有机器件自旋相关的磁场效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从上世纪八十年代,有机发光二极管和有机光伏电池被合成并逐渐被应用,这使得有机材料成为人们关注的热点。但直到2002年,电子的自旋这一自由度才被引入到有机半导体器件中,随后不同类型的有机材料以及不同结构的有机器件被陆续合成出来,并且研究人员不断从改变材料结构和器件构造来提高器件的性能。由于有机材料是由比较轻的元素组成(C、H、O、N),自旋轨道耦合和超精细作用相对较弱,因此这类材料是自旋输运的优越候选材料。随着人们对有机材料内电荷和自旋属性更进一步深入地研究,未来将会有更多的以有机电子或有机自旋技术为基础的产品出现在人们的生产生活中。
     目前,实验和理论上所研究的有机自旋电子器件可分为三类:第一类器件是电极为非磁性材料,有机磁性分子作为中间层来实现自旋相关功能的器件。这类器件可以实现导电和磁性的共存,对有机磁性分子器件的研究工作已经展开,实验上已经制备出一些有机分子磁体,如poly-BIPO等,通过使用磁性侧基取代氢原子的方式实现这类材料的铁磁性。随之,一些理论工作者对有机磁体的磁性进行了研究,得到了这类材料的自旋密度波性质。对这类器件的输运性质的研究工作也逐渐开展,并从中发现了自旋过滤和自旋整流等有趣的物理现象;第二类器件是两电极为不同铁磁材料,中间层为非磁性有机半导体的器件。由于两边铁磁电极的矫顽力不同,这类器件在外磁场的作用下,两电极的磁化取向会呈现平行或反平行分布。因此,注入到有机层内自旋极化的载流子在注出端会受到不同程度的散射,导致器件的电阻随磁场变化。这类器件主要是磁场对器件铁磁电极磁化取向的调节,关注点是如何实现较高的自旋极化注入以及在室温下的自旋极化输运等问题。实验和理论研究发现引入自旋相关的界面电导是提高自旋极化注入的有效措施,但目前这类器件在室温下的性能表现仍然不能够满足人们的期望;第三类器件是不含有任何磁性元素的有机器件。这类非磁有机器件两边电极为非磁性材料,中间层为非磁的有机半导体。但是这类器件却是在很小的磁场(约几十mT)作用下,即便是在室温下,会呈现出一个很大的磁场效应(器件的电流或者发光随磁场变化非常明显)。实验上,人们通过更换不同的电极材料(不同材料功函数不同)来调节器件的单极性注入或者双极性注入,发现在单极性和双极性器件中都会出现明显的磁场效应。更换不同类型的有机材料(小分子或高分子),器件的磁场效应会出现少许差异,但是明显的磁场效应始终存在。改变温度和偏压,器件的磁场效应不仅大小会变,而且会出现正负变化的情况。因此,尽管观察到有机器件的磁场效应,却缺乏对微观物理机制的深层理解,对器件性能的优化基于经验。要想进一步改善有机器件的磁效应,其中一个非常重要的方面是需要对其基本的物理性质有清晰完整的认识。
     我们以第二类和第三类器件为研究对象展开研究。目前有机器件的实验现象非常丰富并且已有大量报道,但是理论上对于其内部的物理机制的解释相对匮乏,例如:有机自旋阀器件为何在室温下的性能比较差;有机非磁性器件在没有磁性元素的情况下,为何有大的磁场效应;为何在同样的条件下高分子和小分子器件磁场效应会存在差异;偏压和温度是如何调节有机器件的磁电阻;单极性和双极性器件怎样有效的从理论模型上去模拟等等。可见,如此丰富的实验现象目前理论不上不能给出统一的定论。本论文的重点是:依据实验现象,探讨有机器件内部的物理机制,对实验现象给出合理的解释同时预测一些实验结果。
     本论文中,我们建立有机层内载流子之间转换的动态方程,考虑体系在外磁场的塞曼作用、氢原子核的超精细作用以及相邻载流子之间的交换相互作用,试图对上述现象给予解释。具体为:
     1.有机自旋阀
     实验上已经报道了温度相关的有机自旋阀器件的磁电阻。依据实验现象,认为温度对器件磁电阻影响的物理量有两个:一是温度对铁磁电极界面自旋极化率的影响(影响自旋注入);二是温度对有机材料内自旋弛豫时间的影响(影响自旋输运)。基于这两点分析,我们给出有机半导体中自旋极化输运随温度的变化,利用Julliere公式给出器件的磁电阻。计算结果表明,温度影响有机自旋阀器件磁电阻的主要因素是温度对自旋弛豫时间的影响。
     2.有机单极非磁性器件
     2.1对于有机单极非磁性器件磁场效应的解释,大家比较认可双极化子模型。Bobbert等人基于双极化子模型给出了有机磁电阻的定量模拟,通过计入超精细作用给出器件的有机磁电阻,作者认为能形成双极化子的格点则被视为载流子输运的一个有效通道,不能形成双极化子的格点则被认为载流子输运阻塞。但是有机器件内极化子和双极化子都为有效的载流子,其内部之间的转换如何受磁场调节同样是人们关注的焦点。因此,建立极化子和双极化子之间的转换方程,考虑氢原子核的超精细作用,定量计算磁场作用下极化子和双极化子之间的浓度比例。由于极化子的迁移率大于双极化子的迁移率,磁场的作用下,器件内的极化子浓度增加,而双极化子的浓度减少,因此得到正的有机磁电导。此外,我们对同位素效应展开了研究,增加器件的超精细作用,并不能改变器件磁电导的饱和值,仅仅改变其饱和速度快慢,理论结果和实验现象完全一致。
     2.2通过外部环境来调节有机磁电阻的途径很多,改变器件的偏压是其中一个有效的手段。实验上可以通过改变偏压来调节有机磁电阻,如何能够更有目的性地调节器件的偏压使器件达到一个更优化的性能表现,这需要从理论上给出具体分析。偏压能够增加有机材料内载流子浓度,使相邻的极化子之间交叠增加,导致双极化子的形成几率增加。因此,偏压会改变器件内双极化子的浓度比例来影响器件的磁电阻。偏压的另外一个作用是增加有机层内的电场强度。电场增加会影响极化子和双极化子的迁移率,并且它们之间的迁移率差异也会变化,这种变化也会影响器件的磁电阻。计算结果发现,对于小分子器件,随着偏压的增加,器件的磁电阻增加,其原因归结为有机小分子内双极化子为少子;而在聚合物器件中,磁电阻随着偏压的增加降低,原因为聚合物内双极化子稳定,双极化子为多子。最后通过对比偏压的这两种效应分析具体哪一个是主导因素。发现,偏压对载流子浓度的改变是影响器件磁电阻的主要因素,这个结论适用于单极性的小分子器件和高分子器件。
     2.3有机磁电导效应能够在室温下被观察到。室温下,有机材料内不仅存在单态双极化子,还存在大量的三态双极化子(实验上已经证实)。由于热激发的作用,单态双极化子会转化为三态双极化子。单态双极化子的性质不同于三态双极化子,其之间的迁移率的差异会影响磁电阻的大小以及正负。此外,如果考虑到两个极化子之间存在交换相互作用,使其之间自旋相干,磁电导会出现小磁场效应(约1-3mT下磁电导出现正负交替现象)。计算结果和实验上观测到的单极器件中的小磁场效应一致。
     3.有机双极非磁性器件
     有机双极器件在实际的应用比较广泛(例如有机发光二极管、有机太阳能电池等),探讨磁场对双极器件内单三态电子-空穴对之间的转换是一个有意义的研究课题。建立电子、空穴和电子-空穴对之间转换的动态方程,给出磁场作用下单态和三态的电子-空穴对的浓度比例,由于单态的激子浓度正比于单态的电子-空穴对,因此磁场可以调节双极器件的发光。相对于单态激子,三态激子的寿命比较长,器件内的极化子会受到三态激子的散射,影响其迁移率。计算发现,如果不考虑三态激子对极化子的散射,器件仅有磁致发光效应,并没有磁电导效应。反之,如果存在三态激子对极化子的散射,双极器件在磁场的作用下同时具有磁致发光效应和磁电导效应。
