相控阵馈电网络中的无源器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,相控阵雷达越来越广泛地用于各种飞行器,这就对它的体积、重量提出了新的要求,因此,相控阵馈电网络的小型化是发展趋势之一。另外,现代电子战中辐射与反辐射、干扰与反干扰技术越来越先进,作战环境越来越恶劣。因此,要求相控阵雷达具有抗干扰和生存能力。对应到馈电网络则要求其具有宽频带、双波段、谐波抑制等功能。因此,共形、小型化、宽带、双波段、谐波抑制等成为了馈电网络的研究方向。本文主要从小型化、宽带、双波段、谐波抑制等几个方面研究了相控阵馈电网络中的无源器件。
     在第一章,介绍了相控阵馈电网络的研究背景和最新进展;
     在第二章,首先总结了各种小型化技术;接着分析了周期慢波结构,研究不同单元数的影响;最后设计了一种新颖的周期慢波结构小型化功分器,研究了电容加载小型化功分器,其中电容加载小型化功分器结构简单,设计方便,并且具有谐波抑制功能。
     在第三章,首先建立了Schiffman移相器数值模型和用于构建知识人工神经网络的粗糙模型;接着建立了精确的基于传输线的混合左右手传输线模型;最后给出了三类基于传输线的混合左右手传输线差分移相器,并实际加工、测试了一个第三类移相器。
     在第四章,首先设计了一个双波段分支线耦合器;接着研究了慢波结构分支线耦合器;最后设计了新颖的具有谐波抑制功能的小型化共享电容分支线耦合器和鼠笼耦合器,与传统的小型化耦合器相比,它具有结构简单,设计简便的特点。
     在第五章,分别优化设计了传统和宽带的微带Butler阵。其中宽带的微带Butler阵采用了耦合微带线实现宽带移相。与传统的宽带Butler阵相比,它具有结构简单,带宽更宽的优点。
     在第六章,对本论文进行了总结,并提出了进一步的研究课题。
Recently,phased array radars are frequently used in various flight applications.Thesizes and weights of the phased arrays need to satisfy some rigorous demands.Sominiaturization of feed network of the phased array is one of the research trends.Besides,the technologies of radiation and anti-radiation,disturbance andanti-disturbance develop rapidly in modem electrical wars.And the environments of thewars become worse.So the phased array should have the abilities in anti-disturbanceand survival.And conformation,miniaturization,wide band,dual band and harmonicsuppression are the research trends of feed network.In this dissertation,miniaturized,wide-band,dual-band,harmonic-suppression passive components of phased array feednetwork are researched.
     In Chapter 1,the research background and recent developments about phased arrayfeed network are reviewed.
     In Chapter 2,firstly,various miniaturization techniques are summarized.Secondly,periodic slow-wave structures are analyzed,and the influences of different number ofunit cells are researched.Lastly,compact power dividers with a novel periodicslow-wave structures and capacitor loading are researched.The proposed power dividerwith capacitor loading is simple and can be easily designed.Further more,it has goodharmonic suppression performance.
     In Chapter 3,firstly,a numerical model of Schiffrnan phase shifter and a coarsemodel used in constructing a knowledge based neural network are established.Secondly,an accurate model of transmission line based composite right/left handed transmissionline is established.Lastly,three types of differential phase shifters using compositeright/left handed transmission line are presented,and a third type phase shifter isfabricated and measured.
     In Chapter 4,firstly,a dual band branch line coupler is designed.Secondly,slow-wave structure branch line couplers are researched.Lastly,novel compact branchline coupler and rat-race coupler with shared capacitor loading are designed,and the couplers can suppress harmonics.As compared with the conventional compact coupler,the proposed couplers are simple and can be easily designed.
     In Chapter 5,a conventional and a wide-band microstrip Butler matrix aredesigned.The wide-band Butler matrix uses a coupled microstrip to implement thewide-band differential phase shift.As compared with the conventional wide-band Butlermatrix,the proposed wide-band Butler matrix is simple and the bandwidth is wider.
     In Chapter 6,a summary of the whole dissertation is given,and future researchtopics are suggested.
