SiGe HBT及其单片集成电路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波低噪声放大器(LNA)广泛应用于移动通讯、无线电、蓝牙技术等的RF前端。LNA中的有源器件是整个电路的核心,对整个放大器电路的性能有着重要的影响,因此有源器件的设计是LNA的关键技术之一。由于SiGe异质结双极器件(HBT)既能像GaAs器件一样满足RF ICs对高性能要求,又可以与Si工艺兼容而具有低成本的优点,所以成为国内外研究的热点课题之一。
     通过对SiGe材料特性和生长技术的研究,对SiGe HBT器件结构参数的优化(尤其是基区的实现方案),对主要参数的理论核算,并结合无源器件的特点及实现工艺,完成了以SiGe HBT器件为有源器件的微波低噪声放大器单片集成电路的器件与版图设计。主要工作是:
     1、通过理论分析和MEDICI模拟,综合设计得出符合设计指标的结构参数,主要包括:发射区的掺杂浓度和厚度﹑基区的掺杂浓度和厚度及基区中Ge的组分比﹑集电区的掺杂浓度和厚度。
     2、为了解决基区杂质外扩现象,提出了两种方案:1)采用掺碳的SiGe:C基区层,能够有效消除外扩问题;2)采用未掺杂的缓冲层i-SiGe,能够有效抑制外扩现象。
     3、确定了各层结构的掺杂浓度和厚度后,结合主要技术指标得出了器件的结构参数,并对主要参数进行了理论核算。
     4、微波单片集成电路中的无源器件与普通集成电路相比有不同的特点。研究了微波单片集成电路中的无源器件的设计理论及其各自的实现工艺,完成了电路所需的无源器件的设计。
     5、根据SiGe HBT的结构参数,并结合无源器件,完成了低噪声放大器单片集成电路的版图设计,并提出了实现电路的工艺流程和主要关键工艺技术。
     重点是通过对SiGe HBT分析和研究,提出了解决基区外扩现象的两种方案,同时在工艺上应用SiGe HIT-KIT 0.35μm BiCMOS新工艺来制作平面电感、电容、电阻和有源器件。
Low noise amplifier(LNA) is widely used in front end of a received set of mobile communication、wireless radio、blueteech technology and so on。The active device is the core of the circuit and has significant effects on the whole equipment, therefore, the design of the active device is vital in LNA. According to the characteristics of SiGe HBT, such as holding high performance as GaAs which can meet the demand with RF ICs and having low cost because of the compatibility with Si technology, SiGe HBT has become one of the hot fields in the world.
     Through the research of SiGe material characteristic and growth technology, the optimization of SiGe HBT device parameters is performanced. After the theoretical check of the vital parameters, the device and the layout of the monolithic integrated circuit LNA are designed with the characteristics of the passive device and the process.
     1、Through the theoretical analysis and the MEDICI simulation, according to the design directive, the structural parameters are designed comprehensively, including the dopant concentration and the depth of the emitter, the base dopant concentration and the depth (especially the Ge ratio), the dopant concentration and the depth of the collector.
     2、In order to solve the phenomenon of the outdiffusion of the base dopant, two solutions are suggested: 1) the SiGe:C base can effectively solve the outdiffusion problem; 2) the undoped buffer layer can constrict the outdiffusion phenomenon.
     3、After the assuredness of the dopant and the depth of the layers, associating the chief technology directive, the structural parameters of the device are obtained and theoretically checked.
     4、The passive device in the MMIC has different features with the passive device in the general integrated ciruit. In the research of the design theory of the MMIC passive devices and the process, the passive device needed in the circuit are designed.