From the eighties of last century, organic light-emitting diodes and organic photovoltaic cells are constructed. Until2002, spin of carrier is introduced into organic materials, and then different types of organic materials and devices are constructed. Because organic materials contain very light elements (such as C, H, O, N), the spin-orbit coupling and hyperfine interaction are very weak. Therefore, spin diffusion length is long in organic materials. With further investigating the spin and charge of organic materials, more and more new devices will emerge in our life.
     Up to now, organic device can be divided into three types. The first type device adopts magnetic molecule as interlayer to realize spin dependent functions. Organic magnet is the combination of organic material and magnet, which has been investigated in the past decade. Up to now, several organic magnet have been synthesized, such as organic ferromagnet poly-BIPO, which substitutes part of H atoms in polyethylene with magnetic side radicals to achieve magnetism. In the following, some theorist did research on the origin of magnetism in organic ferromagnet poly-BIPO. They got the property of spin density wave (SDW) as well as the effect of electron-electron interaction and boundary condition on SDW. The second type device contains two different Ferromagnetic electrodes and organic layer. With the effect of magnetic field, the electrodes present spin parallel or spin anti-parallel, which induces the resistant of device changing with magnetic field. The focus of this device is how to increase the spin polarized injection. The third type device does not contain any magnetic element, the electrodes and organic layer are all non-magnetic. In this type device, conductance (or electroluminescence) changes as a function of external magnetic field (B) and is observed in relatively low magnetic fields (lower than100mT) at room temperature. To understand the physical mechanism of OMFE, a large number of bipolar and unipolar organic devices have been fabricated and investigated in experiments. Up to now, a unified theory to explain this magnetic field related phenomenon is lack.
     Now, we focus on the second and the third devices to investigate magnetic field related phenomenon. Many experiment measurements have been given, but the explanations are lack. In this thesis, we build the transition equations among carriers, and take into account the effects of Zeeman effect, hyperfine interaction and exchange interaction on the transitions. We try to give the explanations on magnetic field related phenomenon.
     1. Organic spin valve
     Temperature can change the effect of magnetoresistance in organic spin valve. Two factors can be responsible for this temperature related phenomenon:one is the interfacial polarization of ferromagnetic electrodes, the other is temperature related spin relaxation time. We employ a drift-diffusion equation and take into account the temperature influence on mobility and spin relaxation to investigate spin polarization and magnetoresistance of organic semiconductor device. And the change of magnetoresistance with temperature is mainly dependent on spin relaxation time of organic layer.
