星载降水雷达技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球降水对全球气候与环境变化研究、人类社会的可持续发展、人们的生产生活都有重要的影响。星载降水雷达是测量全球尺度降水的有效手段和重要的遥感器,能够对降水的三维结构进行直接测量,还可以为被动微波遥感测量降水提供订正参考。本文首先分析了地表杂波对星载降水雷达测量的影响,详细研究了适用于卫星平台的降水雷达技术,包括脉冲波形设计、脉冲压缩与距离旁瓣抑制、信号处理算法、空间分辨率增强、雷达天线的选取与波束自适应扫描等。
     本文首次综合分析了地表杂波通过天线主瓣、旁瓣和距离主瓣、旁瓣对星载脉冲压缩雷达降水测量的干扰模型,推导出了考虑距离加权函数影响的雨水回波和地表杂波计算公式。着重分析了杂波对雷达设计的影响,指出星载降水雷达对距离旁瓣、天线旁瓣等指标的要求都要高于以往研究的结果。
     本文提出了一种新的脉冲压缩和距离旁瓣抑制方法,可以获得低于-110dB的峰值距离旁瓣电平。新方法避免了对LFM信号在发射阶段加权进行脉冲压缩时雷达高功率放大器只能工作在非饱和区引起的效率降低与系统检测性能下降,分析表明新方法获得的距离旁瓣性能对Doppler频移不敏感,适合于星载应用。
     本文全面分析了提取包括降雨强度、降雨速度、极化信息等降雨参数的信号处理方法,提出使用基于BG反演的超分辨率重建方法来提高星载降水雷达的分辨率,并用于校正雷达波束非均匀充塞造成的降雨强度估计误差。
     最后,本文对新一代星载降水雷达系统的参数选择进行了研究和分析。
Global precipitation is very important for global climate and environment change research, sustainable development, production activities and ordinary life of human being. Spaceborne precipitation radar is a powerful tool for global precipitation measurement. It not only has the capability of directly measurementing three dimensional structure of precipitation, but also provides reference for wide swath precipitation retrieval by passive microwave readimetry.
     In this dissertation, key issues of the precipitation radar techniques appropriate to spaceborne application are studied, including pulse waveform design, pulse compression and range sidelobe suppression, signal processing, special resolution enhancement, attenna selection, adaptive scanning, etc.
     The model of surface clutter interference with spaceborne pulse-compression precipitation radar is built for the first time. Sea clutter modle with considering the effect of range weighting function is formulated.
     A novel technique for pulse compression with emphasis on the suppression of range sidelobes is proposed, with which the achieved peak range sidelobe level can be less then -110 dB. With this new technique, it is avoided that the high power amplifier can only operate in nonsaturated status which leads to the degradation of efficiency when compressing chirp signal. According to the results of analysis, the achieved range sidelobe is insensitive to Doppler shifts.
     Signal processing methods to obtain precipitation parameters including rain rate, rainfall velocity and polarimetric information are analyzed in detail. A new method—supper resolution reconstruction with BG inversion method is proposed to release the non-uniform beam-filling effects on rain rate estimations.
     Finally, performance parameters for future spaceborne precipitation radar are discussed.
引文
[1] Kummerow C, Barnes W, Kozu T, et al. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(3): 809–817.
    [2] Atlas D. Radar in Meteorology[M]. Boston: American Meteorological Society, 1990: 86-97.
    [3] Simpson J, Kummerow C, Tao W K, et al. On the Tropical Rainfall Measuring Mission (TRMM)[J]. Meteorol. Atmos. Phys., 1996, 60: 19-36.
    [4] Kawanishi T, Kuroiwa H, Kojima M, et al. TRMM Precipitation Radar[J]. Adv. Space Res., 2000, 25(5): 969-972.
    [5] Kozu T, Kawanishi T, Kuroiwa H, et al. Development of Precipitation Radar Onboard the TRMM Satellite[J]. IEEE Trans. Geosci. Remote Sensing, 2001, 39(1): 102-116.
