高速铁路湿陷性黄土地基处理试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大厚度自重湿陷性黄土场地,泛指湿陷性黄土层厚度大于15m、自重湿陷性强烈的黄土场区。近些年来,随着我国湿陷性黄土地区基本建设事业的发展,建设用地日趋紧张,许多大型工程建设项目(郑西高速铁路是其中之一)不得不建在大厚度自重湿陷性黄土场地上。郑西高速铁路沿线长区段内连续分布的大厚度自重湿陷性黄土层、地层特征和物理力学性质与既有的认识有一定差距,地基的湿陷性危害极为严重,体现了我国湿陷性黄土分布的复杂性,给高速铁路建设带来很大的困难。现有成熟的湿陷性黄土地基处理方法一般只能消除基底下10~15m地基土的湿陷性,为使处理后的地基技术先进、经济合理,尚应研究行之有效的处理大厚度自重湿陷性黄土地基的新方法。
     处理后的湿陷性黄土地基是一种典型的非饱和土。与饱和土相比,非饱和土工程特性更为复杂,但理论体系尚不十分完善,工程应用也有很大的局限性。尤其是受到试验条件的限制,我国对非饱和土的研究还处于起步阶段。非饱和土研究包括固结理论和强度理论两个重要组成部分,分别对应岩土体的变形和稳定。高速铁路的设计和施工,以沉降变形控制为先导,同时满足系统的强度和稳定性要求。为保证线路的安全性和平顺度,既有规范已经对高速铁路工后沉降做出了严格规定。因此对于处理后的湿陷性黄土地基非饱和土,根据自身特点建立合理的固结理论和适用可靠的计算方法非常重要。
     孔内深层强夯法是在土桩挤密法和强夯技术的基础上演化而来的一种新型深层地基处理方法,在建筑基础、大型油罐基础等领域均有成功应用的先例,但对其理论研究远远落后于工程实践,特别是针对高速铁路大厚度自重湿陷性黄土场地的系统应用研究几近空白。
     本文基于既有的非饱和土理论,以郑西高速铁路为工程背景,综合运用理论分析、数值仿真、现场试验和数理统计等手段,针对上述问题进行以下研究:
     (1)对孔内深层强夯法的加固机理等进行研究,用圆筒扩张理论分析了孔内深层强夯法桩的挤密效应。确定合理的设计参数,经试桩施工及桩间土检测,证明该技术可以有效地消除大厚度自重湿陷性黄土场地的湿陷性,处理深度可达22m。
     (2)对孔内深层强夯法的承载和变形特性进行研究,分析应用孔内深层强夯法处理高速铁路大厚度湿陷性黄土场地的可行性。试验研究结果表明:大厚度自重湿陷性黄土场地采用孔内深层强夯法加固后地基承载力大幅度提高,满足高速铁路路基地基承载力设计要求;当达到单桩复合地基基本承载力时,地基沉降量平均值、最大值远小于“高速铁路路基工后沉降量不超过15mm”的要求。
     (3)对国内外具有代表性的非饱和土固结理论进行了深入分析,考虑到空气的扩散性和不易量测的难点,本文提出简化的非饱和土固结方程。
     (4)运用简化的非饱和土固结方程进行非饱和土地基沉降计算分析。结合我国高速铁路路基工程的特点及存在的问题,研究非饱和土物理力学特性,重点对非饱和土的水土特征和变形特性进行研究;运用ABAQUS计算软件对孔内深层强夯法复合地基沉降变形和路基坡脚浸水进行数值分析,得出了与长期沉降和浸润观测相近的规律;概括既有的非饱和土研究成果,提出适用于孔内深层强夯法处理后的高速铁路大厚度自重湿陷性黄土地基沉降计算和分析的新思路,为优化设计参数提供了理论基础和计算方法。
     (5)通过长期路基变形监测和侧方浸水试验研究,分析应用孔内深层强夯法处理大厚度自重湿陷性黄土复合地基的变形特性,验证非饱和土地基沉降计算方法和工后沉降预测方法的正确性,检验地基加固效果。
     长期沉降观测试验结果表明:路堤的沉降主要体现为地基沉降,而地基沉降主要体现为下卧层沉降。恒载预压258天后路堤总沉降量、地基处理深度处的沉降量已趋于稳定,工后沉降为0.2mm,满足高速铁路路基工后沉降不大于15mm的要求。
     三点法能较好的反映沉降变形的发展趋势,曲线回归相关系数较高,预测误差较小,对数据异常变化的敏感性强,能及时发现沉降变形趋势存在问题的断面,建议对于高速铁路路基沉降变形预测而言,作为最优方法予以推荐采用;在此基础上,提出了采用三点法为主、双曲线法对比验证分析、Asoaka法作为辅助方法的高速铁路沉降变形预测建议分析操作程序。
     浸水试验结果表明:湿陷性黄土地基经孔内深层强夯法加固处理后,其加固范围内的黄土湿陷性已消除,受水的浸润影响小,长期浸水后地基的增湿变形将发生在加固深度范围以下。路基外侧未加固区浸水后浸润角为38。~42。,距路基坡脚20m范围内不宜建鱼塘、水池等永久性积水设施;路基坡脚附近降雨或其它原因形成积水的时间不应大于20d。
     (6)对水泥改良黄土加固机理进行研究。研究结果表明:随击实延迟时间的增长水泥改良黄土最大干密度降低而最优含水率增加;建议施工过程中应提高施工效率,尽可能在水泥初凝前碾压完;根据现场碾压延迟时间,确定室内击实延迟时间,用相应的最大干密度去控制压实标准,较为科学合理。此项研究成果已为修订《铁路工程土工试验规程》(TB10102-2004)“化学改良土试验”部分条款提供了试验及理论依据。
The big thickness dead weight collapsible loess refers to loess worksite with thicknessover15m and heavy dead weight collapsibility. In recent years, the capital constructions oncollapsible loess area are developing and lots of large engineering construction projects haveto be built on thick dead weight collapsible loess worksite, which makes the foundationtreatment getting more and more difficult. The mature foundation treatment of collapsibleloess can only eliminate the collapsibility of foundation soil under foundation bottom with10-15m in depth. The new foundation treatment method of thick dead weight collapsible loessshould be studied so as to get technically advanced and cost-effective foundation treatment.