     2. Organic unipolar device
     2.1For unipolar device, bipolaron model is popular. Bobbert el al. proposed steady-state rate equation for polarons and spinless bipolarons. By considering a two-site scheme, they obtained the magnetoconductance (MC) and showed that MC is caused by blocking of the current by certain sites at which bipolaron formation can take place. We try to establish a group of dynamic equations for polarons, and bipolarons. These equations include the transition rate between polarons and bipolarons, which is closely related with both the B and the hyperfine interactions of the hydrogen nuclei. By considering the mobility or velocity of a polaron different from that of a bipolaron, we calculate the MC in a unipolar organic device and compare the results with possible experimental data.
     2.2Voltage can effectively change MC effect. We study the voltage effect on MC in an organic semiconductor device based on voltage-related carrier density and mobility. With the effects of magnetic field and hyperfine interaction, we present the transition between polaron and bipolarons, and provide the dependence of MC on total carrier density and mobility. The MC effect will become weak with increasing voltage in a unipolar polymer device and the sign of MC will change at a critical voltage. In a small molecular device, the situation is opposite:MC increases with increasing voltage.
     2.3We have mentioned that MC can be obtained at room temperature. At room temperature, not only singlet bipolaron can be emerged in organic materials, but also triplet bipolaron will be emerged. Because of thermal activation, singlet bipolaron will change into triplet bipolaron. By considering the mobility of a polaron different from that of singlet bipolaron and triplet bipolaron, we calculate the OMC in a unipolar organic device, and MC can be positive and negative. Besides, ultra small magnetic field effect in organic device can be obtained with the effect of exchange interaction.
     3. Organic bipolar device
     Organic bipolar devices are widely used around us (such as organic light-emitting diodes and organic photovoltaic cells). It is very interesting for us to investigate the magnetic field related current and electroluminescence in these devices. By constructing dynamic equations including electrons, holes and their pairs, we calculate the MC and the magnetoelectroluminescence (MEL) separately. It is indicated that MC and MEL may result from different response on the applied magnetic field. MC is from the scattering of polarons by magnetic field related triplet excitons, while MEL is mainly from magnetic field related conversion between singlet and triplet electron-hole pairs. Furthermore, we discuss the relation between MC and MEL.
引文
[1]P. A. Lane, X. Wei and Z. V. Vardeny, Phys. Rev. Lett.77, 1544-1547 (1996).
    [2]Z. Vardeny, E. Ehrenfreund, O. Brafman, M. Nowak, H. Schaffer, A. J. Heeger and F. Wudl, Phys. Rev. Lett.56,671-674 (1986).
    [3]J. Chen, A. J. Heeger and F. Wudl, Solid State Commun.58,251-257 (1986).
    [4]M. J. Nowak, D. Spiegel, S. Hotta, A. J. Heeger and P. A. Pincus, Macromolecules 22,2917-2926(1989).
    [5]W. J. M. Naber, S. Faez and W. G. v. d. Wiel, J. Phys. D:Appl. Phys.40, R205 (2007).
    [6]C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett.51,913-915 (1987).
    [7]J. H. Burroughes, Nature 347, 539-541 (1990).
    [8]Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson and S. R. Forrest, Nature 440,908-912(2006).
    [9]M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature 395,151-154 (1998).
    [10]C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, J. Appl. Phys.90, 5048-5051 (2001).
    [11]M. M. Koetse, J. Sweelssen, K. T. Hoekerd, H. F. M. Schoo, S. C. Veenstra, J. M. Kroon, X. Yang and J. Loos, Appl. Phys. Lett.88,083504 (2006).
    [12]H. Alves, A. S. Molinari, H. Xie and A. F. Morpurgo, Nat. Mater.7,574-580 (2008).
    [13]J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, Nat. Mater 6,497-500 (2007).
    [14]S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, Nat. Photon 3,297-302 (2009).
    [15]T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai and H. Arakawa, Sol. Energy Mater. Sol. Cells 94,812-816 (2010).
    [16]M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G Creuzet, A. Friederich and J. Chazelas, Phys. Rev. Lett.61,2472-2475 (1988).
    [17]G Binasch, P. Grunberg, F. Saurenbach and W. Zinn, Phys. Rev. B 39,4828-4830 (1989).
    [18]I. Zutic, J. Fabian and S. Das Sarma, Rev. Mod. Phys.76.323-410 (2004).
    [19]R. Fiederling. M. Keim, G Reuscher, W. Ossau, G Schmidt, A. Waag and L. W. Molenkamp, Nature 402,787-790 (1999).
    [20]H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno and K. Ohtani, Nature 408,944-946 (2000).
    [21]R. Mattana, J. M. George, H. Jaffres, F. Nguyen Van Dau, A. Fert, B. Lepine, A. Guivarc'h and G Jezequel, Phys. Rev. Lett.90,166601 (2003).
    [22]V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani and S. Barbanera, Solid State Commun.122,181-184(2002).
    [23]PramanikS, C. G Stefanita, PatibandlaS, BandyopadhyayS, GarreK, HarthN and CahayM, Nat. Nano.2,216-219 (2007).
    [24]Z. H. Xiong, D. Wu, Z. Valy Vardeny and J. Shi, Nature 427,821-824 (2004).