    [6] Flaming G M. Measurement of Global Precipitation[C]// IEEE. IGARSS 2004. Anchorage: [s. n.], 2004: 918-920.
    [7] Flaming G M. Global Precipitation Measurement update[C]// IEEE. IGARSS 2005. Seoul: [s. n.], 2005: 4.
    [8] Iugchi T, Oki R, Smith E A, et al. Global Precipitation Measurement Program and the Development of Dual-frequency Precipitation Radar[J]. J. Commun. Res. Lab., 2002, 49(2): 37-45.
    [9] Senbokuva Y, Satoh S, Furukawa K, et al. Development of the Spaceborne Dual-Frequency Precipitation Radar for the Global Precipitation Measurement Mission[C]// IEEE. IGARSS 2004. Anchorage: [s. n.], 2004(5): 3566-3596.
    [10] Nakamura K, Oki R, Iguchi T, et al. Global Precipitation Measurement (GPM) Mission and Dual-frequency Precipitation Radar (DPR)[C]// Proceedings of SPIE. Bruges: [s. n.], 2005, 5978: 31-40.
    [11] Im E, Durden S L. Spaceborne Atmospheric Radar Technology[C]// NASA. Proceedings of the 5th Earth-Sun System Technology Conference. Maryland: [s. n.], 2005.
    [12] Goldhirsh J, Musiani B. Rain Cell Size Statistics Derived from Radar Observations at Wallops Island, VA[J]. IEEE Trans. Geosci. Remote Sensing, 1986, 24: 947-954.
    [13] Durden S L, Haddad Z S, Kitiyakara A, et al. Effects of Nonuniform Beam Filling on Rainfall Retrieval for the TRMM Precipitation Radar[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15: 635-646.
    [14] Tanelli S, Im E, Durden S L, et al. The Effects of Nonuniform Beam Filling on Vertical Rainfall Velocity Measurements with a Spaceborne Doppler Radar[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19: 1019-1034.
    [15] Hanado H, Ihara T. Evaluation of Surface Clutter for the Design of the TRMM Spacebome Radar[J]. IEEE Trans. Geosci. Remote Sensing, 1992, 30(3): 444-453.
    [16] Im E, Durden S L, Kakar R K, et al. The Next Generation of Spaceborne Rain Radars: Science Rationales and Technology Status[C]// Proceedings of SPIE. Hangzhou: [s. n.], 2003,4894: 178-189.
    [17] Im E, Durden S L, Sadowy G, et al. System Concept for the Next-Generation Spaceborne Precipitation Radars[C]// IEEE. Aerospace Conference Proceedings 2000. Big Sky: [s. n.], 2000, 4894: 178-189.
    [18] Sato K, Horie H, Hanado H, et al. A digital-analog hybrid technique for low range sidelobe pulse compression[J]. IEEE Trans. Geosci. Remote Sensing, 2001, 39(7): 1612-1615.
    [19] Manabe T, Okamato K, Ihara T. A Feasibility Study of Rain Radar for the Tropical Rainfall Measuring Mission, 5: Effects of Surface Clutter on Rain Measurements from Satellite[J]. J. Commun. Res. Lab., 1988, 35(145): 163-181.
    [20] Tagawa T, Okamoto K. Calculations of Surface Clutter Interference with Precipitation Measurement from Space by 35.5 GHz Radar for Global Precipitation Measurement Mission[C]// IEEE. IGARSS 2003. Toulouse: [s. n.], 2003(5): 3172-3174.
    [21] Tagawa T, Okamoto K. Suppression of Surface Clutter Interference with Precipitation Measurement from Space by the Dual Frequency Precipitation Radar[C]// IEEE. IGARSS 2004. Anchorage: [s. n.], 2004(2): 933-936.
    [22] Mega T, Hanado H, Okamoto K, et al. Rain Parameters Calculated from Raindrop Size Distribution for the Design of Future Spaceborne Precipitation Radar[C]// URSI XXVII General Assembly. Maastricht: [s. n.], 2002.
