电子元器件辐射退化灵敏表征方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工作于太空中的电子元器件由于其环境特点会受到空间粒子的辐射作用。在辐射作用下,器件的性能下降,使用寿命也会减少。器件受到辐射作用后的性能下降源于器件内部材料的退化,并最终导致器件的失效。随着半导体工艺的进步,电子元器件持续小型化,集成电路封装不断密集化,导致器件关键参数的退化,从而增加了器件的失效概率。另一方面,器件尺寸的减小也会引起某些新效应,这些新效应会间接影响器件的可靠性。因此,有必要对太空环境中器件的辐射退化以及产生的新效应进行灵敏表征,从而对器件的整体可靠性进行评估。
     本文系统地研究了电子元器件辐射退化的物理机理,深入研究了MOS器件以及双极器件的辐射退化机理,并给出了对以上两种器件辐射退化的灵敏表征方法,除此之外,本文还对超深亚微米MOS器件的单粒子新效应进行了研究,重点研究了电荷共享这一新机理和多位翻转这一新效应,并对原有的电荷收集模型进行了修正,使其适用于超深亚微米MOS器件。本文具体的研究成果以及创新点如下:
     (1)对双极器件辐射作用后的参数变化进行了分析,结合双极器件辐射退化的物理机理,建立了双极器件辐射退化的噪声表征模型,并通过实验进行了验证。实验结果证实了模型的正确性,结果还表明,与电学参量相比,噪声参量的灵敏度更高,在电学参量变化率为3%左右的情况下,噪声参量的变化率高达2500%。因此,利用噪声参量可以对双极器件的辐射损伤进行进行灵敏表征。
     (2)对双极器件的电离辐射效应和位移辐射效应进行了研究,发现两种辐射效应的产生机制并不相同,并通过实验对两种效应进行了区分。结果表明,双极器件中的关键部位,即p-n结二极管的反向电流的变化可以很好的表征电离辐射效应,而其在某一固定电流处的正向电压的变化则可以很好的表征位移辐射效应。模型和实验结果均表明,在低剂量情况下,电离辐射效应占主导地位,随剂量增大,位移辐射效应所占的比例逐渐上升。
     (3)对MOS器件辐射退化的物理机理进行了研究,分别建立了MOS器件辐射退化模型以及辐射退化的噪声表征模型,并通过实验对模型进行了验证。实验结果验证了模型的正确性,发现氧化层陷阱电荷和界面陷阱电荷的数量在不同剂量下会产生饱和现象,其中界面陷阱电荷数量先产生饱和。结果还表明,当MOSII电子元器件辐射退化灵敏表征方法研究器件受到辐射作用时,其噪声参量的变化程度远大于电学参量的变化程度,因此,可以利用噪声参量对器件的辐射退化进行表征。
     (4)对MOS器件辐射作用前的1/f噪声特性进行了分析,发现辐射作用前的1/f噪声对MOS器件的潜在缺陷可以起到很好的表征作用。建立了基于辐射作用前1/f噪声的MOS器件潜在缺陷表征模型,并通过实验进行了验证。结果表明,MOS器件辐射作用后的阈值电压漂移量与辐射作用前的1/f噪声幅值成正比,因此,该模型有助于利用1/f噪声参量来表征MOSFET内部潜在缺陷的数量和严重程度。
     (5)对超深亚微米MOS器件的单粒子新效应进行了研究,发现了电荷共享这一新机理和多位翻转这一新效应。针对现有电荷收集模型无法应用于超深亚微米器件的情况,在原有模型的基础上提出了新模型,利用新模型对90nmMOS器件的电荷收集情况进行了模拟,并利用TCAD模拟软件进行了验证。结果表明,与原有模型的模拟结果相比,新模型的模拟结果与TCAD的模拟结果更为相近,这表明了新模型的正确性。
     (6)对超深亚微米MOS器件单粒子多位翻转的物理机理进行了研究,发现在小尺寸情况下,由于电荷共享所导致的单粒子多位翻转数量与比重都有所上升,建立了基于器件临界电荷Qc r以及收集电荷Qc o的超深亚微米MOS器件单粒子多位翻转表征模型,并通过模拟对该模型进行了验证。模拟结果表明,单个入射粒子所引起的多位翻转情况受到粒子入射的线性能量传输(Linear Transfer Energy)值、入射位置以及入射角度的影响。
The electronic devices working in space suffers from radiation effects of spaceparticles, which leads to attenuation of their performance and life time due to thedegeneration of materials of devices after radiation. When degeneration accumulates toa certain extent, it results in device failure ultimately. With the development ofsemiconductor technology, it has been found that failure probability of devices increasesbecause of the decrease of key parameters caused by devices becoming smaller andsmaller. Additionally, size reduction can generate some new effects that influencereliability of the devices indirectly. Therefore, it is necessary to explore a sensitivecharacterization for radiation degeneration and new effects in order to assess reliabilityof the devices.
     In this paper, the physical mechanism of radiation degeneration in electronicdevices, especially in MOS and bipolar devices, has been researched. Based on theresearch, a method of sensitive characterization about radiation damage has beendeveloped. Moreover, the new single event effect in ultra-deep sub-micron devices hasbeen researched, which mainly focuses on charge sharing, multiple bits upset as well ascorrection of the original charge collection model. The main innovations andcontributions of this paper are the following:
     (1) The parameter degeneration by radiation in bipolar devices has been analyzed.According to its physical mechanism, a model of noise characterization has been builtand verified. In the experiments, the change rate of noise parameters would reach2500%if the change rate of electrical parameters was approximate3%, which indicatesthat noise parameters are more sensitive than electrical parameters. Thus, noiseparameters can be used as sensitive characterization of radiation damage for bipolardevices.