     5、Through the structural parameters of the SiGe HBT, associating the passive devices, the layout of the monolithic integrated circuit LNA is obtained, and the technology of the circuit and the vital process process are introduced. Through the analysis and the design of SiGe HBT, two solutions of the base
引文
[1] S. J. Koester, J.O.Chu. SiGe pMODFETs on silicon-on-sapphire substrates with 116 GHz fmax IEEE Electron Device Letters,2001,22(2):92-94
    [2] Ohhata.K,Arakawa.F,et al. 40Gb/s analog IC chipset for optical receivers-AGC amplifier, full-wave rectifier and decision circuit implemented using self-aligned SiGe HBTs. IEEE MTT–S International ,2001,3:1701-1704
    [3] 盛柏桢,程文芳.国外 SiGe 器件及其应用.微电子技术,2002, 30(2):4-13
    [4] 孙自敏,董志伟.SiGe 器件及其研究综述.半导体情报,1999,36(1):17-21
    [5] 贾宏勇,孙自敏,陈培毅.Si1-xGex 材料和双极型器件的进展.半导体情报,1999,36(3):18-24
    [6] 陈星弼,张庆中.晶体管原理与设计(第 2 版).北京:电子工业出版社,2006.2,89-293
    [7] S.S.Iyer, G.L.Patton. Silicon-Germanium base heterojunction bipolar transistors by molecular beam epitaxy. Electron Device Meeting, 1987 pp 874-876
    [8] John D. Cressler. SiGe HBT Technology: A New Contender for Si-Based RF and Microwave Circuit Application. IEEE M.T.T, May 1998,46(5)
    [9] H.U.Schreiber. High-speed double mesa Si/SiGe heterojunction bipolar transistor fabricated by self-alignment technology. Electronics Letters 27th, Feb. 1992.28(5)
    [10] D.L.Harame, J.H.Comfort. Si/SiGe epitaxial-base transistors—Part II: Process integration and analog applications. IEEE Trans. Electron Devices, Mar. 1995,42(3)
    [11] Christian Nickolas. SiGe:C 技术有望改进无线电产品的设计. [J] 今日电子 2001,第 7 期.
    [12] S.Van Huylenbroeck, A.Sibaja-Hemandez et al. Laterak and Vertical Scaling of a QSAHT for a 0.13um 200GHz SiGe:C BiCMOS Technology [J] IEEE BCTM 12(2)
    [13] D. Knoll, et al. BiCMOS Integration of SiGe:C Heterojunction Bipolar Transistors. [J] BCTM Digest of Technical Papers, Sept. 2002, pp162-166
    [14] Guang-bo Gao, H.Morkoc, M-CF.Chang. Hetrojunction bipolar transistor designfor power applications.IEEE Trans.on Electron Devices,1992,vol.39(9), pp1987-1996
    [15] Peter Ashburn. SiGe Heterojunction Bipolar Transistors. John Wiley & Sons, Ltd,2003
    [16] 钱伟,张进书,贾宏勇.SiGe 微波功率 HBT 的研制.半导体学报,2000,21(5):445-450
    [17] 赵立新,沈光地.SiGe HBTs 高频特性模拟分析.半导体学报,1999,20(6):468-474
    [18] M.Sze. Physics of semiconductor devices,2nd edn.Wiley, New York,1981.
    [19] B.J.Baliga. Modern power devices. John Wiley&sons,1987,pp68-69
    [20] 钱伟,金晓军,张进书等.SiGe HBT 中雪崩击穿效应对电流电压特性的影响.电子学报,1998,26(8):120-122
    [21] E.J.Prinz, P.M.Garone, P.V.Schwartz. The effects of base dopant outdiffusion and undoped Si1-xGex junction spacer layers in Si/ Si1-xGex/Si heterojunction bipolar transistors. IEEE Electron Device Letters,1991,12:42-44
    [22] K.P.Roenker, C.H.Mueller. Device physics analysis of parasitic conduction band barrier formation in SiGe HBT. IEEE Trans.Micro.Theory Techniques, 2000, pp182-186
    [23] Syivie Galdin, Philippe Dollfus, Mireille Mouis. Influence of base dopant out-diffusion into the emitter in Si/ SiGe heterojunction bipolar transistor using Monte Carlo simulations.Journal of Crystal Growth157(1995)231-235.