引文
[1]尹应曾,夏静改.宽频带微带传输线的研究.电子科学学报,1999,14(6):191-195
    [2]付云起,袁乃昌,张国华.带线馈电开槽天线的实验研究.电子学报,1992,23(3):56-60
    [3]杨林,王建中.双波束天线馈电网络组合设计.火控雷达技术,1997,12(5):58-62
    [4]杜小辉,李建新,郑学誉,X波段双极化有源相控阵天线的设计.电子学报,2002,6(12):44-46
    [5]B.Sheleg.A matrix-fed circular array for continuous scanning.Proc.IEEE,1968,56(11):2016-2027
    [6]W.R.LePage,C.S.Roys,and S.Seely.Radiation from circular current sheets.Proc.IRE,1950,38(2):1069-1072
    [7]J.Popik,M.Slaba,and Z.Kowalczyk.Cylindrical antenna array feeding network for electronic scanning.Microwaves and Radar,12th International Conference.Krakow:MIKON,1998,384-388
    [8]P.K.Park and R.S.Robertson.Electronically scanned dielectric covered continuous slot antenna conformal to the cone for dual mode seeker.United States,Al,Patent No.20030043085,Nov 25,2003
    [9]B.Sheleg.Butler submatrix feed systems for antenna arrays.IEEE Trans.Antennas Propagat.,1973,21(2):228-229
    [10]李宗谦,佘京兆,高葆新.微波工程基础.北京:清华大学出版社,2004,223-225
    [11]M.C.Scardelletti,G. E.Ponchak,and T.M.Weller.Miniaturized Wilkinson power dividers utilizing capacitive loading.IEEE Microw.Wireless Compon.Lett.,2002,12(1):6-8
    [12]C.M.Lin,H.H.Su,J.C.Chiu,et al.Wilkinson power divider using microstrip EBG cells for the suppression of harmonics.IEEE Microw.Wireless Compon.Lett.,2007,17(10):700-702
    [13]F.Zhang and C.F.Li.Power divider with microstrip electromagnetic bandgap element for miniturisation and harmonic rejection.Electron.Lett.,2008,44(6):422-423
    [14]A.Kolpin,S.Winter,and R.Weigel.A six-port receiver's analog front-end of reduced size based on a multi-layer layout.IEEE MTT-S International Microwave Symposium.Honolulu,HI:MWSYM.2007.1011-1014
    [15] M. Caulton, B. Hershenov, S. P. Knight, et al. Status of lumped elements in microwave integrated circuits - present and future. IEEE Trans. Microw. Theory Tech., 1971, 19 (7): 588-599
    [16] J. Putnam and R. Puente. A monolithic image-rejection mixer on GaAs using lumped elements. Microw. J., 1987,30 (11): 107-116
    [17] T. Hirota, A. Minakawa, and M. Muraguchi. Reduced-size branch-line and rat-race hybrids for uniplanar MMIC's. IEEE Trans. Microw. Theory Tech., 1990,38 (3): 270-275
    [18] M. Gillick, I. D. Robertson, and J. S. Joshi. Design and realization of reduced-size impedance transforming uniplanar MMIC branchline coupler. Electron. Lett., 1992,28 (16): 1555-1557
    [19] I. Toyoda, T. Hirota, T. Hiraoka, et al. Multilayer MMIC branch-line coupler and broad-side coupler. IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium. Albuquerque, NM: MCS, 1992,79-82
    [20] I. Sakagami, M. Haga, and T. Munehiro. Reduced branch-line coupler using eight two-step stubs. IEE Proc. Microw. Antennas Propag., 1999,146 (6): 455-460
    [21] M. L. Chuang. Miniaturized ring coupler of arbitrary reduced size. IEEE Microw. Wireless Compon. Lett., 2005, 15 (1): 16-18
    [22] K. H. Chang, K. M. Nam, and J. P. Kim. Design of various compact branch-line couplers by using artificial transmission lines. IEEE MTT-S International Microwave Symposium Digest. San Francisco, CA: MWSYM, 2006,1726-1729
    [23] C. W. Tang and M. G. Chen. Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth. IEEE Trans. Microw. Theory Tech., 2007, 55 (9): 1926-1934
    [24] C. W. Tang, M. G. Chen, and J. W. Wu. Realization of ultra-compact planar microstrip branch-line couplers with high-impedance open strubs. IEEE MTT-S International Microwave Symposium. Honolulu, HI: MWSYM, 2007,995-998