     (2) A research on ionization radiation effect and displacement radiation effect inbipolar devices is given. The research indicates that the degeneration mechanismsgenerated by these two radiation effects are not identical. Consequently, they were differentiated through experiments. As a result, the reverse current of a p-n junctiondiode could characterize ionization radiation effect, while the voltage of a p-n junctiondiode could characterize displacement radiation effect efficiently. The model andexperimental results illustrate that the ionization radiation effect is dominated in thecase of low radiation dose. However, the displacement radiation effect becomes moresignificant when radiation dose increases.
     (3) A research on physical mechanism of radiation degeneration in MOS devices iscarried out. According to the research, a radiation degeneration model and a noisecharacterization model have been constructed and validated separately. The resultsindicate that the increasing number of oxide-trapped charge and interface-trappedcharge produce a saturation phenomenon at different radiation doses and the saturationphenomenon of interface-trapped charge appears at lower dose. Besides, noiseparameters are more sensitive than electrical parameters. Therefore, noise parameterscan be used as sensitive characterization of radiation degeneration for MOS devices.
     (4) The1/f noise properties of pre-radiation in MOS devices have been analyzed,which demonstrates1/f noise pre-radiation is able to characterize the latent defect inMOS devices efficiently. Based on this analysis, a model for latent defect of MOSdevices has been built and verified. The results show that the pre-radiation1/f noisepower spectral amplitude is direct proportional to post-radiation threshold voltage drift.Therefore, this model is effective to characterize the quantity and severity of latentdefect in MOS devices by using1/f noise parameters.
     (5) The new effect of a single particle in ultra-deep sub-micron MOS devices hasbeen analyzed. Meanwhile, a new mechanism named charge sharing and a new effectnamed multiple bits upset have been discovered. Then a new model has been set upsince the previous charge collection model cannot be used for ultra-deep sub-microndevices. Using the new model, a simulation was implemented on90nm MOS devicesin order to test the charge collection, and it was verified by Technology Computer AidedDesign(TCAD). As a result, compared with the previous model, new model had moreaccuracy results that was consistent with TCAD simulation results.
     (6) The physical mechanism of multiple bits upset of a single particle in ultra-deepsub-micron MOS devices has been researched. It indicates that quantity and proportionof multiple bits upset will increase because of charge sharing and scale shrinking ofdevices. In the simulation, a characterization model was established based on criticalcharge Qcrand collecting charge Qco. It turns out that multiple bits upset is affected byLinear Transfer Energy(LTE), location of incidence as well as angle of incidence.
引文
[1]曹建中等著.半导体材料的辐射效应.第一版.北京:科学出版社.1993.200-305.
    [2]陈盘训.半导体器件和集成电路的辐射效应.第一版.北京:国防工业出版社.2005.1997.
    [3] Klein R B, Saks N S, Shanfield Z. Saturation of radiation-induced threshold-voltageshifts in thin-oxide MOSFETs at80K. IEEE Transactions on Nuclear Science.1990,37(6).1690-1695.
    [4] Fleetwood D M, Meisenheimer T L, Scofield J H. l/f Noise and Radiation Effects inMOS Devices. IEEE Transactions on Nuclear Science.1994,41(11).1953-1964.
    [5] Scofield J H, Doerr T P, Fleetwood D M. Correlation between preirradiation1/fnoise and postirradiation oxide-trapped charge in MOS transistors. IEEE Transactionson Nuclear Science.1989,36(6).1946-1953.
    [6] G. L. de Haas-Lorentz. Over de theorie van de Brown'sche beweging en daarmedeverwante verschijnselen: E. Ijdo.1912.
    [7] Schottky W, Ann. Shot noise in diodes. Physica.1918,57.541.
    [8] Johnson J B. The Schottky effect in low frequency circuits. Physical review.1925,26.71.
    [9] Johnson J B. Thermal agitation of electricity in conductors. Nature.1927,119.50-51.
    [10] Nyquist H. Thermal agitation of electric charge in conductors. Physical review.1928,32.110-113.
    [11] A. Van der Ziel. Noise in solid state devices and circuits.1986.
    [12] A. Van der Ziel. Noise, Sources, characterization, measurement, Prentice-HallInformation and System Sciences Series. Englewood Cliffs: Prentice-Hall.1970,1.
    [13] A. Van der Ziel. Fluctuation phenomena in semi-conductors.1959.
    [14] A. Van Der Ziel. On the noise spectra of semi-conductor noise and of flicker effect.Physica.1950,16.359-372.
    [15] A. Van der Ziel. Noise: Prentice-Hall New York.1954.
    [16] A. Van Der Ziel. Noise in solid-state devices and lasers. Proceedings of the IEEE.1970,58.1178-1206.
    [17] Hooge F, Kleinpenning T, Vandamme L. Experimental studies on1/f noise. Reportson progress in Physics.1981,44.479.
    [18] Debney B, Joshi J. A theory of noise in GaAs FET microwave oscillators and itsexperimental verification. IEEE Transactions on Electron Devices.1983,30.769-776.
    [19] Peransin J M, Vignaud P, Rigaud D, et al.1/f noise in MODFETs at low drain bias.IEEE Transactions on Electron Devices.1990,37.2250-2253.
    [20] Uren M, Day D, Kirton M.1/f and random telegraph noise in siliconmetal-oxide-semiconductor field-effect transistors. Applied Physics Letters.1985,47.1195-1197.
    [21] Scofield J H, Borland N, Fleetwood D M. Reconciliation of different gate-voltagedependencies of1/f noise in n-MOS and p-MOS transistors. IEEE Transactions onElectron Devices.1994,41.1946-1952.
    [22] Meisenheimer T, Fleetwood D. Effect of radiation-induced charge on1/f noise inMOS devices. IEEE Transactions on Nuclear Science.1990,37.1696-1702.
    [23] Fleetwood D M, Meisenheimer T L, Scofield J H.1/f noise and radiation effects inMOS devices. IEEE Transactions on Electron Devices.1994,41.1953-1964.
    [24] Vertiatchikh A V, Eastman L F. Effect of the surface and barrier defects on theAlGaN/GaN HEMT low-frequency noise performance. IEEE Electron Device Letters.2003,24.535-537.
