研究.地球科学-中国地质大学学报,1998,23(6):624.
    [18]胡爱珍,田光耀.金红石最终精矿提纯方法的探索.地质实验室,1992,8(3):153.
    [19]岳铁兵,曹进成,魏德州等.磨矿分级流程对细粒金红石矿选别的影响. 化工矿物与加工,2004(8):15-17
    [20]陈秀华,张宗华,杨德坤等.会东微细粒金红石矿的矿石可选性研究新技术.云南冶金,1999,28(6):5-8
    [21]G A Parks,The isoelectric points of solid oxides,solid hydroxides and aqueous hydroxo complex systems.Chem. Rev.,1965 (65):177-198.
    [22]T R Manhavan, V M Karve,J Y Somnay. Selective flotation of beach sand sillimanite,zircon andrutile. Min.Magazine,1965:113
    [23]G Purcell and C Sun. Significance of double bonds in fatty acid flotation an electrokinetic study. Soc.Min.Eng.Trans.,1963(3):6-12.
    [24]R Mcewen,G W Hansen,G F Lee. Single stage flotation of alkali feldspars,ilmenite,rutile,garnite and monazite with cationic/anionic collectors. Soc.Min,Eng.Trans.,1976,260:97-100
    [25]O Pavez,A E C Peres. Effect of sodium metasilicate and sodium sul-phide on the floatability of monazite-zircon-rutile with oleate and hydroxamates. Min.Eng.,1993,6:69-78.
    [26]Anon. Miningchemical handbook(revised edition)mineral dressing notes. New York:American Cyanamid,1986.170
    [27]K C Sutherland,I W Wark. Principles of flotation. Australian Institute of Mining and Metallurgy,1955:1-127.
    [28]V I Klassen,V A Mokrousov. An introduction to the theory of flota-tion translated by J.Leja and G W.Poling,Oxford,Butterworths, 1963:408-410.
    [29]孙湘林.用油酸钠和羟肟酸盐浮选独居石-锆英石-金红石.国外选矿快报,1994(18):8-11
    [30]丁浩,任瑞晨,邓雁希等.金红石与石榴石浮选分离及调整剂作用机理[J]; 辽宁工程技术大学学报; 2007年26(5):787-790
    [31]丁浩.金红石与磷灰石浮选分离中硫酸铝的作用研究.化工矿山技术,1997,(3):13—16.
    [32]丁浩.金红石浮选中消除Ca2+对石英活化作用的研究.矿产保护与利用,1994,(1):40-42.
    [33]杜岩.烷胺双甲基膦酸浮选金红石的研究.矿冶工程,1993,13(2):34-37,7
    [34]李晔,许时.提高胂酸对金红石浮选性能的研究.中国矿业,1997,6(2):58—61
    [35]任皞,杨则器,池汝安.双膦酸捕收铌铁金红石及机理研究.有色金属,1998,50(3):56-59
    [36]彭勇军.苯乙烯膦酸与脂肪醇对金红石浮选的影响.中国有色金属学报,1999, (2):358-362.
    [37]徐玉琴,欧阳坚,卢寿慈.金红石与一水硬铝石的浮选分离.矿产综合利用,1996,(4):l-6.
    [38]王雅静,张宗华.微细粒金红石浮选捕收剂的研究.矿业快报,2008(1):31-33
    [39]马光荣.变质岩微细粒金红石浮选研究.有色金属(选矿部分),1989(13):12-13
    [40]姬俊梅.烷基羟肟酸盐与铌铁金红石的作用机理研究.有色金属(选矿部分),2004(4):42-44
    [41]贺智明, 董雍赓,孙笈.铅离子对水杨氧肟酸浮选金红石的活化作用研究.有色金属,1994(4):43-48.
    [42]贺智明, 董雍赓.金红石和钛铁矿的浮选性能研究.稀有金属,1993,17(4):250-254
    [43]卢寿慈.疏水聚团分选的进展.金属矿山,1999(9):15-18
    [44]欧阳坚,李睿华,徐玉琴等.阳泉铝土矿高硅浮选尾矿的疏水团聚分选.金属矿山,1996(5):16-18
    [45]A M Marabini,M Barbaro,M Ciriachi. A calculation method for selection of complexing collectors having selective action on a cation. Trans. IMM, Sec.C:Mineral Processing and Extractive Metallurgy 1983,92:20-26.