    [25] T. K. G. Kwang and P. Gardner. 4×4 Butler matrix beam forming network using novel reduced size branchline coupler. 31st European Microwave Conference. London, England: EUMA, 2001, 1-4
    [26] S. John. Strong localization of photons in certain disordered dielectric super-lattices. Phys. Rev. Lett., 1987,58 (23): 2486-2489
    [27] E. Yablonvitch. Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett., 1987, 58 (20): 2059-2062
    [28]L.J.Zhang,F.Romulo,J.Broas,et al.High-impedance electromagnetic surfaces with a forbidden frequency band.IEEE Trans.Microw.Theory Tech.,1999,47(11):2059-2074
    [29]R.Gonzalo,B.Martinez,P.de Maagt,et al.Improved patch antenna performance by using photonic bandgap substrates.Microw.Opt.Technol.Lett.,2000,24(4):213-215
    [30]R.Gonzalo,P.de Maagt,and M.S.Rolla.Enhanced patch antenna performance by suppressing surface waves using photonic-bandgap substrates.IEEE Trans.Microw.Theory Tech.,1999,47(11):2131-2138
    [31]S.Padhi and M.Bialkowski.Investigations of an aperture coupled microstrip Yagi antenna using PBG structure.IEEE Antennas and Propagation Society International Symposium,2002,3:752-755
    [32]N.Karmakar,M.Mollah,and S.Padhi.Photonic bandgap assisted aperture coupled patch antennas.IEEE Antennas and Propagation Society International Symposium,2002,3:772-775
    [33]H.Yasushi,and T.Makoto.Harmonic control by photonic bandgap on microstrip patch antenna.IEEE Microw.Guided Wave Lett.,1999,9(1):13-15
    [34]F.R.Yang,K.P.Ma,Y.X.Qian,et al.A novel TEM waveguide using uniplanar compact photonic-bandgap(UC-PBG)structure.IEEE Trans.Microw.Theory Tech.,1999,47(11):2092-2098
    [35]Y.B.Pang,B.X.Gao,and Z.W.Du.Novel electromagnetic bandgap structure fabricating method.IEEE AP-S Int.Symp.San Antonio:APS,2002,372-375
    [36]K.Taesun and S.Chulhun.A novel photonic bandgap structure for low-pass filter of wide stopband.IEEE Microw.Guided Wave Lett.,2000,10(1):13-15
    [37]S.T.Chew and T.Itoh.PBG-excited split-mode resonator bandpass filter.IEEE Microw.Wireless Compon.Lett.,2001,9(11):364-366
    [38]Y.Q.Fu,G.H.Zhang,and N.C.Yuan.A novel EBG coplanar wave guide.IEEE Microw.Wireless Compon.Lett.,2001,11(11):447-449
    [39]D.Nesic and A.Nesic.1-D microstrip PBG bandgap-pass filter without etching in the ground plane and with sinusoidal variation of the characteristics impedance.Telecommunications in Modem Satellite Cable and Broadcasting Service,5th International Conference.Nis,Yugoslavia:TELSKS,2001,:181-186
    [40]V.Radisic,Y.Qian and T.Itoh.Broadband power amplifier using dielectric photonic bandgap structure.IEEE Microw.Guided Wave Lett.,1998,8(1):13-14
    [41]C.Y.Hang,V.Radisic,Y.Qian,et al.High efficiency power amplifier with novel EBG ground plane for harmonic tuning.IEEE MTT-S International Microwave Symposium.Anaheim,CA:MWSYM,1999,589-592
    [42]J.A.Higgins,M.Kim,J.B.Hacher,et a].The application of photonic crystals to quasi-optic amplifiers.IEEE Trans.Microw.Theory Tech.,1999,47(11):2139-2143
    [43]J.Z.Gu and X.W.Sun.Miniaturization and harmonic suppression rat-race coupler using C-SCMRC resonators with distributive equivalent circuit.IEEE Microw.Wireless Compon.Lett.,2005,15(12):880-882
    [44]J.P.Wang,B.Z.Wang,Y.X.Guo,et al.Compact slow-wave microstrip rat-race ring coupler.Electron.Lett.,2007,43(2):111-113
    [45]J.P.Wang,B.Z.Wang,Y.X.Guo,et al.A compact slow-wave microstrip branch-line coupler with high performance.IEEE Microw.Wireless Compon.Lett.,2007,17(7):501-503
    [46]J.S.Lim,C.S.Kim,Y.T.Lee,et al.A spiral-shaped defected groud structure for coplanar waveguide.IEEE Microw.Wireless Compon.Lett.,2002,12(9):330-332