    [25] Cappy A. Noise modeling and measurement techniques [HEMTs]. IEEETransactions on Microwave Theory and Techniques.1988,36.1-10.
    [26] A. Van Der Ziel.1/f noise in HEMT-type GaAs FETs at low drain bias. Solid-StateElectronics.1983,26.385-386.
    [27] Snow E, Novak J, Lay M, et al.1/f noise in single-walled carbon nanotube devices.Applied Physics Letters.2004,85.4172.
    [28] Kish L B. End of Moore's law: thermal (noise) death of integration in micro andnano electronics. Physics letters A.2002,305.144-149.
    [29] Ralls K S, Buhrman R A. Microscopic study of1/f noise in metal nanobridges.Physical Review B.1991,44.5800.
    [30] Tobias D, Ishigami M, Tselev A, et al. Origins of1/f noise in individualsemiconducting carbon nanotube field-effect transistors. Physical Review B.2008,77.033407.
    [31] Collins P G., Fuhrer M S, Zettl A.1/f noise in carbon nanotubes. Applied PhysicsLetters.2000,76.894.
    [32] Steinbach A H, Martinis J M, Devoret M H. Observation of Hot-Electron ShotNoise in a Metallic Resistor. Physical Review Letters.1996,76.3806.
    [33] Louisell W H. Radiation and noise in quantum electronics: RE Krieger Pub. Co.,1964.
    [34] Reznikov M, Heiblum M, Shtrikman H, et al. Temporal correlation of electrons:Suppression of shot noise in a ballistic quantum point contact. Physical review letters.1995,75.3340-3343.
    [35] Dekker C, Scholten A, Liefrink F, et al. Spontaneous resistance switching andlow-frequency noise in quantum point contacts. Physical review letters.1991,66.2148-2151.
    [36] Falguere D, Petit S. A Statistical Method to Extract MBU Without ScramblingInformation. IEEE Transactions on Nuclear Science.2007,54(4).920-923.
    [37] Tosaka Y, Satoh S. Simulation of multiple-bit soft errors induced by cosmic rayneutrons in DRAMs.2000.
    [38] Naseer R, Draper J. Parallel double error correcting code design to mitigatemulti-bit upsets in SRAMs.2008.
    [39] Kawakami Y, Hane M, Nakamura H, et al. Investigation of soft error rate includingmulti-bit upsets in advanced SRAM using neutron irradiation test and3D mixed-modedevice simulation.2004.
    [40] Reed R A, Carts M A, Marshall P W, et al. Heavy ion and proton-induced singleevent multiple upset. IEEE Transactions on Nuclear Science.1997,44(6pt I):2224-2229.
    [41] Association J S S T, Others. JEDEC Standard89: Measurement and Reporting ofAlpha Particles and Terrestrial Cosmic Ray-Induced Soft Errors in SemiconductorDevices. August,2001.
    [42] Petersen E L, Pickel J C, Jr. Adams J H, et al. Rate prediction for single eventeffects-a critique. IEEE Transactions on Nuclear Science.1992,39(6).1577-1599.
    [43] Argyrides C, Zarandi H R, Pradhan D K. Multiple upsets tolerance in SRAMmemory. New Orleans, LA, United states: Institute of Electrical and ElectronicsEngineers Inc.,2007.
    [44] Blake J B, Mandel R. On-Orbit observations of single event upset in HarrisHM-65081K RAMS. IEEE Transactions on Nuclear Science.1986,33(6).1616-1619.
    [45] Swift G M, Guertin S M. In-flight observations of multiple-bit upset in DRAMs.IEEE Transactions on Nuclear Science.2000,47(6).2386-2391.
    [46] Buchner S, Campbell A B, Meehan T, et al. Investigation of single-ion multiple-bitupsets in memories on board a space experiment. IEEE Transactions on NuclearScience.2000,47(3).705-711.
    [47] Amusan O A, Massengill L W, Baze M P, et al. Single Event Upsets inDeep-Submicrometer Technologies Due to Charge Sharing. IEEE Transactions onDevice and Materials Reliability.2008,8(3).582-589.
    [48] Mavis D G, Eaton P H. SEU and SET modeling and mitigation in deep submicrontechnologies.2007.
    [49] Amusan O A, Witulski A F, Massengill L W, et al. Charge collection and chargesharing in a130nm CMOS technology. IEEE Transactions on Nuclear Science.2006,53(6).3253-3258.
    [50]刘必慰.集成电路单粒子效应建模与加固方法研究.国防科学技术大学,2009.
    [51] Hu C. Alpha-Partical-Induced field and enhanced collection of carriers. Electrondevice letters.1982, EDL-3(2).31-34.
    [52] Abadir G B, Fikry W, Ragai H F, et al. A new semi-empirical model for funnelingassisted drain currents due to single events.2003.
    [53] Edmonds L D. A simple estimate of funneling-assisted charge collection. IEEETransactions on Nuclear Science.1991,38(2pt II).828-833.
    [54] Oldham T R, Mclean F B. Charge Collection Measurements for Heavy IonsIncident on n-and p-Type Silicon.. IEEE Transactions on Nuclear Science.1983,NS-30(6).4493-4500.
    [55] Mclean F B, Oldham T R. Charge Funneling in n-and p-TYPE Si Substrates..IEEE Transactions on Nuclear Science.1982, NS-29(6).2018-2023.
    [56] Oldham T R, Mclean F B, Hartman J M. Revised Funnel Calculations for HeavyParticles with High dE/dx. IEEE Transactions on Nuclear Science.1986,33(6).1646-1650.
    [57] Zoutendyk J A, Schwartz H R, Nevill L R. Lateral charge transport from heavy-iontracks in integrated circuit chips. IEEE Transactions on Nuclear Science.1988,35(6).1644-1647.
    [58] Hauser J R, Diehl-Nagle S E, Knudson A R, et al. Ion Track Shunt Effects inMulti-Junction Structures. IEEE Transactions on Nuclear Science.1985,32(6).4115-4121.