    [23] Masuko H, Okamoto K, Shimada M, et al. Measurement of Microwave Backscattering Signature of the Ocean Surface Using X-band and Ka-band Airborne Scattermeters[J]. Journal of Geophysical Research. C, Oceans: JGR, 1986, 91: 13065-13083.
    [24] Schroeder L C, Schaffner P R, Mitchell J L, et al. AAFE RADSCAT 13.9-GHz Measurements and Analysis: Wind-Speed Signature of the Ocean[J]. IEEE Journal of Oceanic Engineering, 1985, 10(4): 346-357.
    [25] Grant C R, Yaplee B S. Back Scattering from Water and Land at Centimeter and Millimeter Wavelength[J]. Proceedings of the IRE, 1957, 45: 976-982.
    [26] Okamoto K, Awaka J, Kozu T. A Feasibility Study of Rain Radar for the Tropical Rainfall Measuring Mission, 6: a Case Study of Rain Radar System[J]. J. Commun. Res. Lab., 1988, 35(145): 183-208.
    [27] Ihara T, Nakamura K. A Feasibility Study of Rain Radar for the Tropical Rainfall Measuring Mission, 4: a Discussion of Pulse Compression and Adaptive Scanning[J]. J. Commun. Res. Lab., 1988, 35(145): 149-161.
    [28] Sadowy G A, berkun A C, Chun W, et al. Development of an Advanced Airborne Precipitation Radar[J]. Microwave J., 2003, 46(1): 84-98.
    [29] Woodward P M, Davies J L. A Theory of Radar Information[J]. Phil. Mag., 1950, 41: 1001-1017.
    [30] Woodward P M. Probability and Information Theory, with Applications to Radar[M]. New York: McGraw-Hill Press, 1953.
    [31] Cook C E, Bernfeld M. Radar Signals: An Introduction to Theory and Application[M]. New York: Academic Press, 1967.
    [32] Rihaczek A W. Principles of High Resolution Radar[M]. New York: McGraw-Hill Press, 1969.
    [33] Fetter R W. Radar Weather Performance Enhanced by Pulse Compression[C]// American Meteorological Society. 14th Conf. Radar Meteorology. Tucson: [s. n.], 1970: 413-418.
    [34] Gray R W, Farley D T. Theory of Incoherent-Scatter Measurements Using Compressed Pulses[J]. Radio sci., 1973, 8(2): 123-131.
    [35] Urkowitz H, Bucc N J. Doppler tolerant range sidelobe suppression in pulse compression meteorological radar[C]// IEEE. IGARSS 1992, Houston: [s. n.], 1992, 1: 206-208.
    [36] Bucc N J, Urkowitz H . Testing of doppler tolerant range sidelobe suppression in pulse compression meteorological radar[C]// IEEE. Proc. 1993 IEEE National Radar Conf., Lynnfield: [s. n.], 1993: 206-211.
    [37] Tanner A, Durden S L, Im E, et al. Pulse Compression with Very Low Sidelobes in an Airborne Rain Mapping Radar[J]. IEEE Trans. Geosci. Remote Sensing, 1994, 32(1): 211–213.
    [38] Griffiths H D. Ultra-Low Range Sidelobe Pulse Compression for Satellite-Borne Rain Radar[C]// IEEE. Proc. 1993 IEEE National Radar Conf., Lynnfield: [s. n.], 1993: 28-33.
    [39] Sato K, Horie H, Hanado H, et al. A Digital-Analog Hybrid Technique for Low Range Sidelobe Pulse Compression[J]. IEEE Trans. Geosci. Remote Sensing, 2001, 39(7): 1612-1615.
    [40] Nuttall A H. Some Windows with Very Good Sidelobe Behavior[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1981, 29(1): 84-91.
    [41] Goodman N, Stiles J. A MMSE Filter for Range Sidelobe Reduction[C]// IEEE. IGARSS 2000. Honolulu: [s. n.], 2000, 5: 2365-2367.