     The collapsible loess that has been treated is typical unsaturated soil. Compared to thesaturated soil, the unsaturated soil has more complicated engineering properties. However, thetheoretical system is not complete that limits the engineering application in practice. Thestudy on unsaturated soil is on initial stage due to restriction on test conditions. The study onunsaturated soil consists of consolidation theory and strength theory that relate to deformationand stability of rock respectively.
     In the design and construction of passenger-dedicated railway line, control of settlementdeformation is the dominate factor and it should meet strength and stability requirements. Inorder to ensure safety and smoothness of line, post-construction settlement is strictlyprescribed in the specification, so it is important to establish rational consolidation theory andapplicable calculation method for collapsible loess foundation after being treated.
     The Down-hole Dynamic Compaction is a new foundation treatment method based onpile compaction method and dynamic compaction technology. This method is appliedsuccessfully in construction foundation and large oil tank foundation. However, the theorystudy of the down-hole dynamic compaction is behind of engineering application, especiallyin the application of big thickness dead weight collapsible loess.
     Based on existing theory of unsaturated soil, this paper cites the Zhengzhou-Xi’anpassenger dedicated line as the engineering example to conduct the following studies bymeans of theory analysis, numerical simulation, site test and mathematical statistics:
     (1) Study on consolidation mechanism of down-hole dynamic compaction. The cylinderexpansion theory is used to analyze compaction effect of down-hole dynamic compaction.The design parameters are defined and construction of test pile and inspection of soil betweenpiles showed that the technology can eliminate effectively the collapsibility of big thickness dead weight collapsible loess with the depth of22m.
     (2) Study on load bearing and deformation properties of down-hole dynamic compactionand analyze the possibility to treat passenger-dedicated line on big thickness dead weightcollapsible loess by down-hole dynamic compaction. The test results turned out that the loadbearing of big thickness dead weight collapsible loess foundation treated by down-holedynamic compaction is improved substantially and meets the design requirement of loadbearing of foundation for passenger-dedicated line. When basic load bearing of singlecomposite foundation is reached, the average value and maximum value of foundationsettlement is smaller than the requirement of “post-construction settlement ofpassenger-dedicated line subgrade not exceeding15mm”.
     (3) Analyze the foreign compaction theory of typical unsaturated soil. Considering of airdiffusion and difficulty in measuring, this paper put forward the simplified unsaturatedcompaction formula.