    [25]V. Dediu, L. E. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby, F. Casoli, M. P. De Jong, C. Taliani and Y. Zhan, Phys. Rev. B 78,115203 (2008).
    [26]T. D. Nguyen, E. Ehrenfreund and Z. V. Vardeny, Science 337,204-209 (2012).
    [27]K. M. Alam and S. Pramanik, Phys. Rev. B 83,245206 (2011).
    [28]Y. Q. Zhan, X. J. Liu, E. Carlegrim, F. H. Li, I. Bergenti, P. Graziosi, V. Dediu and M. Fahlman, Appl. Phys. Lett.94,053301 (2009).
    [29]F. J. Wang, C. G Yang, Z. V. Vardeny and X. G Li, Phys. Rev. B 75,245324 (2007).
    [30]M. Gobbi, F. Golmar, R. Llopis, F. Casanova and L. E. Hueso, Adv. Mater.23, 1609-1613(2011).
    [31]J.-W. Yoo, H. W. Jang, V. N. Prigodin, C. Kao, C. B. Eom and A. J. Epstein, Phys. Rev. B 80,205207 (2009).
    [32]Y. Liu, S. M. Watson, T. Lee, J. M. Gorham, H. E. Katz, J. A. Borchers, H. D. Fairbrother and D. H. Reich, Phys. Rev. B 79,075312 (2009).
    [33]S. Majumdar, H. Huhtinen, H. S. Majumdar, R. Laiho and R. Osterbacka, J. Appl. Phys.104,033910 (2008).
    [34]Y. Liu, T. Lee, H. E. Katz and D. H. Reich, J. Appl. Phys.105,07C708 (2009).
    [35]B. Li, C.-Y. Kao, J.-W. Yoo, V. N. Prigodin and A. J. Epstein, Adv. Mater.23, 3382-3386(2011).
    [36]V. A. Dediu, L. E. Hueso, I. Bergenti and C. Taliani, Nat. Mater.8,707 (2009).
    [37]A. J. Drew, J. Hoppler, L. Schulz, F. L. Pratt, P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, A. Suter, N. A. Morley, V. K. Malik, A. Dubroka, K. W. Kim, H. Bouyanfif, F. Bourqui, C. Bernhard, R. Scheuermann, G J. Nieuwenhuys, T. Prokscha and E. Morenzoni, Nat. Mater.8,109-114 (2009).
    [38]M. Urdampilleta, S. Klyatskaya, J. P. Cleuziou, M. Ruben and W. Wernsdorfer, Nat. Mater.10,502-506 (2011).
    [39]X. Zhang, S. Mizukami, T. Kubota, Q. Ma, M. Oogane, H. Naganuma, Y. Ando and T. Miyazaki, Nat. Commun.4, 1392 (2013).
    [40]S. Majumdar, H. S. Majumdar, R. Laiho and R. Osterbacka, J. Alloys Compd.423, 169-171(2006).
    [41]S. Mooser, J. F. K. Cooper, K. K. Banger, J. Wunderlich and H. Sirringhaus, Phys. Rev. B 85, 235202 (2012).
    [42]J. F. Ren, J. Y. Fu, D. S. Liu, L. M. Mei and S. J. Xie, J. Appl. Phys.98,074503 (2005).
    [43]Y. Zhang, J. Ren, J. Lei and S. Xie, Org. Electron.10,568-572 (2009).
    [44]X.B. Yuan, J.F. Ren and GC. Hu, Chin. Phys. Lett.29,067501 (2012).
    [45]Y. Zhang, J. Ren, G. Hu and S. Xie, Org. Electron.9,687-691 (2008).
    [46]J. Ren, Y. Zhang and S. Xie. Org. Electron.9,1017-1021 (2008).
    [47]M. Zwolak and M. D. Ventra, Appl. Phys. Lett.81,925-927 (2002).
    [48]S. J. Xie, K. H. Ahn, D. L. Smith, A. R. Bishop and A. Saxena, Phys. Rev. B 67, 125202(2003).
    [49]Z. G Yu, M. A. Berding and S. Krishnamurthy, Phys. Rev. B 71,060408 (2005).
    [50]Z. G Yu, M. A. Berding and S. Krishnamurthy, J. Appl. Phys.97,024510 (2005).
    [51]P. P. Ruden and D. L. Smith, J. Appl. Phys.95,4898-4904 (2004).
    [52]T. L. Francis, O. Mermer, G. Veeraraghavan and M. Wohlgenannt, New J. Phys.6, 185(2004).
    [53]C. Garditz, A. G. Muckl and M. Colle, J. Appl. Phys.98,104507 (2005).
    [54]O. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Kohler, M. K. Al-Suti and M. S. Khan, Phys. Rev. B 72,205202 (2005).
    [55]O. Mermer, G. Veeraraghavan, T. L. Francis and M. Wohlgenannt, Solid State Commun.134,631 (2005).
    [56]H. Odaka, Y. Okimoto, T. Yamada, H. Okamoto, M. Kawasaki and Y. Tokura, Appl. Phys. Lett.88,123501 (2006).
    [57]V. N. Prigodin, J. D. Bergeson, D. M. Lincoln and A. J. Epstein, Synth. Met.156, 757 (2006).