    [42] Cook C E, Paolillo J. A Pulse Compression Predistortion Function for Efficient Sidelobe Reduction in a High-Power Radar[J]. Proc. IEEE, 1964, 52(4): 377-389.
    [43] Griffiths H D, Vinagre L. Design of Low-Sidelobe Pulse Compression Waveforms[J]. Electronics Letters, 1994, 30(12): 1004-1005.
    [44] Vincent N, Richard J, Suinot N, et al. Pulse Compression with -65 dB Sidelobe Level for a Spaceborne Meteorological Radar[C]// IEEE. IGARSS 1996, Lincoln: [s. n.], 1996, 1: 490-492.
    [45] Witte E D, Griffiths H D. Improved Ultra-Low Range Sidelobe Pulse Compression Waveform Design[J]. Electronics Letters, 2004, 40(22): 1448-1450.
    [46] Vinagre L, Griffiths H D, Milne K. Asymmetric Pulse Compression Waveform Design for Spaceborne Meteorological Radars[C]// IEEE. Radar 1997, Edinburgh: [s. n.], 1997: 370-373.
    [47] Mavrocordatos C, Martin-Neira M, Vincent N, et al. High Performance Digital Pulse Compression and Generation[C]// IEEE. IGARSS 1997, Singapore: [s. n.], 1997, 4:1470-1473.
    [48] DiFranco J W, Rubin W L. Analysis of Signal Processing Distortion in Radar Systems[J]. IRE Trans., 1962, MIL-6: 219-227.
    [49] Vincent N, Richard J, Suinot N, et al. Very Low Side-Lobe Pulse Compression for Rain Radar[C]// Proceedings of SPIE, Paris, 1995, 2584: 474-483.
    [50] Testud J, Amayenc P, Marzoug M. Rainfall-Rate Retrieval from a Spaceborne Radar: Comparison between Single-Frequency, Dual-Frequency and Dual-Beam Techniques[J]. Journal of Atmospheric and Oceanic Technology, 1992, 9: 599-623.
    [51] Marzoug M, Amayenc P. A Class of Single- and Dual-Frequency Algorithms for Rain-Rate Profiling from a Spaceborne Radar. Pad I: Principle and Tests from Numerical Simulations[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11: 1480-1506.
    [52] Battan L J. Radar Observation of the Atmosphere[M]. Chicago: University of Chicago Press, 1973: 324.
    [53] Atlas D, Ulbrich C W. The Physical Basis for Attenuation-Rainfall Relationships and the Measurement of Rainfall Parameters by Combined Attenuation and Radar Methods[J]. J. Rech. Atmos., 1974, 8: 275-298.
    [54]张培昌,杜秉玉,戴铁丕.雷达气象学[M]. 2版.北京:气象出版社, 2001.
    [55] Hitschfeld W, Bordan J. Errors Inherent in the Radar Measurement of Rainfall at Attenuating Wavelengths[J]. J. Meteorol., 1954, 11: 58-67.
    [56] Meneghini R. Rain Rate Estimates for an Attenuating Radar[J]. Radio sci., 1978, 13: 459-470.
    [57] Meneghini R, Eckerman J, Atlas D. Determination of Rain Rate from a Spaceborne Radar Using Measurements of Total Attenuation[J]. IEEE Trans. Geosci. Remote Sensing, 1983, 21: 34-43.
    [58] Norbury J R, White W J K. Microwave Attenuation at 35.8 GHz Due to Rainfall[J]. Electronics Letters, 1972, 8: 91-92.
    [59] Iguchi T, Meneghini R. Intercomparison of Single-Frequency Methods for Retrieving a Vertical Rain Profile from Airborne or Spaceborne Radar Data[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11: 1507-1516.
    [60] Meneghini R, Nakamura K. Range Profiling of the Rain Rate by an Airborne Weather Radar[J]. Remote Sensing of Environment: An Interdisciplinary Journal, 1990, 31(3): 193–209.
    [61] Iguchi T, Kozu T, Meneghini R, et al. Rain-Profiling Algorithm for the TRMM Precipitation Radar[J]. J. Appl. Meteorol., 2000, 39: 2038–2052.