    [47]H.M.Kim and B.Lee.Bandgap and slow/fast-wave characteristics of defected groud structures(DGSs)including left-handed features.IEEE Trans.Microw.Theory Tech.,2006,54(7):3113-3120
    [48]J.S.Lim,J.S.Park,Y.T.Lee,et al.Application of defected ground structure in reducing the size of amplifiers.IEEE Microw.Wireless Compon.Lett.,2002,12(7):261-263
    [49]J.S.Lim,Y.T.Lee,C.S.Kim,et al.A vertically periodic defected ground structure and its application in reducing the size of microwave circuits.IEEE Microw.Wireless Compon.Lett.,2002,12(12):479-481
    [50]H.Liu,Z.Li,and X.Sun.Compact defected ground structure in microstrip technology.Electron Lett.,2005,41(3):132-134
    [51]F.R.Yang,Y.X.Qian,Roberto Coccioli,et al.A novel low-loss slow-wave microstrip structure IEEE Microw.Guided Wave Lett.,1998,8(11):372-274
    [52]Q.Xue,K.M.Shum,and C.H.Chan.Novel 1-D microstrip PBG Cells.IEEE Microw.Guided Wave Lett.,2000,10(10):403-405
    [53]K.M.Shum,Q.Xue,and C.H.Chan.A novel microstrip ring hybrid incorporating a PBG cell.IEEE Microw.Wireless Compon.Lett.,2001,11(6):258-260
    [54]K.M.Shum,Q.Xue,and C.H.Chan.Cureved PBG cell and its applications.Asia-Pacific Microwave Conference.Taipei,Taiwan:APMC,2001,767-770
    [55] K. O. Sun, S. J. Ho, C. C. Yen, et al. A compact branch-line coupler using discontinuous microstrip lines. IEEE Microw. Wireless Compon. Lett., 2005, 15 (8): 519-520
    [56] C. Z. Zhou and H. Y. D. Yang. Design considerations of miniaturized least dispersive periodic slow-wave structures. IEEE Trans. Microw. Theory Tech., 2008, 56 (2): 467-474
    [57] W. R. Eisenstadt and Y. Eo. S-parameter-based IC interconnect transmission line characterization. IEEE Transactions on Components, Hybrids, Manufacturing Technology, 1992,15 (4): 483-490
    [58] B. M. Schiffinan. A new class of broadband microwave 90 deg phase shifter. IRE Trans. Microw. Theory Tech., 1958, 6: 232-237
    [59] J. L. R. Quirarte and J. P. Starski. Synthesis of Schiffinan phase shifters. IEEE Trans. Microw. Theory Tech., 1991, 39 (11): 1885-1889
    [60] J. L. R. Quirarte and J. P. Starski. Novel Schiffman phase shifters. IEEE Trans. Microw. Theory Tech., 1993,41(1): 9-14
    [61] C. E. Free and C. S. Aitchison. Improved analysis and design of coupled-line phase shifters. IEEE Trans. Microw. Theory Tech., 1995,43 (9): 2126-2131
    [62] E. Hammerstad and O. Jensen. Accurate models for microstrip computer-aided design. MTT-S International Microwave Symposium Digest, 1980,80:407-409
    [63] R. H. Jansen. High-speed computation of single and coupled microstrip parameters including dispersion, high-order models, loss and finite strip thickness. IEEE Trans. Microw. Theory Tech., 1978,26 (2): 75-82
    [64] R. H. Jansen and M. Kirschning. Arguments and an accurate model for the power-current formulation of microstrip characteristic impedance. AEU, 1983,37 (3-4): 108-112
    [65] M. Kirschning and R. H. Jansen. Accurate wide-range design equations for the frequency-dependent characteristic of coupled microstrip lines. IEEE Trans. Microw. Theory Tech., 1984, 32(1): 83-90
    [66] 王秉中.计算电磁学.北京:科学出版社, 2002, 315-328
    [67] V. G. Veselago. The electrodynamics of substances with simultaneously negative values of s and μ . Sov. Phys. Usp., 1968,10 (4): 509-514
    [68] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Magnetism from conductors and enhanced linear media. IEEE Trans. Microw. Theory Tech., 1999,47 (11): 2075-2084