    [59] Gasiot J. Radiation effects on device: Total Ionizing Dose, displacement effect,single event effect. University de Montpellier II, France: Center Training,2003
    [60]赖祖武等编著.抗辐射电子学-辐射效应及加固原理.北京:国防工业出版杜.1998.
    [61] Peter J. Wahle, Ronald D. Schrimpf, Kenneth F. Galloway, Simulated SpaceRadiation Effects on Power MOSFET’s in Switching Power Supplies, IEEETransactions On Industry A pplications.1990,26(4).
    [62] Marceau M, Huillet H, Marchand P. Use of pre-irradiated commercial MOSFETsin a power supply hardened to withstand gamma radiation.2000IEEE.
    [63] Vandamme L K J. Noise as a diagnostic tool for quality and reliability of electronicdevices.IEEE Transactions on Electron Devices.1994,41(11).2176-2187.
    [64] Hooge F N.1/f noise sources. IEEE Transactions on electron devices.1994,41(11).1926-1935.
    [65] Jevtic M. Low frequency noise diagnostic of microelectronic devices.Proc.20thinternational conference on microelectronics.1995,1.219-224
    [66] Josef Sikula, Ladislav Stourac. Noise spectrosopy of semiconductor materials anddevices.Proc.23th international conference on microelectronics.2002,2.767-772
    [67]庄奕琪.孙青编著.半导体器件中的噪声及其低噪声化技术.北京:国防工业出版社.1993.
    [68] Ming-Horn Tsai, Tso-Ping Ma. Effect of radiation-induced interface traps on1/fnoise in MOSFET’s. IEEE Transaction on Nuclear Science.1992,39(6).2178-2185.
    [69] Stojadinovic N, Golubovid S, Davidovic V, et al. Modeling of radiation inducedmobility degradation in MOSFETs. Proc.21st International Conference onMicroelectronic.1997(21).355-356.
    [70] Fleetwood D M. Fast and Slow Border Traps in MOS Devices. IEEE Transactionon Nuclear Science.1996,43(3).779-786.
    [71] Nicklaw C J. Multi-Level modeling of total ionzing dose in a-SiO2: First princi-ples to circuits. Nashville, Tennessee: Graduate School of Vanderbilt University August,2003.48.
    [72]王永强,何宝平,张正选. MOS器件中的边界陷阱.微电子学与计算机.2000(4).37-41.
    [73] D2K-DASK Function Reference Manual,2010,台湾:
    [74]刘恩科,朱秉升,罗晋生等.半导体物理学.北京:国防工业出版社.1994.
    [75]张力,余学峰,艾尔肯等. CMOS器件的抗辐射筛选技术研究.第八届全国抗电子辐射筛选电子学与电磁脉冲学术交流会论文集.307-317.
    [76]林茂清,林锡刚.电子束预辐射筛选抗辐射晶体管工艺的初步研究.核技术.1997,20(10).625-630.
    [77]徐曦.半导体器件无损筛选研究.电子技术参考.1999(2).270-278.
    [78] Matsukawa T, Mori S, Tanii T. Evaluation of soft-error hardness of DRAMs undequasi-heavy ion irradiation using He single ion microprobe technique. IEEETransactions On Nuclear Science.1996,43(6).2849-2855.
    [79]何宝平,张凤祁,姚志斌等. CMOS器件实验室总剂量辐射评估方法研究.核电子学与探测技术.2006,26(5).656-660.
    [80]林茂清.利用电子束预辐射退火法筛选抗辐射晶体管的研究.四川大学学报.1996,33(4).453-456.
    [81] Metcalfe J, Dorfan D E, Grillo A A, et al. Evaluation of The Radiation Tolerance ofSeveral Generations of SiGe Hetero Junction Bipolar Transistors under RadiationExposure. Nuclear Instruments and Methods in Physics Research.2007,579.883-838.
    [82] Grusell E, Rikner G.. Evaluation of Temperature Effects in p-type SiliconDetectors. Phys. Med. Biol.1986,31(5).527-534.
    [83] Sekin1e M, Okano H, Yamabe K, et al. Radiation Damage Evaluation in anExcimer Laser Etching.VLSI Technology.1985.82-83.
    [84] Adolf Goetzberger, Christopher Hebling. Photovoltaic materials, past, present,future. Solar Energy Materials&Solar Cells.2000.62(1-2).1-19.
    [85] Karsten Bothe, Ron Sinton, Jan Schmidt, Fundamental Boron–Oxygen-relatedCarrier LifetimeLimit in Monoand Multicrystalline Silicon, Progess in Photovoltaics:Research and Applications. Prog. Photovolt: Res.Appl.2005.13(4).287–296.
    [86] Dotsenko Yu P. Electro-physical properties of γ-exposed crystals of silicon andgermanium. Semiconductor Physics, Quantum Electronics&Optoelectronics.1999.2(1).47-55.
    [87] Ciofi C, Neri B. Low-frequency noise measurements as a characterization tool fordegradation phenomena in solid-state devices. J. Phys. D: Appl. Phys.2000.33(21).199–216.
    [88]姜秀杰,孙辉先,王志华等.航天电子系统中电子元器件选用的途径分析.电子器件.2005,28(1).39-43.
    [89]吴晗平.光电产品环境应力筛选与可靠性保证试验.应用光学.1997,18(4).10-16.
    [90]詹立升,杨筱莉,陈桂梅.无损筛选的探讨.微处理机.2002,2(1).23-25.
    [91] Xu Jiangsheng, Abbott Derek, Dai Yisong.1/f, G-R and burst noise used as ascreening threshold for reliability estimation of optoelectron coupled devices.Miroelectronics Reliability.2000,40(2).171-178.
    [92] Dai Yisong, Xu Jiangsheng. The noise analysis and noise reliability indicators ofoptoelectron coupled devices. Solid-State Electronics.2000,44(13).1495-1500.
    [93]张雪. pn结材料辐射损伤噪声灵敏表征方法研究.西安电子科技大学.2009年.1月.