    [62] Meneghini R, Iguchi T, Kozu T. Use of the Surface Reference Technique for Path Attenuation Estimates from the TRMM Precipitation Radar[J]. J. Appl. Meteorol., 2000, 39: 2053–2070.
    [63] Meneghini R, Atlas D. Simultaneous Ocean Cross Section and Rainfall Measurements from Space with a Nadir-Looking Radar[J]. Journal of Atmospheric and Oceanic Technology, 1986,3: 400-413.
    [64] Meneghini R, Liao Liang, Iguchi T. Integral Equations for a Dual-Wavelength Radar[C]//IEEE. IGARSS 2002. Toronto: [s. n.], 2002(1): 272-274.
    [65] Meneghini R, Nakamura K, Ulbrich C W, et al. Experimental Tests of Methods for the Measurement of Rainfall Rate Using an Airborne Dual-Wavelength Radar[J]. Journal of Atmospheric and Oceanic Technology, 1989, 6: 637-651.
    [66] Meneghini R, Kozu T, Kumagai H, et al. A Study of Rain Estimation Methods from Space Using Dual-Wavelength Radar Measurements at Near-Nadir Incidence Over Ocean[J]. Journal of Atmospheric and Oceanic Technology, 1992, 9: 364-382.
    [67] Fujita M. An Algorithm for Estimating Rain Rate by Dual-Frequency Radar[J]. Radio sci., 1983, 18: 697-708
    [68] Goldhirsh J. Analysis of Algorithms for the Retrieval of Rain-Rate Profiles from a Spaceborne Dual-Wavelength Radar[J]. IEEE Trans. Geosci. Remote Sensing, 1988, 26(2): 98-114.
    [69] Meneghini R, Jones J A, Gesell L H. Analysis of Dual-Wavelength Surface Reference Radar Technique[J]. IEEE Trans. Geosci. Remote Sensing, 1987, 25:456-471.
    [70] Mardiana R, Iguchi T, Takahashi N, et al. Dual-Frequency Rain Profiling Method without the Use of Surface Reference Technique[C]// IEEE. IGARSS 2003. Toulouse: [s. n.], 2003: 1954-1956.
    [71] Mardiana R, Iguchi T, Takahashi N. A Dual-Frequency Rain Profiling Method without the Use of a Surface Reference Technique[J]. IEEE Trans. Geosci. Remote Sensing, 2004, 42(10): 2214-2225.
    [72] Liao Liang, Meneghini R. A Study of Air/Space-borne Dual-Wavelength Radar for Estimation of Rain Profiles[J]. Adv. Atmos. Sci., 2005, 22(6): 841-851.
    [73] Testud J, Amayenc P. Stereoradar Meteorology-A Promising Technique for Observation of Precipitation from a Mobile Platform[J]. Journal of Atmospheric and Oceanic Technology, 1989, 6: 89-108.
    [74] Amayenc P, Testud J, Marzoug M. Proposal for a Spaceborne Dual-Beam Rain Radar with Doppler Capability[J]. Journal of Atmospheric and Oceanic Technology, 1993, 10: 262-276.
    [75] Hildebrand P H, Lee W C, Walther C A, et al. The ELDORA/ASTRAIA airborne Doppler Weather Radar: High-Resolution Observations from TOGA CORE[J]. Bull. Am. Meteorol. Soc., 1996, 77: 213-232.
    [76] Heymsfield G M, Bidwell S W, Caylor I J, et al. The EDOP Radar System on the High-Altitude NASA ER-2 Aircraft[J]. Journal of Atmospheric and Oceanic Technology, 1996, 13: 795-809.
    [77] Rick D, Haimov S J, Vali G. High Resolution Airborne Radar Dual-Doppler Technique[C]// American Meteorological Society. Preprints 32nd Conf. Radar Meteorology. Albuquerque: [s. n.], 2005: 1-21.