    [69] D. R. Smith, W. J. Padilla, D. C. Vier, et al. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett., 2000, 84 (18): 4184-4187
    [70]I.V.Shadrivov,A.A.Sukhorukov,Y.S.Kivshar,et al.Nonlinear surface waves in left-handed materials.Phys.Rev.E,2004,69(1 pt 2):016617
    [71]V.M.Agranovich,Y.R.Shen,R.H.Baughman,et al.Linear and nonlinear wave propagation in negative refraction metamaterials.Phys.Rev.B,2004,69(16):165112
    [72]T.J.Cui,Z.C.Hao,X.X.Yin,et al.Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials.Phys.Lett.A,2004,323(5-6):484-494
    [73]A.B.Kozyrev and D.W.van der Weide.Nonlinear wave propagation phenomena in left-handed transmission-line media.IEEE Trans.Microw.Theory Tech.,2005,53(1):238-245
    [74]H.Cory and A.Barger.Surface-wave propagation along a metamaterial slab.Microw.Opt.Technol.Lett.,2003,38(5):392-395
    [75]R.A.Shelby,D.R.Smith,and S.Schultz.Experimental verification of a negative index of refraction.Science,2001,292(5514):77-79
    [76]D.R.Smith,D.C.Cier,N.Kroll,et al.Direct calculation of permeability and permittivity for a left-handed metamaterial.Applied Physics Letters,2000,77(14):2246-2248
    [77]H.Mosallaei and Y.Rahmat-Samii.Composite materials with negative permittivity and permeability properties:concept,analysis,and characterization.IEEE Antennas and Propagation Society International Symposium.Boston,MA:APS,2001,378-381
    [78]D.R.Fredkin and A.Ron.Effectively left-handed(negative index)composite material.Applied Physics Letters,2002,81(10):1753-1755
    [79]D.R.Smith,S.Schultz,P.Markos,et al.Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients.Physical Review B,2002,65:195104
    [80]D.R.Smith and N.Kroll.Negative refractive index in left-handed materials.Physical Review Lett.,2000,85(14):2933-2936
    [81]D.R.Smith,D.Schurig,and J.B.Pendry.Negative refraction of modulated electromagnetic waves.Applied Physics Letters.,2002,81(15):2713-2715
    [82]A.A.Oliner.A periodic-structure negative-refractive-index medium without resonant elements.IEEE AP-S USNC/URSI National Radio Science Meeting Digest.San Antonio,TX:APS 2002,412-415
    [83]C.Caloz,C.C.Chang,and T.Itoh.Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations.Journal of Applied Physics,2001,90(11):5483-5486
    [84]C.Caloz and T.Itoh.Application of the transmission line theory of left-handed materials to the realization of a microstrip “LH line”.IEEE AP-S Int.Symp.San Antonio,TX:APS,2002,16-21
    [85]C.Caloz and T.Itoh.Planar distributed structures with negative refractive index.IEEE Trans.Mirow.Theory Tech.,2004,52(4):1252-1263
    [86]C.Caloz and T.Itoh.Transmission line approach of left-handed materials and microstrip implementation of an artificial LH-TL.IEEE Transaction on AP,2004,52(5):1159-1166
    [87]C.Caloz,I.H.Lin,and T.Itoh.Characteristics and potential applications of nonlinear left-handed transmission lines.Microwave and Optical Technology Letters,2004,40(6):471-473
    [88]A.Lai,C.Caloz,and T.Itoh.Composite right/left-handed transmission line metamaterials.IEEE Microwave Magazine,2004,5(3):34-50
    [89]A.Grbic and G V.Eleftherialdes.Experimental verification of backward-wave radiation from a negative refractive index metamaterial.Journal of Applied Physics,2002,92(10):5930-5935
    [90]G.V.Eleftheriades and A.K Iyer.Planar negative refractive index media using periodically L-C loaded transmission lines.IEEE Trans.Microw.Theory Tech.,2002,50(12):2702-2712
    [91]G.V.Eleftherides,O.Siddiqui and A.K Iyer.Transmission line models for negative refractive index media and associated implementations without excess resonators.IEEE Microw.Wireless Compon.Lett.,2003,13(2):51-53