    [58]Y. Sheng, T. D. Nguyen, G. Veeraraghavan, O. Mermer, M. Wohlgenannt, S. Qiu and U. Scherf, Phys. Rev. B 74,045213 (2006).
    [59]Y. Wu and B. Hu, Appl. Phys. Lett.89,203510 (2006).
    [60]F. L. Bloom, W. Wagemans, M. Kemerink and B. Koopmans, Phys. Rev. Lett.99, 257201 (2007).
    [61]P. Desai, P. Shakya, T. Kreouzis and W. P. Gillin, J. Appl. Phys.102,073710 (2007).
    [62]P. Desai, P. Shakya, T. Kreouzis and W. P. Gillin, Phys. Rev. B 76,235202 (2007).
    [63]P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, N. A. Morley and M. R. J. Gibbs, Phys. Rev. B 75,094423 (2007).
    [64]B. Hu and Y. Wu, Nat. Mater.6,985 (2007).
    [65]T. D. Nguyen, Y. Sheng, J. Rybicki, G. Veeraraghavan and M. Wohlgenannt, J. Mater. Chem.17,1995 (2007).
    [66]T. D. Nguyen, Y. Sheng, M. Wohlgenannt and T. D. Anthopoulos, Synth. Met.157, 930 (2007).
    [67]G. Veeraraghavan, T. D. Nguyen, Y. Sheng, O. Mermer and M. Wohlgenannt, J. Phys.:Condens. Matter 19,036209 (2007).
    [68]W. Xu, G. J. Szulczewski, P. LeClair, I. Navarrete, R. Schad, G. Miao, H. Guo and A. Gupta, Appl. Phys. Lett.90,072506 (2007).
    [69]F. L. Bloom, W. Wagemans, M. Kemerink and B. Koopmans, Appl. Phys. Lett.93, 263302 (2008).
    [70]F. L. Bloom, W. Wagemans and B. Koopmans, J. Appl. Phys.103,07F320 (2008).
    [71]T. D. Nguyen, Y. Sheng, J. Rybicki and M. Wohlgenannt, Phys. Rev. B 77,235209 (2008).
    [72]U. Niedermeier, M. Vieth, R. Patzold, W. Sarfert and H. v. Seggern, Appl. Phys. Lett. 92, 193309 (2008).
    [73]P. Shakya, P. Desai, T. Kreouzis and W. P. Gillin, J. Appl. Phys.103,043706 (2008).
    [74]F. J. Wang, H. Bassler and Z. Valy Vardeny, Phys. Rev. Lett.101,236805 (2008).
    [75]Z. Xu and B. Hu, Adv. Funct. Mater.18,2611-2617 (2008).
    [76]S. A. Bagnich, U. Niedermeier, C. Melzer, W. Sarfert and H. v. Seggern, J. Appl. Phys.106,113702(2009).
    [77]B. Hu, L. Yan and M. Shao, Adv. Mater.21,1500 (2009).
    [78]R. Liu, Y. Zhang, Y. L. Lei, P. Chen and Z. H. Xiong, J. Appl. Phys.105,093719 (2009).
    [79]S. Majumdar, H. S. Majumdar, H. Aarnio, D. Vanderzande, R. Laiho and R. Osterbacka, Phys. Rev. B 79,201202 (2009).
    [80]L. Xin, C. Li, F. Li, S. Liu and B. Hu, Appl. Phys. Lett.95,123306 (2009).
    [81]L. Yan, Y. Wu, Z. Xu and B. Hu, Synth. Met.159,2323-2325 (2009).
    [82]P. Chen, Y. L. Lei, Q. L. Song, Q. M. Zhang, Y. Zhang, R. Liu and Z. H. Xiong, Appl. Phys. Lett.96,203303 (2010).
    [83]B. Ding, Y. Yao, X. Sun, X. Gao, Z. Xie, Z. Sun, Z. Wang, X. Ding, Y. Wu, X. Jin, W. C. H. Choy, C.Q. Wu and X. Hou, Phys. Rev. B 82,205209 (2010).
    [84]B. F. Ding, Y. Yao, Z. Y. Sun, C. Q. Wu, X. D. Gao, Z. J. Wang, X. M. Ding. W. C. H. Choy and X. Y. Hou, Appl. Phys. Lett.97,163302 (2010).
    [85]F. Li, L. Xin, S. Liu and B. Hu, Appl. Phys. Lett.97,073301 (2010).
    [86]T. D. Nguyen, B. R. Gautam, E. Ehrenfreund and Z. V. Vardeny, Phys. Rev. Lett. 105,166804(2010).
    [87]T. D. Nguyen, H. M. Golda, F. J. Wang, L. Wojcik, X. G. Li, E. Ehrenfreund and Z. V. Vardeny, Nat. Mater.9,345 (2010).
    [88]T. D. Nguyen, Y. Sheng, J. Rybicki, G. Veeraraghavan and M. Wohlgenannt, Synth. Met.160,320-324(2010).
    [89]P. Chen, Q. L. Song, W. C. H. Choy, B. F. Ding, Y. L. Liu and Z. H. Xiong, Appl. Phys. Lett.99,143305(2011).
    [90]S. P. Kersten, A. J. Schellekens, B. Koopmans and P. A. Bobbert, Phys. Rev. Lett. 106,197402(2011).
    [91]T. H. Lee, J. H. Li, W. S. Huang, B. Hu, J. C. A. Huang, T. F. Guo and T. C. Wen, Appl. Phys. Lett.99,073307 (2011).