    [24] Jan W.Slotboom, G..Streutker, A.Pruijmboom. Parasitic Energy Barriers in SiGe HBTs. IEEE Electron Device Letters,Sep.1991,12(9):486-488
    [25] Delsenv.C, Penarier.A, Pascal.F, Jarrix.S.G, Llinares.P. Comparison of low frequency noise and high frequency performances of double and simple polysilicon BiCMOS BJT. [J] Microelectronics Reliability.Novmenber,2000,40(11)pp1869-1874
    [26] Sato.F,Hashimoto.T,Tatsumi.T,Tashiro.T.Process design for SiGe-HBTs prepared using cold-wall UHV/CVD [J] Solid-State Electronics,August, 1999,43(8):1389-1393
    [27] E.J. Prinz,Garone, P. M., Schwartz et al. The effects of base dopant outdiffusion and undoped Si1-xGex junction spacer layers in Si/Si1-x Gex/Si heterojunction bipolar transistors. [J] IEEE Electron Device Lett, 1991,12(42):42-44
    [28] Lanzerotti, L.D.; Sturm, J.C.; Stach, E et al. Suppression of boron outdiffusion in SiGe HBTs by carbon incorporation. [J] Techn Digest IEDM, international 1996, 249-252
    [29] D. Knoll, et al. BiCMOS Integration of SiGe:C Heterojunction Bipolar Transistors. [J] BCTM Digest of Technical Papers, Sept. 2002, pp162-166
    [30] Scholz RF, Werner P, Gosele U, Tan TY. The contribution of vacancies to carbon out-diffusion in silicon.[J] Appl Phys Lett 1999;74(12):392
    [31] Kalejs JP, Ladd LA, Gosele U. Self-interstitial enhanced carbon diffusion in silicon.[J]Appl Phys Lett 1984;45(04):268
    [32] H. Jorg Osten. Band offset predictions for strained group IV alloys: Si1-x-yGexCy on Si(001) and Si1-xGex on Si1-zGez(001). Thin Solid Films 367 (2000) 120(14): 101-111
    [33] Rucker H, Heinemann B, Ropke W, et al. Suppressed diffusion of boron and carbon incarbon-rich silicon.[J] Appl Phys Lett 1998,73(10):1682
    [34] Chai,F.K.Kirchgessner, J. et al. Integration of selectively implanted collector (SIC) of SiGe:C HBT for optimised performance,and,manufacturability. Bipolar/BiCMOS Circuits and Technology Meeting[C], 2003. Pr oceedings of the28-30 Sept. 2003, pp 115–118
    [35] Yamagata, H,et al. 101 GHz f/sub Tmax/ SiGe:C HBT integrated into 0.25 /spl mu/m CMOS with conventional LOCOS isolation. Solid-State Device Research conference[C], 2004. ESSDERC 2004. Proceeding of the 34th European.21-23 Sept. 2004, pp 201-204
    [36] J.Gebner, R.Kinder, F.Schwierz. Influence of dopant diffusion in SiGe HBT on the transit frequency. IEEE ASDAM 2000, pp43-46
    [37] 林大松,张鹤鸣,戴显英等.SiGe HBT 基区渡越时间模型.西安电子科技大学电子学报,2001,28(4):459
    [38] 张华斌.SiGe HFIC 宽带低噪声放大器的研究:[硕士学位论文]. 成都:电子科技大学,2006
    [39] 杨之廉.超导规模集成电路设计方法学导论.北京:清华大学出版社,1990,78-102
    [40] S.S. Mohan, M. Hershenson, S. P. Boyd, T. H. Lee, Simple Accurate Expressions for Planar Spiral Inductances. IEEE Journal of Solid-State Circuits, Oct. 1999, 34:1419-1424
    [41] M. Niknejad. Analysis, Design, and Optimization of Spiral Inductors and Transformers forSi RF IC’s. IEEE Journal of Solid-State Circuits, 1998, pp 1470-1481
    [42] B.Razavi,RF Microelectronics. Prentice Hall, Upper Saddle River,1998
    [43] W. Kuhn,N. Ibrahim. Analysis of Current Crowding Effects in Multiturn Spirl Inductors.IEEE Transactions on MTT,Jan.2001, pp31-38
    [44] J. Long, M. Copeland. The Modeling, Characterization, and Design of Monolithic Inductors for Silicon RF IC’s. IEEE Journal of Solid-State Circuits, March 1997,32:357-369
    [45] Khater, M.; Rieh, J.-S.; Adam. SiGe HBT technology with f/sub max//f/sub T = 350/300 GHz and gate delay below 3.3 ps. Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International Dec. 13-15, 2004 pp:247 – 250
    [46] I..D.Robertson, S. Lucyszyn. RFIC and MMIC design and technology. 2001
    [47] Curran, J. E.; Jeanes, R. V.; Sewell. Technology of thin-film hybridmicrowave circuit. IEEE Transactions on Parts, Hybrids and Packagin no 4, Dec,1976, pp304-309
    [48] Mondal, Jyoti P. Experimental verification of a simple distributed model of mim capacitors for MMIC applications. IEEE Transactions on Microwave Theory and Techniques v MTT-35, no 4, Apr, 1987, pp403-408
    [49] 蒋欣荣,微细加工技术(第一版),北京:电子工业出版社,1990.6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700