     (4) Calculate the unsaturated soil foundation settlement by simplified unsaturated soilcompaction formula. In consideration of characteristics and problems in subgrade engineeringof passenger-dedicated line in China, the physical mechanics of unsaturated soil is studied,especially in unsaturated soil and water characteristics and deformation properties. TheABAQUS software is used to make numerical analysis on down-hole dynamic compactioncomposite foundation settlement deformation and soaking in subgrade slope so as to obtainedsimilar rule of long term settlement and soaking observation. This paper summarizes theexisting unsaturated soil study achievements and put forward the foundation settlementcalculation method and new analysis method of big thickness dead weight collapsible loess onpassenger-dedicated line so as to provide the theoretical basis and calculation method foroptimizing design parameters.
     (5) Long term supervision and subgrade lateral immersion test have been made so as toanalyze the deformation properties of big thickness dead weight collapsible loess compositefoundation treated by down-hole dynamic compaction method, verify the settlementcalculation method of unsaturated soil foundation and post-construction settlementpredication method and exam the foundation consolidation effect.
     The long term settlement observation test turned out that embankment settlement ismainly reflected by subgrade settlement which is reflected by underlying stratum settlement.The total settlement and settlement in depth of foundation treated tend to be stable after258days constant preloading. The post-construction settlement is0.2mm that satisfied therequirement of pos-construction settlement not exceeding15mm for passenger-dedicated line.
     Three-points method reflect the development tendency of settlement deformation withhigh correlation coefficient of curve regression, small prediction error and strong sensitivityon abnormal data variation so that the cross-section with the settlement deformation tendencycan be found timely. The aforesaid method is proposed as the optimized method of subgradesettlement deformation predication for passenger-dedicated line. Based on this method, it isproposed take three-point method as priority and use hyperbolic contrast analysis and Asoakaas the auxiliary method to conduct passenger-dedicated line settlement analysis.
     The immersion test shows: after being treated by down-hole dynamic compaction, thecollapsibility of collapsible soil foundation at the consolidated area is eliminated. Theimmersion has minor effect on the foundation. The deformation of foundation immersed inlong term is within the consolidation depth. The immersed angle outside the subgrade withoutconsolidation is38~42. Therefore, it should not build permanent water-logged facilities suchas fish pond and water pool within the area20m away from subgrade slope. The time of waterponding at the subgrade slope caused by rain fall or other reasons should not be longer than20days.
     (6) Study on consolidation mechanism of cement improved loess. The study shows: thelonger of compaction delay, the maximum dry density of cement improved loess, the more ofoptimum water content ratio is increasing. It is suggested that the construction efficiencyshould be improved and complete the rolling compaction before initial setting of cement. Theindoor compaction delay time is defined according to rolling compaction delay time onworksite. It is rational to control compaction standard through the maximum dry density. Thestudy results will provide test and theoretical basis for complete “Geotechnique Test Code ofRailway Engineering”(TB10102-2004).
引文
[1]罗宇生.湿陷性黄土地基处理[M].北京.中国建筑工业出版社,2008.
    [2]韩毅,李隽蓬.铁路工程地质[M].北京:中国铁道出版社,1988.
    [3]刘东生,张宗祜.中国的黄土[J].地质学报,1962,第42卷第一期.
    [4]中华人民共和国国家标准.湿陷性黄土地区建筑规范(GB50025-2004)[S].北京:中国建筑工业出版社,2004.8.
    [5]陈方明,关立军,刘晓华.大厚度自重湿陷性黄土场地孔内深层强夯法的应用研究建筑科学Vol23,No.5.2007.
    [6]黄土文集(第三辑).北京:铁道出版社,1959.
    [7]中国科学院土木建筑研究所研究报告.黄土基本性质的研究[R].科学出版社,1959.
    [8]黄强.湿陷性黄土地基评价的商榷[J].土木工程学报,1963.9(2):25~31
    [9]林在贯.关于黄土的湿陷变形性质与特征的若干问题,1964.
    [10]建筑工业部勘察院西北分院,黄土自重湿陷性质研究报告,1965.
    [11]中国建筑工程部标准.湿陷性黄土地区建筑规范(BJG20-66)[S].北京:技术标准出版社,1966.