    [92]T. D. Nguyen, B. R. Gautam, E. Ehrenfreund and Z. V. Vardeny, Synth. Met.161, 604-607(2011).
    [93]G. Ni, T. D. Nguyen and Z. V. Vardeny, Appl. Phys. Lett.98,263302 (2011).
    [94]A. J. Schellekens, W. Wagemans, S. P. Kersten, P. A. Bobbert and B. Koopmans, Phys. Rev. B 84,075204 (2011).
    [95]M. Shao, Y. Dai, D. Ma and B. Hu, Appl. Phys. Lett.99,073302 (2011).
    [96]A. Buchschuster, T. D. Schmidt and W. Brutting, Appl. Phys. Lett.100,123302 (2012).
    [97]P. Chen, M. Li, Q. Peng, F. Li, Y. Liu, Q. Zhang, Y. Zhang and Z. Xiong, Org. Electron.13,1774(2012).
    [98]B. R. Gautam, T. D. Nguyen, E. Ehrenfreund and Z. V. Vardeny, Phys. Rev. B 85, 205207(2012).
    [99]T. D. Nguyen, T. P. Basel, Y. J. Pu, X. G Li, E. Ehrenfreund and Z. V. Vardeny, Phys. Rev. B 85, 245437 (2012).
    [100]F. Wang, F. Macia, M. Wohlgenannt, A. D. Kent and M. E. Flatte, Physical Review X 2,021013(2012).
    [101]L. Yan, M. Shao, C. F. O. Graeff, I. Hummelgen, D. Ma and B. Hu, Appl. Phys. Lett.100,013301 (2012).
    [102]S. Zhang, N. J. Rolfe, P. Desai, P. Shakya, A. J. Drew, T. Kreouzis and W. P. Gillin, Phys. Rev. B 86,075206 (2012).
    [103]P. Chen, Q. Peng, L. Yao, N. Gao and F. Li, Appl. Phys. Lett.102,063301 (2013).
    [104]F. Macia, F. Wang, N. J. Harmon, M. Wohlgenannt, A. D. Kent and M. E. Flatte, Appl. Phys. Lett.102,042408 (2013).
    [105]Q. Peng, P. Chen and F. Li, Appl. Phys. Lett.102,023301 (2013).
    [106]M. Shao, L. Yan, M. Li, I. Ilia and B. Hu, J. Mater. Chem. C, DOI: 10.1039/c 1032tc00329e (2013).
    [107]J. Rybicki, R. Lin, F. Wang, M. Wohlgenannt, C. He, T. Sanders and Y. Suzuki, Phys. Rev. Lett.109,076603 (2012).
    [108]S. P. Kersten, S. C. J. Meskers and P. A. Bobbert, Phys. Rev. B 86,045210 (2012).
    [109]T. P. I. Saragi and T. Reichert, Appl. Phys. Lett.100,073304 (2012).
    [110]P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans and M. Wohlgenannt, Phys. Rev. Lett.99,216801 (2007).
    [111]X. R. Wang and S. J. Xie, Europhys. Lett.92,57013 (2010).
    [112]X. F. Dong, X. X. Li and S. J. Xie, Org. Electron.12,1835 (2011).
    [113]A. I. Shushin, Phys. Rev. B 84,115212 (2011).
    [114]N. J. Harmon and M. E. Flatte, Phys. Rev. B 85,075204 (2012).
    [115]N. J. Harmon and M. E. Flatte, Phys. Rev. Lett.108,186602 (2012).
    [116]N. J. Harmon and M. E. Flatte, Phys. Rev. B 85,245213 (2012).
    [117]X. X. Li, X. F. Dong, J. Lei, S. J. Xie and A. Saxena, Appl. Phys. Lett.100, 142408 (2012).
    [118]W. Qin, S. Yin, K. Gao and S. J. Xie, Appl. Phys. Lett.100,233304 (2012).
    [119]A. S. Alexandrov, V. A. Dediu and V. V. Kabanov, Phys. Rev. Lett.108,186601 (2012).
    [120]W. Wagemans, F. L. Bloom, P. A. Bobbert, M. Wohlgenannt and B. Koopmans, J. Appl. Phys.103,07F303 (2008).
    [121]Zeev Valy Vardeny, Organic Spintronics, Boca Raton:CRC Press, 2010
    [122]冯端,金国钧,凝聚态物理,北京:高等教育出版社,2003
    [123]解士杰,尹笋,高琨,有机固体物理,北京:科学出版社,2012
    [124]解士杰,韩圣浩,凝聚态物理,济南:山东教育出版社,2001
    [125]解士杰,高琨,低维量子物理,济南:山东科学技术出版社,2009
    [126]吴世康,汪鹏飞,有机电子学概论,北京:化学工业出版社,2010
    [127]雷舍夫斯基(主编),帅志刚,李启楷,朱道本(翻译),纳米与分子电子学手册,北京:科学出版社,2011
    [128]翟宏如,自旋电子学,北京:科学出版社,2013
    [129]黄维,密保秀,高志强,有机电子学,北京:科学出版社,2012
    [130]夏建白,葛惟昆,常凯,半导体自旋电子学,北京:科学出版社,2009
    [131]李文连,有机光电子器件的原理、结构设计及其应用,北京:科学出版社,2012
    [132]吴其晔,高分子凝聚态物理学,北京:科学出版社,2012
    [133]黄昆,固体物理学,北京:高等教育出版社,1985
    [1]M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich and J. Chazelas, Phys. Rev. Lett.61,2472-2475 (1988).