    [92]C.H.Tseng and C.L.Chang.A broadband quadrature power splitter using metamaterial transmission line.IEEE Microw.Wireless Compon.Lett.,2008,18(1):25-27
    [93]D.M.Pozar.Microwave Engineering.3rd ed.New York:Wiley,2005,ch.7:333-337
    [94]I.H.Lin,M.De Vincentis,C.Caloz,et al.Arbitray dual-band components using composite right/left-handed transmission lines.IEEE Trans.Microw.Theory Tech.,2004,52,(4):1142-1149
    [95]I.H.Lin,C.Caloz,and T.Itoh.A branch-line coupler with two arbitrary operationg frequencies using left-handed transmission lines.IEEE MTT-S International Microwave Symposium Digest.Cote INIST:ETATS-UNIS,2003,325-328
    [96]X.Q.Lin,R.P.Liu,X.M.Yang,et al.Arbitrarily dual-band components using simplified structures of conventional CRLH TLs.IEEE Trans.Microw.Theory Tech.,2006,54(7):2902-2909
    [97] S. J. Foti and T. Macnamara. Design of wideband Butler matrices using Schiffinan lines. Multiple Beam Antennas and Beamformers, IEE Colloquium on Multiple Beam Bntennas and Beamformers. London, UK, 1989, 5/1-5/8
    [98] M. A. Hiranandani and A. A. Kishk. Widening Butler matrix bandwidth within the X-band. IEEE Antenna and Propagation Society International Symposium. APS, 2005,321-324
    [99] J. Butler and R. Lowe. Beam-forming matrix feed systems for antenna arrays. Electronic Design, 1961,9:170-173
    [100] J. Butler. Digital, matrix and intermediate frequency scanning. Microwave Scanning Antennas, Vol. 3, New York: Academic Press, 1996
    [101] H. J. Moody. The systematic design of the Butler matrix. IEEE Trans., AP, 1964: 786-788
    [102] T. Macnamara. Simplified design procedures for Butler matrices incorporating 90?hybrids or 180(?)hybrids. IEE Proceedings, 1987,134 (1): 50-54
    [103] F. Alessandri, M. Dionigi, R. Sorrentino, et al. Rigorous and efficient fabrication-oriented CAD and optimization of complex waveguide networks. IEEE Trans. Microw. Theory Tech., 1997,45 (12): 2366-2374
    [104] B. Piovano, L. Accatino, and A. Angelucci. Design and breadbording of wideband nXn Butler matrix for multiport amplifiers. Microwave Conference. Brazil: SBMO International, 1993, 175-180
    [105] K. K. Fu and A. K. Y. Lai. FDTD optimization of beam forming network for multibeam antenna. IEEE Antennas and Propagation Society International Symposium. Atlanta, GA: APS, 1998,2028-2031
    [106] T. A. Denidni and T. E. Libar. Wide band four-port Butler matrix for switched multibeam antenna arrays. Personal, Indoor and Mobile Radio Communications 14th IEEE Proceedings. PIMRC, 2003,2461-2464
    [107] H. Hayashi, D. A. Hitko, and C. G Sodini. Four-element planar Butler matrix using half-wavelength open stubs. IEEE Microw. Wireless Compon. Lett., 2002, 12 (3): 73-75
    [108] K. Sachse, A. Sawichi, and G Jaworski. Novel multilayer coupled-line structures and their circuit applications. Microwave, Radar and Wireless Communications 13th International Conference. Wroclaw: MIKON, 2000,131-155
    [109] M. Bona, L. Manholm, J. P. Starski, et al. Low-loss compact Butler matrix for a microstrip antenna. IEEE Trans. Microw. Theory Tech., 2002, 50 (9): 2069-2075
    [110]M.Nedil,T.A.Denidni,and L.Talbi.Novel Butler matrix using CPW multilayer technology.IEEE Trans.Microw.Theory Tech..,2006,54(1):499-507
    [111]C.Collado,A.Grau,and F.D.Flaviis.Dual-band Butler matrix for WLAN systems.IEEE MTT-S International Microwave Symposium Digest.INIST-CNRS:ETATS-UNIS,2005,2247-2250

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700