    [94]史保华,贾新章,张德胜.微电子器件可靠性.西安:西安电子科技大学出版社.1999.
    [95] Snow E H, Grove A S, Fitzgerald D J. Effects of Ionizing Radiation on OxidizedSilicon Surfaces and Planar Devices. Proceedings of the IEEE. July1967.1168-1185.
    [96] Barnaby H J. Total-Ionizing-Dose Effects in Modern CMOS Technologies. IEEETransactions on Nuclear Science.2006,53(6).3103-3121.
    [97] Hjalmarson H P, Pease R L, Witczak S C, et al. Mechanisms for radiation dose-ratesensitivity of bipolar transistors. IEEE Transactions on Nuclear Science.2003,50(6),1901-1909.
    [98] Nicklaw C J. Multi-Level Modeling of Total Ionzing Dose in a-SiO2: FirstPrinciples to Circuits. Nashville, Tennessee: Graduate School of Vanderbilt UniversityAugust.2003.48.
    [99] Hjalmarson H P, Pease R L, Hembree C E, et al. Dose rate dependence of radiationinduced interface trap density in silicon bipolar transistors. Nuclear instruments&methods in physics research.2006(250).269-273.
    [100] Bunson P E, Ventra M D, Pantelides S T, et al. Hydrogen Related Defects inIrradiated SiO2. IEEE Transactions on Nuclear Science.2000,47(6).2289-2296.
    [101] Winokur P S, Boesch H E, McGarrity J M, et al. Two-stage process for buildup ofradiation induced interface states. Journal of Appllied Physics.1979,50.3492-3494.
    [102]霍恩著,微观译.辐射对电子元件器件的影响.北京:国防工业出版社.1974.
    [103]张继荣,史继祥,佟丽英. γ辐射对硅单晶电学参数的影响.半导体技术.2005,30(5).67-68.
    [104]Claes C, Simoen E著,刘忠立译.先进半导体材料及器件的辐射效应.北京:国防工业出版社,2008.3.
    [105] Matsuura H, Uchida Y, Nagai N, et al, Temperature dependence of the electronconcentration in type-converted silicon by1*1017cm-2fluence irradiation of1MeVelectrons. Applied Physics Letter.2002,76.2092-2094.
    [106] Simoen E, Claeys C, Ohyama H, et al. Factors determining the lifetime damagecoefficients and the low-frequency noise in MeV proton irradiated silicon diodes.Journal of Radioanalytical and Nuclear Chemistry.1999,239(1).207-211.
    [107]陈伟华,杜磊,庄奕琪等. MOS结构电离辐射效应模型研究.物理学报.2009,58(6).4090-4096.
    [108] Hou Fan-Chi, Bosman Gijs, Simoen Eddy. Bulk Defect Induced Low-FrequencyNoise in n-p Silicon Diodes. IEEE Transactions on Electron Devices.1998,45(12).2582-2536.
    [109]盐见弘.失效物理基础.科学出版社.1976.
    [110] Naruke K, Yoshida M, Maeguchi K. Radiation Induced Interface States of Poly-SiGate MOS Capacitors Using Low Temperature Gate Oxidation. IEEE Transactions onNuclear Science.1983,30(6).4054-4058.
    [111] Winokur P S, Boesch H E, McGarrity J M, et al. Field and Time DependentRadiation Effects at the SiO2/Si Interface of Hardened MOS Capacitors. IEEETransactions on Nuclear Science.1977,24(6).2113-2118.
    [112] Srour J R, McGarrity J M. Radiation effects on microelectronics in space. Procee-dings of the IEEE.1988,76(11).1443-1469.
    [113] Benedetto J M, Boesch H E, McLean F B. Dose and energy dependence ofinterface trap formation in cobalt-60and X-ray environments. IEEE Transactions onNuclear Science.1988,35(6).1260-1264.
    [114] Hjalmarson H P, Pease R L, Witczak S C, et al. Mechanisms for Radiation DoseRate Sensitivity of Bipolar Transistors. IEEE Transactions on Nuclear Science.2003,50(6).1901-1909.
    [115]孟志琴,郝跃,唐瑜.深亚微米n-MOSFET器件的总剂量电离辐射效应.半导体学报.2007,28(2).241-245.
    [116] Federico Faccio, Giovanni Cervelli. Radiation-Induced Edge Effects in DeepSubmicron CMOS Transistors. IEEE Transactions on Nuclear Science.2005,52(6).2413-2420.
    [117] Li Dongmei, Huang Fu, Li Ying, et al. Total Ionizing Dose Radiation Effects onMOS Transistors with Different Layouts. Chinese Journal of Semiconductors.2007,28(2).171-175.
    [118] Esqueda I S, Barnaby H J, Alles M L. Two Dimensional Methodology forModeling Radiation Induced Off-State Leakage in CMOS Technologies. IEEETransactions on Nuclear Science.2005,52(6).2259-2264.
    [119] Rashkeev S N, Fleetwood D M, Schrimpf R D, et al. Proton-Induced DefectGeneration at the Si-SiO2Interface. IEEE Transactions on Nuclear Science.200148,(6).2086-2092.
    [120] McLean F B. A Framework for Understanding Radiation-Induced Interface Statesin Si-SiO2MOS Structures. IEEE Transactions on Nuclear Science.1980,27(6).1651-1657.
    [121] Mrstik B J, Rendell R W. Model for Si-SiO2Interface State Formation DuringIrradiation and During Postirradiation Exposure to Hydrogen Environment. AppliedPhysics Letters.1991,59(23).3012–3014.
    [122] Pantelides S T, Tsetseris L, Rashkeev S N, et al. Hydrogen in MOSFETs-APrimary Agent of Reliability Issues[J]. Microelectronics Reliability.2007(47).903–911.
    [123] Baze M P, Plaag R E, Johnson A H. Dose dependence of interface traps in gateoxides at high levels of total dose. IEEE Transactions on Nuclear Science.1989,36(6).1858-1864.