    [2]G. Binasch, P. Grunberg, F. Saurenbach and W. Zinn, Phys. Rev. B 39,4828-4830 (1989).
    [3]I. Zutic, J. Fabian and S. Das Sarma, Rev. Mod. Phys.76,323-410 (2004).
    [4]Z. H. Xiong, D. Wu, Z. Valy Vardeny and J. Shi, Nature 427,821-824 (2004).
    [5]O. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Kohler, M. K. Al-Suti and M. S. Khan, Phys. Rev. B 72,205202 (2005).
    [6]C. PramanikS, G. Stefanita, S. Patibandla, S. Bandyopadhyay, K. Garre, N. Harth and M. Cahay, Nat. Nano.2,216-219 (2007).
    [7]V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani and S. Barbanera, Solid State Commun.122,181-184 (2002).
    [8]S. Majumdar, H. S. Majumdar, R. Laiho and R. Osterbacka, J. Alloys Compd.423. 169-171 (2006).
    [9]V. Dediu, L. E. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby. F. Casoli, M. P. De Jong, C. Taliani and Y. Zhan, Phys. Rev. B 78,115203 (2008).
    [10]M. Bowen, M. Bibes, A. Barthelemy, J.-P. Contour, A. Anane, Y. Lemaitre and A. Fert, Appl. Phys. Lett.82,233-235 (2003).
    [11]I. Bergenti, V. Dediu, E. Arisi, M. Cavallini, F. Biscarini, C. Taliani, M. P. de Jong, C. L. Dennis, J. F. Gregg, M. Solzi and M. Natali, J. Magn. Magn. Mater.312,453-457 (2007).
    [12]A. J. Drew, J. Hoppler, L. Schulz, F. L. Pratt, P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, A. Suter, N. A. Morley, V. K. Malik, A. Dubroka, K. W. Kim, H. Bouyanfif, F. Bourqui, C. Bernhard, R. Scheuermann, G. J. Nieuwenhuys, T. Prokscha and E. Morenzoni, Nat. Mater.8,109-114 (2009).
    [13]S. J. Xie, K. H.Ahn, D. L. Smith, A. R. Bishop and A. Saxena, Phys. Rev. B 67, 125202(2003).
    [14]Z. G. Yu, M. A. Berding and S. Krishnamurthy, Phys. Rev. B 71,060408 (2005).
    [15]J. F. Ren, J. Y. Fu, D. S. Liu, L. M. Mei and S. J. Xie, J. Appl. Phys.98,074503 (2005).
    [16]J. Ren, Y. Zhang and S. Xie, Org. Electron.9,1017-1021 (2008).
    [17]Y. Zhang, J. Ren, G. Hu and S. Xie, Org. Electron.9,687-691 (2008).
    [18]S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P. E. Parris and A. V. Vannikov, Phys. Rev. Lett.81,4472-4475 (1998).
    [19]W. Xu, G J. Szulczewski, P. LeClair, I. Navarrete, R. Schad, G. Miao, H. Guo and A. Gupta, Appl. Phys. Lett. 90, 072506 (2007).
    [1]O. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Kohler, M. K. Al-Suti and M. S. Khan, Phys. Rev. B 72,205202 (2005).
    [2]P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans and M. Wohlgenannt, Phys. Rev. Lett.99,216801 (2007).
    [3]P. Desai, P. Shakya, T. Kreouzis and W. P. Gillin, Phys. Rev. B 76,235202 (2007).
    [4]B. Hu and Y. Wu, Nat. Mater.6,985 (2007).
    [5]B. Hu, L. Yan and M. Shao, Adv. Mater.21,1500 (2009).
    [6]T. D. Nguyen, H. M. Golda, F. J. Wang, L. Wojcik, X. G. Li, E. Ehrenfreund and Z. V. Vardeny, Nat. Mater.9,345 (2010).
    [7]V. N. Prigodin, J. D. Bergeson, D. M. Lincoln and A. J. Epstein, Synth. Met.156, 757 (2006).
    [8]J. D. Bergeson, V. N. Prigodin, D. M. Lincoln and A. J. Epstein, Phys. Rev.Lett.100, 067201 (2008).
    [9]S. Majumdar, H. S. Majumdar, H. Aarnio, D. Vanderzande, R. Laiho and R. Osterbacka, Phys. Rev. B 79,201202 (2009).
    [10]P. Desai, P. Shakya, T. Kreouzis and W. P. Gillin, J. Appl. Phys.102,073710 (2007).
    [11]P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, N. A. Morley and M. R. J. Gibbs, Phys. Rev. B 75,094423 (2007).
    [12]W. Wagemans, F. L. Bloom, P. A. Bobbert, M. Wohlgenannt and B. Koopmans, J. Appl. Phys.103,07F303 (2008).
    [13]Z. Sun, Y. Li, K. Gao, D. S. Liu, Z. An and S. J. Xie, Org. Electron.11,279-284 (2010).
    [14]R. A. Street, A. Salleo and M. L. Chabinyc, Phys. Rev. B 68,085316 (2003).