    [78] Wilson J W, Brandes E A. Radar Measurement of Rainfall-A Summary[J] Bull. Am. Meteorol. Soc., 1979, 60(9): 1048-1058.
    [79] Amayenc P, Marzoug M, Testud. Analysis of Cross-Beam Resolution Effects in Rainfall Rate Profile Retrieval from a Spaceborne Radar[J]. IEEE Trans. Geosci. Remote Sensing, 1993, 31(2): 417-425.
    [80] Backus G, Gilbert F. Numerical applications of a formalism for geophysical inverse problem[J]. Geophys. J. R. astr. Soc., 1967, 13: 247-276.
    [81] Backus G, Gilbert F. The resolving power of gross Earth data[J]. Geophys. J. R. astr. Soc., 1968, 16: 169-205.
    [82] Backus G, Gilbert F. Uniqueness in the inversion of inaccurate gross earth data[J]. Phil. Trans. Roy. Soc. London, 1970, A266: 123-192.
    [83] Stogryn A. Estimates of brightness temperatures from radiometer data[J]. IEEE Trans. Geosci. Remote Sensing, 1978, AP-26(5): 720-726.
    [84] Parker R L. The inverse problem of electrical conductivity in the mantle[J]. Geophys. J. R. astr. Soc., 1970, 22: 121-138.
    [85] Zrnic D S. Estimation of Spectral Moments for Weather Echoes[J]. IEEE Trans. Geosc. Electric., 1979, 17(4): 113-128.
    [86] Sirmans D, Bumgamer. Numerical comparison of five mean frequency estimators[J]. J. Appl. Meteor., 1975, 14: 991-1003.
    [87] Tanelli S, Im E, Facheris L, et al. DFT-Based Spectral Moments Estimators for SpaceBorne Doppler Precipitation Radars[C]// Proceedings of SPIE. Hangzhou: [s. n.], 2003, 4894: 218-229.
    [88] Atlas D, Moore R K. The measurement of precipitation with Synthetic Aperture Radar[J]. Journal of Atmospheric and Oceanic Technology, 1987, 4: 368-376.
    [89] Tanelli S, Im E, Durden S L, et al. Rain Doppler Velocity Measurements from Spaceborne Radar: Overcoming Nonuniform Beam-Filling Effects[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(1): 27-34.
    [90] Atlas D, Srivastava R C, Sekhon R S. Doppler Radar Characteristics of Precipitation at Vertical Incidence[J]. Rev. Geophys. Space Phys., 1973, 2: 1-35.
    [91] Doviak R J. A Survey of Radar Rain Measurement Techniques[J]. Journal of Climate and Applied Meteorology, 1983, 22: 832-849.
    [92]张培昌,杜秉玉,戴铁丕.雷达气象学[M]. 2版.北京:气象出版社, 2001.
    [93] Ryzhkov A V, Zrnic D S. Beamwidth Effects on the Differential Phase Measurement in Rain[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(3): 624-634.
    [94] Timothy K I, Iguchi T, Ohsaki Y, et al. Test of the Specific Differential Propagation Phase Shift (KDP) Technique for Rain-Rate Estimation with a Ku-Band Rain Radar[J]. Journal of Atmospheric and Oceanic Technology, 1999, 16: 1077-1091.
    [95] Atlas D. Advance in Radar Meteorology[M]// Landsberg H E, Mieghem J V. Advances inGeophysics. New York: Academic Press, 1964: 317-478.
    [96] Doviak R J, Zrni? D S, Sirmans D S. Doppler Weather Radar[J]. Proceedings of the IEEE, 1979, 67(11): 1522-1553.
    [97] Rahmat-Samii Y, Huang J, Lopez B, et al. Advanced Precipitation Radar Antenna: Array-Fed Offset Membrane Cylindrical Reflector Antenna[J]. IEEE Trans. Antennas Propag. 2005, 53(8): 2503-2515.
    [98] Thiele O W. On Requirements for a Satellite Mission to Measure Tropical Ranfall[R]. Greenbelt: NASA, 1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700