    [124] Lenahan P M, Conley J F Jr. A comprehensive physically based predictive modelfor radiation damage in MOS systems. IEEE Transactions on Nuclear Science.1998,45(6).2413-2423.
    [125] Rashkeev S N, Cirba C R, Fleetwood D M, et al. Physical model for enhancedinterface-trap formation at low dose rates. IEEE Transactions on Nuclear Science.2002,49(6).2650-2655.
    [126] Rashkeev S N, Fleetwood D M, Schrimpf R D, et al. Effects of Hydrogen Motionon Interface Trap Formation and Annealing. IEEE Transactions on Nuclear Science.2004,51(6).3158-3165.
    [127] Oldham T R, McLean F B. Total Ionizing Dose Effects in MOS Oxides andDevices. IEEE Transactions on Nuclear Science.2003,50(3).483-499.
    [128] Lacoe R C. The effects of total ionizing dose irradiation on CMOS technologyand the use of design techniques to mitigate total dose effects. In Pro Reliability PhysicsSymp.2002.
    [129] Larcher L, Paccagnella A, Ceschia M, et al. A Model of Radiation InducedLeakage Current(RILC) in Ultra-Thin Gate Oxide. IEEE Transaction on NuclearScience.1999,46(6).1553-1561.
    [130]庄奕琪,孙青,侯询.电子器件低频噪声谱成分的全参数优化分析.计量学报.1996,17(2).136-141.
    [131] McWhorter A L.1/f noise and related surface effects in germanium. MIT: LincolnLab Rep.1955,80.
    [132] Hung K K, Ko P K, Hu C, et al. A unified model for the flicker noise in metaloxide semiconductor field effect transistors. IEEE Transactions on Electron Devices.1990,37(5).654-665.
    [133]彭绍泉,杜磊,庄奕琪等.基于辐射前1/f噪声的金属-氧化物-半导体场效应晶体管辐射退化模型.物理学报.2008,57(8).5205-5211.
    [134] Scofield John H, Fleetwood D M. Physical basis for nondestructive tests of MOSradiation hardness. IEEE Transactions on Nuclear Science.1991,38(6).1567-1577.
    [135] Hung K K, Ko P K, Hu C, et al. A physics-based MOSFET noise model forcircuit simulators. IEEE Transactions on Electron Devices.1990,37(5).1323–1333.
    [136] Vandamme E P, Vandamme K J. Critical Discussion on Unified1/f Noise Modelsfor MOSFETs. IEEE Transactions on Electron Devices.2000,47(11).2146-2152.
    [137] Min B, Devireddy S P, elik-Butler Z, et al. Low frequency noise characteristicsof HfSiON gate-dielectric metal oxide semiconductor field effect transistors. AppliedPhysics Letters.2005(86).082102.
    [138] elik-Butler Z, Hsiang T Y. Spectral Dependence of1/fγNoise on Gate Bias inN-MOSFET. Solid-State Electronics,1987,30(4),419-423.
    [139] Hung K K, Cheng Y C. Characterization of metal-oxide-semiconductor transistorswith very thin gate oxide. Journal of Appllied Physics.1986,59(3).816–823.
    [140] elik-Butler Z, Hsiang T Y. Determination of Si-SiO2interface trap density by1/fnoise measurements. IEEE Transactions on Electron Devices.1988,35(10).1651–1655.
    [141]包军林,庄奕琪,杜磊等. n/p沟道MOSFET1/f噪声的统一模型.物理学报.2005,54(5).2118-2122.
    [142] Zhuang Yiqi, Sun Qing. Correlation Between1/f Noise and hFE Long-TermInstability in Silicon Bipolar Devices. IEEE Transactions on Electron Devices.1991,38(11).2540-2547.
    [143] Morshed T H, Devireddy S P, elik-Butler Z, et al. Physics-based1/f noise modelfor MOSFETs with nitrided high-gate dielectrics. Solid-State Electronics.2008(52).711–724.
    [144] Do E, Liberali V, Stabile A, et al. Layout-oriented simulation of non-destructivesingle event effects in CMOS IC blocks.2009,217-224.
    [145] Hsieh C M, Murley P C, O'Brien R R. A field-funneling effect on the collection ofalpha-particle-generated carriers in silicon devices. IEEE Electron Device Letters.1981,2(4).103-105.
    [146] Chang-Ming H, Murley P C, O'Brien R R. Collection of charge fromalpha-particle tracks in silicon devices. IEEE Transactions on Electron Devices.1983,30(6).686-693.
    [147] Amusan O A, Massengill L W, Bhuva B L, et al. Design techniques to reduceSET pulse widths in deep-submicron combinational logic. IEEE Transactions onNuclear Science.2007,54(6).2060-2064.
    [148] Reed R A, Marshall P W, Kim H S, et al. Evidence for angular effects inproton-induced single-event upsets. IEEE Transactions on Nuclear Science.2002,49(6).3038-3044.
    [149] Dodd P E, Sexton F W, Winokur P S. Three-dimensional simulation of chargecollection and multiple-bit upset in Si devices. IEEE Transactions on Nuclear Science.1994,41(6).2005-2017.
    [150] Hu C. Alpha-Particle-Induced Field and Enhanced Collection of Carriers.Electron device letters.1982, EDL-3(2).31-34.
    [151] Mclean F B, Oldham T R. Charge Funneling in n-and p-Type Si Substrates. IEEETransactions on Nuclear Science.1982, NS-29(6).2018-2023.
    [152] Oldham T R, Mclean F B. Charge Collection Measurements for Heavy IonsIncident on n-and p-Type Silicon. IEEE Transactions on Nuclear Science.1983,NS-30(6).4493-4500.
    [153] Messenger G C. Collection of Charge on Junction Nodes from Ion Tracks. IEEETransactions on Nuclear Science.1982,29(6).2024-2031.
    [154] Bradford. Nonequilibrium Radiation Effects in VLSI. IEEE Transactions onNuclear Science.1978,25(5).1144-1145.