    [15]Y. Zhang, J. Ren, G. Hu and S. Xie, Org. Electron.9,687-691 (2008).
    [16]Y. Sheng, T. D. Nguyen, G. Veeraraghavan, O. Mermer, M. Wohlgenannt, S. Qiu and U. Scherf, Phys. Rev. B 74,045213 (2006).
    [17]M. P. Lima and G. Magela e Silva, Phys. Rev. B 74,224304 (2006).
    [18]T. D. Nguyen, Y. Sheng, J. Rybicki, G. Veeraraghavan and M. Wohlgenannt, Synth. Met.160,320-324(2010).
    [19]F. Li, L. Xin, S. Liu and B. Hu, Appl. Phys. Lett.97,073301 (2010).
    [20]T. D. Nguyen, Y. Sheng. J. Rybicki and M. Wohlgenannt, Phys. Rev. B 77,235209 (2008).
    [21]B. Geert, Synth. Met.102,914 (1999).
    [22]D. Bertho and C. Jouanin, Phys. Rev. B 35,626-633 (1987).
    [23]O. Mermer, G. Veeraraghavan, T. L. Francis and M. Wohlgenannt, Solid State Commun.134,631 (2005).
    [24]T. L. Francis, O. Mermer, G. Veeraraghavan and M. Wohlgenannt, New J. Phys.6, 185(2004).
    [25]G. Ni, T. D. Nguyen and Z. V Vardeny, Appl. Phys. Lett.98,263302 (2011).
    [26]M. Shao, Y. Dai, D. Ma and B. Hu, Appl. Phys. Lett.99,073302 (2011).
    [27]A. J. Heeger,I. D. Parker and Y. Yang, Synth. Met.67,23-29 (1994).
    [28]G. Veeraraghavan, T. D. Nguyen, Y. Sheng, O. Mermer and M. Wohlgenannt, J. Phys.:Condens. Matter 19,036209 (2007).
    [29]D. H. Dunlap, P. E. Parris and V. M. Kenkre, Phys. Rev. Lett.77,542 (1996).
    [30]P. A. Lane, X. Wei and Z. V. Vardeny, Phys. Rev. Lett.77,1544-1547 (1996).
    [31]J. H. Kaufman, N. Colaneri, J. C. Scott and G B. Street, Phys. Rev. Lett.53, 1005-1008(1984).
    [32]P. K. Kahol, W. R. Spencer, N. J. Pinto and B. J. McCormick, Phys. Rev. B 50, 18647-18650(1994).
    [33]M. N. Bussac and L. Zuppiroli, Phys. Rev. B 47,5493-5496 (1993).
    [34]O. Chauvet, S. Paschen, M. N. Bussac and L. Zuppiroli, EPL (Europhysics Letters) 26,619(1994).
    [35]O. Chauvet, S. Paschen, L. Forro, L. Zuppiroli, P. Bujard, K. Kai and W. Wernet, Synth. Met.63,115-119(1994).
    [36]J. Bonca and S. A. Trugman, Phys. Rev. B 64,094507 (2001).
    [37]S. P. Kersten, A. J. Schellekens, B. Koopmans and P. A. Bobbert, Phys. Rev. Lett. 106,197402(2011).
    [38]T. D. Nguyen, B. R. Gautam, E. Ehrenfreund and Z. V. Vardeny, Phys. Rev. Lett. 105,166804(2010).
    [1]O. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Kohler, M. K. Al-Suti and M. S. Khan, Phys. Rev. B 72,205202 (2005).
    [2]B. Hu and Y. Wu, Nat. Mater.6,985 (2007).
    [3]B. Hu, L. Yan and M. Shao, Adv. Mater.21,1500 (2009).
    [4]A. Buchschuster, T. D. Schmidt and W. Brutting, Appl. Phys. Lett.100,123302 (2012).
    [5]Y. Wu, Z. Xu, B. Hu and J. Howe, Phys. Rev. B 75,035214 (2007).
    [6]T. M. Clarke and J. R. Durrant, Chem. Rev.110.6736-6767 (2010).
    [7]V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen and P. W. M. Blom, Phys. Rev. Lett.93,216601 (2004).
    [8]N. Sclar, Phys. Rev.104,1559(1956).
    [9]T. D. Nguyen, H. M. Golda, F. J. Wang, L. Wojcik, X. G. Li, E. Ehrenfreund and Z. V. Vardeny, Nat. Mater.9,345 (2010).
    [10]T. D. Nguyen, Y. Sheng, J. Rybicki. G. Veeraraghavan and M. Wohlgenannt, Synth. Met.160,320-324(2010).
    [11]L. Xin, C. Li, F. Li, S. Liu and B. Hu, Appl. Phys. Lett.95,123306 (2009).
    [12]F. Li, L. Xin, S. Liu and B. Hu, Appl. Phys. Lett.97,073301 (2010).
    [13]P. Desai, P. Shakya, T. Kreouzis and W. P. Gillin, J. Appl. Phys.102,073710 (2007).
    [14]S. Majumdar, FL S. Majumdar, H. Aarnio, D. Vanderzande, R. Laiho and R. Osterbacka, Phys. Rev. B 79,201202 (2009).
    [15]J. D. Bergeson, V. N. Prigodin, D. M. Lincoln and A. J. Epstein, Phys. Rev. Lett. 100,067201 (2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700