    [12]第一机械工业部勘察公司.近代堆积黄土建筑性能的探讨.建筑技术座谈会技术资料汇编.北京:中国建筑工业出版社,1973.51~56
    [13]陕西省综合勘察院.我国黄土和黄土状土的特征及对其湿陷性质和承载力的评价方法.勘察技术资料,1973,(3):1~20
    [14]钱鸿绪,罗宇生等.湿陷性黄土地基[M].北京:中国建筑工业出版社,1985.20~170
    [15]国家基本建设建委标准,湿陷性黄土地区建筑规范(TJB25-78)[S].中国建筑工业出版社1978.06.
    [16]王永焱,林在贯等.中国黄土的结构特征及物理力学性质[M].北京:科学出版社1990.105~172
    [17]雷祥义.中国黄土的孔隙类型与湿陷性[J].中国科学(B辑),1987,(12):1309~1316.
    [18]高国瑞.黄土显微结构分类与湿陷性[J].中国科学,1980,(12):1203~1208
    [19]刘祖典等.陕西关中黄土变形特性和变形参数的探讨[J].岩土工程学报,1984,6(3):24~31
    [20]陈正汉,刘祖典.黄土的湿陷变形机理[J].岩土工程学报,1986,8(2):1~12
    [21]涂光祉.试论黄土地基的自重湿陷敏感性[J].工程勘察,1980,(2):36~39
    [22]郝增志.高湿度黄土地基变形与承载力的研究[J].工程勘察,1990,(2):4~8
    [23]傅世法.论饱和黄土[J].工程勘察,1982.
    [24]陕西省标准.强夯法处理湿陷性黄土地基规程(DBJ24-9-90).陕西省建筑标准设计办公室出版,1990
    [25]汪国烈等.自重湿陷性黄土挤密地基的加固规律与设计[R].专题研究报告,1988.
    [26]杨鸿贵.土(灰土)挤密地基的特性及应用[R].专题研究报告,1983.
    [27]中华人民共和国国家标准.湿陷性黄土地区建筑规范(GBJ25-90)[S].北京:中国计划出版社,1990.
    [28]郑建国,张苏民.湿陷性黄土的结构强度特性.水文地质工程地质,1990,(4):22~25
    [29]张苏民,郑建国.湿陷性黄土(Q3)的增湿变形特性[J].岩土工程学报,1990,12(4)12~31
    [30]张苏民,张炜.减湿和增湿时黄土的湿陷性[J].岩土工程学报,1992,14(6):57~61
    [31]张炜,张苏民.非饱和黄土的结构强度特性[J].水文地质工程地质,1990,(4):22~25
    [32]昊侃,郑颖人.黄土结构性研究.第六届全国土力学及基础工程学术会议论文集[C].上海:同济大学出版社,1991.93~96
    [33]长安大学.西部交通建设科技项目-黄土的浸水特性研究报告[R],2004.
    [34]巫志辉,谢定义等.洛川黄土动变形强度特性研究.第六届全国土力学及基础工程学术会议论文集
    [C].上海:同济大学出版社,1991.
    [35]巫志辉,方彦.原状黄土在增湿时的震陷特性.岩土工程研究(文集)[C].陕西机械学院岩土工程研究所,1993.
    [36]巫志辉,刘保健.黄土地基抗震承载力调整系数的试验论证.岩土工程研究(文集)[C].陕西机械学院岩土工程研究所,1993.
    [37]王兰民等.黄土动力学[M].北京:地震出版社,2003.
    [38]中华人民共和国行业标准.铁路特殊土路基设计规范(TB10035-2006)[S].北京:中国铁道出版社,2006.
    [39]中华人民共和国行业标准.铁路工程特殊岩土勘察规程(TB10038-2001)[S].北京:中国铁道出版社,2001.
    [40]谢定义.半个世纪来对黄土、黄土力学与黄土工程问题研究的基本认识[R].中国岩石力学与工程学会,北京:2007.
    [41]郑西铁路客运专线公司筹备组,铁道第一勘察设计院,中铁西北科学研究院.黄土基本特性及工程实践综述[M].2005
    [42]董玉文.灰土的工程性能及灰土桩复合地基有限元分析[D]:硕士学位论文.西北农林科技大学,2000.
    [43]中华人民共和国行业标准.公路路基设计规范.(JTG D30-2004)[S].北京.人民交通出版社.2004
    [44]Barden L.Consolidation of compacted and unsaturated clays[J].Geotechnique,1965,15(3):267~286.