    [155] Palau J M, Hubert G, Coulie K, et al. Device simulation study of the SEUsensitivity of SRAMs to internal ion tracks generated by nuclear reactions. IEEETransactions on Nuclear Science.2001,48(2).225-231.
    [156] Kirkpatrick S. Modeling diffusion and collection of charge from ionizingradiation in silicon devices. IEEE Transactions on Electron Devices.1979,26(11).1742-1753.
    [157] Palau J M, Calvet M C, Dodd P E, et al. Contribution of device simulation to SERunderstandfng.2003.
    [158] Palau J M, Wrobel R, Castellani-Coulie K, et al. Monte Carlo exploration ofneutron-induced SEU-sensitive volumes in SRAMs. IEEE Transactions on NuclearScience.2002,49(6).3075-3081.
    [159] Lambert D, Baggio J, Ferlet-Cavrois V, et al. Neutron-induced SEU in bulkSRAMs in terrestrial environment: Simulations and experiments. IEEE Transactions onNuclear Science.2004,51(6).3435-3441.
    [160] Correas V, Saigne F, Sagnes B, et al. Innovative simulations of heavy ion crosssections in130nm CMOS SRAM. IEEE Transactions on Nuclear Science.2007,54(6).2413-2418.
    [161] Correas V, Saigne F, Sagnes B, et al. Simulation tool for the prediction of heavyion cross section of innovative130nm SRAMs. Deauville, France: Institute ofElectrical and Electronics Engineers Inc.,2007.
    [162] Merelle T, Chabane H, Palau J M, et al. Criterion for SEU occurrence in SRAMdeduced from circuit and device simulations in case of neutron-induced SER. IEEETransactions on Nuclear Science.2005,52(4).1148-1155.
    [163] Correas V, Saigne F, Sagnes B, et al. Prediction of multiple cell upset induced byheavy ions in a90nm bulk SRAM. IEEE Transactions on Nuclear Science.2009,56(4).2050-2055.
    [164] Artola L, Hubert G, Bezerra F, et al. Collected charge analysis for a new advancedtransient model by TCAD simulation in90nm technology.2009.
    [165] Artola L, Hubert G, Warren K M, et al. SEU Prediction From SET ModelingUsing Multi-Node Collection in Bulk Transistors and SRAMs Down to the65nmTechnology Node. IEEE Transactions on Nuclear Science.2011,58(3).1338-1346.
    [166] Roche P, Palau J M, Bruguier G, et al. Determination of key parameters for SEUoccurrence using3-D full cell SRAM simulations. IEEE Transactions on NuclearScience.1999,46(6).1354-1362.
    [167] Ferlet-Cavrois V, Paillet P, Gaillardin M, et al. Statistical Analysis of the ChargeCollected in SOI and Bulk Devices Under Heavy lon and ProtonIrradiation-Implications for Digital SETs. IEEE Transactions on Nuclear Science.2006,53(6).3242-3252.
    [168] Hubert G, Palau J M, Castellani-Coulie K, et al. Detailed analysis of secondaryions' effect for the calculation of neutron-induced SER in SRAMs. IEEE Transactionson Nuclear Science.2001,48(6).1953-1959.
    [169] Merelle T, Saigne F, Sagnes B, et al. Monte-Carlo simulations to quantifyneutron-induced multiple bit upsets in advanced SRAMs. IEEE Transactions on NuclearScience.2005,52(5).1538-1544.
    [170] Dodd P E. Device simulation of charge collection and single-event upset. IEEETransactions on Nuclear Science.1996,43(2).561-575.
    [171] Merelle T, Serre S, Saigne F, et al. Charge sharing study in the case of neutroninduced SEU on130nm bulk SRAM modeled by3-D Device Simulation. IEEETransactions on Nuclear Science.2006,53(4pt I).1897-1901.
    [172] Shur M, Lee K, Choe R, et al. Charge Collection by Drift during Single ParticleUpset. IEEE Transactions on Nuclear Science.1986,33(5).1140-1146.
    [173] Edmonds L D. A Theoretical Analysis of Steady-State Charge Collection inSimple Diodes Under High-Injection Conditions. IEEE Transactions on NuclearScience.2010,57(2).818-830.
    [174] Takada M, Nunomiya T, Ishikura T, et al. Charge-collection length induced byproton and alpha particle injected into silicon detectors due to funneling effect. IEEETransactions on Nuclear Science.2009,56(1).337-345.
    [175] Sze S M. Physics of semiconductor devices.2nd ed. New York: Wiley,1981.868.
    [176] Golke K W. Determination of funnel length from cross section versus LETmeasurements. IEEE Transactions on Nuclear Science.1993,40(6pt1).1910-1917.
    [177] Petersen E L, Pickel J C, Smith E C, et al. Geometrical factors in SEE ratecalculations. IEEE Transactions on Nuclear Science.1993,40(6).1888-1909.
    [178] Tyagi M S. Introduction to semiconductor materials and devices. New York:Wiley,1991.669.
    [179]尼曼.半导体物理与器件基本原理.北京市:清华大学出版社.2003.746.
    [180] Warren K M. Sensitive volume models for single event upset analysis Sensitivevolume models for single event upset analysis and rate prediction for space,atmospheric, and terrestrial radiation environments. Nashville: Vanderbilt University,2010.
    [181] Castellani-Coulie K, Portal J M, Micolau G, et al. Analysis of SEU parameters forthe study of SRAM cells reliability under radiation.2011.
    [182] Giot D, Roche P, Gasiot G, et al. Multiple-Bit Upset Analysis in90nm SRAMs:Heavy Ions Testing and3D Simulations. IEEE Transactions on Nuclear Science.2007,54(4).904-911.
    [183] Hubert G, Duzellier S, Inguimbert C, et al. Operational SER Calculations on theSAC-C Orbit Using the Multi-Scales Single Event Phenomena Predictive Platform(MUSCA SEP). IEEE Transactions on Nuclear Science.2009,56(6).3032-3042.