    [46]徐晓军.氧化矿有机螯合剂活化浮选理论.昆明:云南冶金出版社,2000:30-33
    [47]杨小震.分子模拟与高分子材料.北京:科学出版社,2002:38-59
    [48]吉青,杨小震.分子力场发展的新趋势.化学通报,2005(2):111—116
    [49]普拉蒂普.浮选药剂的分子模拟及合理设计.国外金属矿选矿,2004(10):28-34·
    [50]王福良,孙传尧.利用分子力学分析黄药捕收剂浮选未活化白铅矿的浮选行为.国外金属矿选矿,2008(6):25-27·
    [51]王福良,罗思岗,孙传尧·利用分子力学分析黄药浮选未活化菱锌矿的浮选行为.有色金属(选矿部分),2008(4):43-47·
    [52]王福良,孙传尧.黄药捕收剂浮选未活化孔雀石行为的分子力学分析.矿冶,2008,17(2):1-5·
    [53]罗思岗,王福良.分子力学在研究浮选药剂与矿物表面作用中的应用.矿冶,2009,18(1):1-4
    [54]http://accelrys.com/products/materials-studio/simulation-software.html
    [55]accelrys.com/products/.../quantum-and-catalysis-software.html
    [56]A M Marabini,M Ciriachi,P Plescia. Chelating reagents for flotation.Mi-nerals Engineering,2007(20):1014-1025
    [57]S M Assis,L C M Montenegro,A E C Peres.Utilisation of hydroxa-mates in minerals froth flotation. Miner. Eng.,1996(91):103-114.
    [58]Nagaraj.The chemistry and application of chelating or complexing agents in mineral separations.In:Somasundaran,P.,Moudgil,B.M.(Eds.), Reagents in Mineral Technology. Marcel Dekker,New York,1987: 257-334.
    [59]张祥麟.络合物化学.北京:冶金工业出版社,1979:104-105
    [60]Wojciech Macyk,Konrad Szacilowski,Grazyna Stochel,et al etc. Titanium (IV) complexes as direct TiO2 photosensitizers.Coord. Chem. Rev. (2010),doi:10.1016/j.ccr.2009.12.037
    [61]J F Janak. Proof that (?)E/(?)ni=ε in density-functional theory. Phys.Rev. B, 1978,18(12):7165-7168
    [62]R G Parr,R G Pearson. Absolute hardness:companion parameter to absolute electronegativity. J. Am.Chem. Soc.,1983,105(26):7512-7516
    [63]http://www.cache.fujitsu.com/cache/features.shtml
    [64]http://arguslab.en.softonic.com/
    [65]A M Marabini,G Rinelli. Development of a specific reagent for rutile flotation. Transactions of AIME,1983(274):1822-1827.
    [66]王淀佐,胡岳华.浮选溶液化学.长沙:湖南科学技术出版社:1988:12-30
    [67]G G Campbell,S A Tacker. Ultraviolet spectrophotometric method of determining p-tert-butylcatechol. Analytical Chemistry,1952,24(7): 1090-1092
    [68]朱淮武.有机分子结构波谱解析.北京:2005:6-26,29—74
    [69]刘宏民.实用有机光谱解析.郑州:郑州大学出版社,2008:42-110
    [70]R Rodriguez,M A Blesa,A E Regazzoni.Surface Complexation at the TiO2 (anatase)/Aqueous Solution Interface:Chemisorption of Catechol. J.Colloid Interface Sci.,1996(177):122-131
    [71]Y Liu,J I Dadap,D Zimdars,et al.Study of interfacial charge transfer complex on TiO2 particles in aqueous suspension by second ha-rmonic generation. J.Phys.Chem.B,1999,103:2480,
    [72]P Z Araujo,P J Morando,M A Blesa. Interaction of Catechol and Gallic Acid with Titanium Dioxide in Aqueous Suspensions.1.Equilibrium Studies. Langmuir,2005,21(8):3470-3474
    [73]P A Connor, K D Dobson,A J McQuillan. New Sol-Gel Attenuated T-otal Reflection Infrared Spectroscopic Method for Analysis of Adsorption at Metal Oxide Surfaces in Aqueous Solutions. Chelation of TiO2. ZrO2,and Al2O3 Surfaces by Catechol,8-Quinolinol,and Acetylacetone. Langmuir, 1995,11(11):4193-4195
    [74]P Z Araujo,C B Mendive,L A Garcia Rodenas,et al.FT-IR-ATR as a tool to probe photocatalytic interfaces.Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,265(1-3):73-80.
    [75]S C Li,J G Wang,P Jacobson,et al. Correlation between Bonding Geometry and Band Gap States at Organic-Inorganic Interfaces:Catech-ol on Rutile TiO2(110).J. Am. Chem. Soc.2009,131 (3):980-984
    [76]P C Redfern,P. Zapol, L A Curtiss,et al.Thurnauer.Computational Studies of Catechol and Water Interactions with Titanium Oxide Nanoparticles. J.Phys.Chem. B.2003,107(41):11419-11427
    [77]T Rajh, L X Chen,K Lukas,et al.Surface Restructuring of Nanoparticles: An Efficient Route for Ligand-Metal Oxide Crosstalk.Phys. Chem. B, 2002,106(41):10543-10552
    [78]I A Jankovic,Z V Saponjic,M I Comor,et al. Surface Modification of Colloidal TiO2 Nanoparticles with Bidentate Benzene Derivatives.J.Phys. Chem C,2009,113(29):12645-12652

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700