    [45]Ostashev N A.The law of distribution of moisture in soils and methods for study ofsame[A].Proceeding of1st International Conference on Soil Mechanics and FoundationEngineering[C].Cambridge,U.K,1936,1:227~228
    [46]Boulichev V.Apparatus for testing Compressibility and capillary properties of soils[A].Proceeding of1st International Conference on Soil Mechanics and FoundationEngineering[C].Cambridge,U.K,1936,2:37~38
    [47]Lane K S,Washburn S E.Capillarity tests by capillarimeters by soil filled tubes[R].Higeway ResearchBoard.1946,26:460~473
    [48]Sitz M.Discussion on Terzaghi’s ideas on surface tesion of water and the rise of water incapillaries[A].Proceeding of2nd International Conference on Soil Mechanics and FoundationEngineering[A].Rotterdam,Netherland,1948,5:289~292
    [49]Bernatzik W.The determination of the capillary rise in sand by means of Prism test[A].Proceeding of2nd International Conference on Soil Mechanics and FoundationEngineering[A].Rotterdam,Netherland,1948,5:28~30
    [50]Lambe T W.Capillary phenomena in cohesionless soils[J].Journal of Transportation EngineeringASCE,1951,116:401~423
    [51]Biot MA.General theory of three-dimensinal consolidation[J].Journal of Appliedhysics.1994,12(2):155~164.
    [52]Bishop A W,et al.Factors controlling the shear-strength of partly saturated Cohesive Soils[C].ASCEConference on Shear of Cohesive Soils,1960:502~532.
    [53]Fredlund D G,Morgenstern N R.Windger R A.Shear strength of unsaturated soils[J].srength ofunsaturated soils.Canadian Geotechnical Joural,1978,15(3):313~321
    [54]Alonso E E,GenA,Josa A A.Constitutive model for partially saturatedsoils[J].Geotechnique,1990,40(3):405~430
    [55]俞培基,陈愈炯.非饱和土的水-气形态及其与力学性质的关系[J].水利学报,1965(1):17~24
    [56]包承纲.非饱和土压实土的多相形态及孔压消散问题[A].第三届全国土力学和基础工程会议论文集[C],北京:中国建筑工业出版社,1979.
    [57]Bao C G Properties of Unsaturated Soils and Slope Stability of Expansive Soil [J].Keynote Lecture of98,UNSAT,Beijing,China,1998.
    [58]杨代泉.非饱和土广义固结理论及其数值模拟与试验研究[D].南京水力水电科学研究院博士学位论文,1990.
    [59]陈正汉.非饱和土固结的混合物理论[D].陕西机械学院博士学位论文,1991.
    [60]卢肇钧等.非饱和土的抗剪强度与膨胀压力.非饱和土理论与实践学术研讨会文集[C].中国土木工程学会土力学及基础工程学会,1992.
    [61]陈正汉,黄海,卢再华.非饱和土的非线性模型和弹塑性固结模型和应用[J].应用数学和力学,2001,22(1):93~103
    [62]沈珠江.非饱和土简化固结理论及其应用[J].水利水运工程学报,2003,4:1~6
    [63]谢定义,陈正汉.非饱和土力学特性的理论与测试.非饱和土理论与实践学术研讨会文集[C].中国土木工程学会土力学及基础工程学会,1992.
    [64]陈愈炯.非饱和土孔隙水张力和气压力的量测.非饱和土理论与实践学术研讨会文集[C].中国土木工程学会土力学及基础工程学会,1992.
    [65]吴肖茗,刘国楠.土的吸力量测技术.非饱和土理论与实践学术研讨会文集[C].中国土木工程学会土力学及基础工程学会,1992.
    [66]张炜,张苏民.我国黄土工程性质研究的发展[J].岩土工程学报.1995.17(6):85~86
    [67]孔内深层强夯法技术规程(CECS197:2006)[S].北京:中国计划出版社,2006.
    [68]徐至钧.司炳文.地基处理新技术-孔内深层强夯[M].北京:中国建筑工业出版社,2011.
    [69]魏云海,詹良通,陈云敏.高饱和土的固结和压缩特性及其应用[J].岩土工程学报,2006,8(2):264~269
    [70]王恩远,刘熙媛.柱锤冲扩桩法加固机理研究[J].建筑科学,2008,24(9):63~67.