    [184] Tipton A D, Zhu X, Weng H, et al. Increased rate of multiple-bit upset fromneutrons at large angles of incidence. IEEE Transactions on Device and MaterialsReliability.2008,8(3).565-570.
    [185] Seifert N, Gill B, Relangi P. Multi-cell upset probabilities of45nm high-k+metalgate SRAM devices in terrestrial and space environments. Phoenix:2008.
    [186] Musseau O, Gardic F, Roche P, et al. Analysis of multiple bit upsets (MBU) inCMOS SRAM. IEEE Transactions on Nuclear Science.1996,43(6).2879-2888.
    [187] Blum D R, Delgado-Frias J G. Hardened by design techniques for implementingmultiple-bit upset tolerant static memories. New Orleans, LA, United states: Institute ofElectrical and Electronics Engineers Inc.,2007.
    [188] Reviriego P, Maestro J A, Cervantes C. Reliability analysis of memories sufferingmultiple bit upsets. IEEE Transactions on Device and Materials Reliability.2007,7(4).592-601.
    [189] Gasiot G, Giot D, Roche P. Alpha-Induced Multiple Cell Upsets in Standard andRadiation Hardened SRAMs Manufactured in a65nm CMOS Technology. IEEETransactions on Nuclear Science.2006,53(6).3479-3486.
    [190] Giot D, Roche P, Gasiot G, et al. Multiple-Bit Upset Analysis in90nm SRAMs:Heavy Ions Testing and3D Simulations. IEEE Transactions on Nuclear Science.2007,54(4).904-911.
    [191] Makihara A, Shindou H, Nemoto N, et al. Analysis of single-ion multiple-bitupset in high-density DRAMs. IEEE Transactions on Nuclear Science.2000,47(6).2400-2404.
    [192] O'Gorman T J. The effect of cosmic rays on the soft error rate of a DRAM atground level. IEEE Transactions on Electron Devices.1994,41(4).553-557.
    [193] Hazucha P, Svensson C. Cosmic ray neutron multiple-upset measurements in a0.6um CMOS process. IEEE Transactions on Nuclear Science.2000,47(6).2595-2602.
    [194] Cannon E H, Gordon M S, Heidel D F, et al. Multi-bit upsets in65nm SOISRAMs.2008.
    [195] Slayman C W. Cache and memory error detection, correction, and reductiontechniques for terrestrial servers and workstations. IEEE Transactions on Device andMaterials Reliability.2005,5(3).397-404.
    [196] Maiz J, Hareland S, Zhang K, et al. Characterization of Multi-bit Soft Errorevents in advanced SRAMs. Washington, DC, United states: Institute of Electrical andElectronics Engineers Inc.,2003.
    [197] Koga R, Pinkerton S D, Lie T J, et al. Single-word multiple-bit upsets in staticrandom access devices. IEEE Transactions on Nuclear Science.1993,40(6).1941-1946.
    [198] Dodd P E, Massengill L W. Basic mechanisms and modeling of single-eventupset in digital microelectronics. IEEE Transactions on Nuclear Science.2003,50(3).583-602.
    [199] Taber A, Normand E. Single event upset in avionics. IEEE Transactions onNuclear Science.1993,40(2).120-126.
    [200] Normand E. Single event upset at ground level. IEEE Transactions on NuclearScience.1996,43(6pt I).2742-2750.
    [201] Johansson K, Dyreklev P, Granbom B, et al. In-flight and ground testing of singleevent upset sensitivity in static RAMs. Cannes, Fr: IEEE.1998.
    [202] Seifert N, Slankard P, Kirsch M, et al. Radiation-Induced Soft Error Rates ofAdvanced CMOS Bulk Devices.2006.
    [203] Baumann R. Soft errors in advanced computer systems. Design\&Test ofComputers. IEEE.2005,22(3).258-266.
    [204] Quinn H, Graham P, Krone J, et al. Radiation-induced multi-bit upsets inSRAM-based FPGAs. Institute of Electrical and Electronics Engineers Inc.2005.
    [205] Campbell A B. SEU flight data from the CRRES MEP. IEEE Transactions onNuclear Science.1991,38(6pt I).1647-1654.
    [206] Kie D Y, Kim C G, Park B S, et al. Analysis of angular dependence of GMRprofile in spinvalve using double domain domel.1999.
    [207] Martin R C, Ghoniem N M, Song Y, et al. The Size Effect of Ion Charge Trackson Single Event Multiple-Bit Upset. IEEE Transactions on Nuclear Science.1987,34(6).1305-1309.
    [208] Sivo L L, Peden J C, Brettschneider M, et al. Cosmic Ray-Induced Soft Errors inStatic MOS Memory Cells. IEEE Transactions on Nuclear Science.1979,26(6).5041-5047.
    [209] Edmonds L D. A distribution function for double-bit upsets. IEEE Transactionson Nuclear Science.1989,36(2).1344-1346.
    [210] Smith E C, Shoga M. Double upsets from glancing collisions: a simple modelverified with flight data [SRAM]. IEEE Transactions on Nuclear Science.1992,39(6).1859-1864.
    [211] Amusan O A, Massengill L W, Baze M P, et al. Directional Sensitivity of SingleEvent Upsets in90nm CMOS Due to Charge Sharing. IEEE Transactions on NuclearScience.2007,54(6).2584-2589.
    [212] Song Y, Vu K N, Cable J S, et al. Experimental and analytical investigation ofsingle event, multiple bit upsets in poly-silicon load,64K×1N-MOS SRAMs. IEEETransactions on Nuclear Science.1988,35(6).1673-1677.
    [213] Mcdonald P T, Stapor W J, Campbell A B, et al. Non-random single event upsettrends. IEEE Transactions on Nuclear Science.1989,36(6).2324-2329.
    [214] Bradford J N. Geometric Analysis of Soft Errors and Oxide Damage Produced byHeavy Cosmic Rays and Alpha Particles. IEEE Transactions on Nuclear Science.1980,27(1).941-947.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700