    [71]闰旭梅,柱锤冲扩桩法在地基处理工程中的应用与研究[J].科技传播,2010,(4):162~163.
    [72]金忠良.柱锤冲扩桩法复合地基承载性能研究[D].东营:中国石油大学硕士学位论文,2010.
    [73]施峰,蔡来炳,柳春.人工挖孔扩底桩承载力试验研究[J].工程勘察.1999,(2):21~25.
    [74]李彦利.CFG桩复合地基承载特性探讨,电力勘测,2001,12(4):5~7.
    [75]李金平.柱锤冲扩水泥土桩复合地基在湿陷性黄土地区的应用研究[D].西安建筑科技大学硕士学位论文,2011.
    [76]蒋彭年.非饱和土工程性质简论[J].岩土工程学报,1989,11(6):39~59
    [77]Fredlund D.G,Raharhard.非饱和土力学[M].陈仲颐等译.北京:中国建筑工业出版社,1997.
    [78]吴丽君.客运专线非饱和土固结压缩特性及地基加固技术研究[D].成都.西南交通大学博士学位论文,2011.
    [79]Barbour.J. Uncertainty in Soil-Water Characteristic Curve and Impacts On Unsaturated Shear StrenthPrediction.[D] ARIZONA STATE UNIVERSITY.1999.11.
    [80]Fredlund D G And Anqing Xing.Equations for The Soil-water characteristic curve CanadianGeotechnical Joumal.1994,Vol.31:521~532.
    [81]Mckee C.R.,Bumb,A.C.The Importance of unsaturated flow parameters in designing a monitoringsystem for hazardous waters and environmental emergencies. In Proceedings, Haazardous MaterialsControl Research Institute National Conference, Houston, Tex. March1984,pp.50-58.
    [82]Gardner W.R. Some steady state solutions of the unsaturated moisture flow equation with application toevaporation from a water table. Soil Science.1958,85:228-232.
    [83]Stoicescu J.T., Huang M.D. and Fredlund D.G. The Soil-water characteristics of sand bentonitemixtures used for lines and covers,2nd UNSAT, Beijing,1998.
    [84]Mckee C.R. and Bumb A.C. Flow-testing coalbed methane production wells in presence of water andgas. SPE Formation Evaluation,1987,(Dec.):599-608.
    [85]Van Genuchten M.T.A Closed-form equation for predicting the hydraulic conductivity of unsaturatedsoils. Soil Sci.Soc.Am.J.1980,44:892-898.
    [86]Khallili N,Khabbza M H.A unique relationship for the determination of the shear strength ofunsaturated soils[J].Geotechnique,1998,48(5):681~687
    [87]卢肇钧,吴肖茗,等.膨胀力在非饱和土强度理论中的应用[J].岩土工程学报,1997,19(5):20~27
    [88]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,2000.
    [89]吴世明,杨挺,周健,等.岩土工程新技术[M].北京:中国建筑工业出版社,2001.
    [90]Scott R F.Principles of soils mechanics[A].Addison-Wesley Publishing Company[M].[s.l.]:[s.n.],1963.
    [91]Barden L,Consolidation of compacted and unsaturated clays[J].Géotechnique,1965,(3):257~286.
    [92]Liovet A,Alonso E E.Consolidation of unsaturated soils,meluding swelling and collapse behavior[J].Géotechnique,1980,(4):449~477.
    [93]Frelund D G.Mechanics of Fluid in Porous Media[M].[s.l.]:[s.n.],1982.525~578.
    [94]Fredlund D G,Hasan J U.One dimensional consolidation theory:Unsaturated soils[J].CanadianGeotechnical Journal,1980,16(3):521~531
    [95]Rahardjo H.The study of undrained and drained behavior of unsaturated soils[Ph.D.]Canada:Univisityof Saskatchewan,1990.
    [96]Loret,Benjamin,Khalili,Nasser.Three-phase model for unsaturated soils[J].International Journal forNumerical and Analytical Methods in Geomechanics,2000,24(11):893~927.
    [97]朱以文,蔡元奇,徐晗.ABAQUS与岩土工程分析[M].北京:中国图书出版社,2005.
    [98]黄文熙主编.土的工程性质[M].北京:水利电力出版社,1983.
    [99]汪建峰.温度对非饱和土路基吸力影响的研究[D].武汉大学博士学位论文,2008.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700