SiGe HFIC宽带低噪声放大器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低噪声放大器(LNA)广泛应用于通讯、电子对抗等系统的接收装置的前端,其性能的好坏对整个接收装置有重要的影响。对微波高频宽带低噪声放大器的要求是:低功耗、低成本、宽带、高线性度和低噪声。论文应用多种技术和方法设计了一个MMIC微波单片集成的宽带低噪声放大器。这些技术和方法包括:
     1、为解决低噪声及低成本的问题,设计中采用SiGe异质结器件来取代通用的Si器件,同时也放弃使用GaAs器件。这是由于SiGe器件不仅具有类似GaAs器件的高性能,而且具有Si器件的低成本。在工艺上,SiGe器件可以采用BiCMOS技术,很好地实现了与CMOS技术的兼容。
     2、采用电路可关断技术,导通状态时器件处于工作状态;非导通状态时器件处于截止状态。采用器件旁路小电流工作电路,实现对低噪声放大器主要工作晶体管的控制,使该晶体管按需要分别处于工作或关断状态,保证了放大器的极低功耗。
     3、使用反馈技术,不仅可以获得平坦的增益和降低输入输出的驻波比VSWR,而且也可以使用较少的元器件。也可以用平衡技术来设计宽带放大器,但使用的元件较多,成本较高,所以在设计中没有采用平衡技术。
     4、利用寄生参数来设计电路。由于电路的封装存在寄生电感,其不仅会影响电路的特性,而且可能造成电路设计工作的失败,所以根据电路所需电感及其值的大小,将之有效的设计在放大器电路中。
     5、采用内匹配网络技术,设置输入输出匹配网络,以保持增益和传输特性的平坦性,提高输出功率和效率,降低反射系数,减少损耗。
     论文提出了具有开关功能的低功耗SiGe双极器件的新型放大器和利用寄生电感来设计电路的新思路,同时在工艺上采用SiGe HIT-KIT 0.35μm BiCMOS工艺来制作平面电感和有源器件,成功完成了0.5-6GHz微波宽带低噪声放大器的前期仿真和设计工作。以论文的结果为基础,可望在后续工作中完成该低噪声放大器的实用化,最终实现市场推广价值。
Low noise amplifier is widely used in front-end of a transceiver in mobile communication, electronic counterwork and other fields, whose performance makes significant effect on the wireless transceiver. Design methodology is discussed on the aspects of lower power, lower cost,wide band, good linearity and lower noise. The relative technology is as follows:
     1. To solve the lower noise and cost problem, SiGe device, instead of Si and GaAs device, is used in the WLNA. SiGe device not only holds the high performances as GaAs device, but also has the lower cost as Si device. In addition, the BiCMOS process of SiGe device is compatible with CMOS process of Si device.
     2. To reduce power dissipation of the amplifier, a kind of on/off technology is used in the circuit. With a little bias current circuit to control the main bipolar transistor operation, the transistor will be in a state of ON/OFF.
     3. To keep smooth gain, good VSWR, and fewer devices, a feed-back technology is adopted. Balance technology to design WLNA is done by other authors, however, which is very expensive. So it will not be introduced in this dissertation.
     4. To make use of parasitic parameter to design the circuit: because parasitic inductance induced by packaging could not only influence the circuit characteristics, but also lead to a design failure, the inductor value needed in the circuit can be designed in the amplifier according to the size of parasitic inductance.
     5. In order to keep gain smooth, enhance output power and efficiency, and reduce reflect factor and attenuation, inner matching networks are needed. With the kind of design of 0.5-6GHz WLNA, a new type of amplifier with ON/OFF function, based on SiGe device, is presented, which is improved by adopting parasitic parameter with SiGe HIT-KIT 0.35μm BiCMOS process. At present simulation is finished successfully, and the amplifier is coming to be commercialized.
引文
[1] 李大平. 1~6GHz宽带低噪声放大器的研制.半导体情报, 1999, 36 (5): 37-42
    [2] 张广. 1.6GHz~2.8GHz 宽带高增益低噪声放大器.宇航计测技术,2004,24(6):26-33
    [3] 刘 怡,费元春. S 波段低噪声放大器 CAD 设计. 现代雷达, 2004, 26 (5): 59-61
    [4] 彭龙新. 1~7GHz 全单片低噪声放大器. 固体电子学研究与进展, 2003, 23 (3): 296-300
    [5] 王闯. 高增益自偏 S 波段 MMIC 低噪声放大器. 半导体学报, 2005, 26(4):786-789
    [6] 李振国,陈建新. 锗硅低噪声放大器的研究进展. 半导体技术, 2005, 30 (2): 47-50
    [7] 李竹,陈志恒,王志功. 1.8V 5.2GHz 差分结构 CMOS 低噪声放大器. 电子器件, 2004, 27 (1): 72-74
    [8] 陶 蕤,王志功,谢婷婷. 2.9GHz 0.35μm CMOS 低噪声放大器. 电子学报, 2001, 29 (11): 1530-1532
    [9] 黄煜梅. 2.4GHz 增益可控的 CMOS 低噪声放大器. 固体电子学研究与进展, 2004, 24 (4): 498-504
    [10] 宋 蓓,谢婷婷,陈志恒. 深亚微米 CMOS 低噪声放大器的设计, 电气电子教学学报, 2002, 24 (6): 29-31
    [11] 马晓民,王文骐. 1.8GHz 0.35μm CMOS 低噪声放大器的实现.半导体技术, 2002, 27 (8): 46-49
    [12] 姚 飞,成步文. 1GHz 0.5μm CMOS 低噪声放大器的设计. 半导体学报, 2004, 25 (10): 1291-1294
    [13] 袁小云. 应用于 GPS 前端的 CMOS 低噪声放大器的研究. 微电子技术, 2003, 31 (4): 19-22
    [14] K.B.Schad, U.Erben, et al., “A Ku Band SiGe Low Noise Amplifier,” Microwave Journal, 2000,37 (6): 52-54
    [15] Brian A.Floyd and Dicle Ozis,“Low-Noise Amplifier Comparison at 2 GHz in 0.25-μm and 0.18-μm RF-CMOS and SiGe BiCMOS,” 2004 IEEE Radio Frequency Integrated Circuits Symposium 2004 : 185–188
    [16] David Barras, Frank Ellinger,et al., “A Low Supply Voltage SiGe LNA for Ultra Wideband Front end,” IEEE Microwave and Wireless Components Letters, 2004 ,14 (10) : 469-471
    [17] Po-Wei Lee, Hung-Wei Chiu, et al., “A SiGe low noise amplifier for 2.4/5.2/5.7 GHz WLANapplications,”Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International 2003 ,(1): 364–365
    [18] Chih-Wei Wang, “A High Linearity Low Noise Amplifier in a 0.35μm SiGe BiCMOS for WCDMA Applications,”SoC Technical Journal 2005 , (2): 123–130
    [19] Yiming Chen, Xiaojuen Yuan, et al., “Demonstration of a SiGe RF LNA Design using IBM Design Kits in 0.18um SiGe BiCMOS Technology,” 2004 IEEE Proceedings of the Design, Automation and Test in Europe Conference and Exhibition Designers’ Forum 2004 : 1530-1591
    [20] Nam Jin Song, Dohyong Kim, et al., “SiGe Front-end Transceiver Components for 802.11a WLAN Applications,” 2004 IEEE Radio Frequency Integrated Circuits Symposium 2004 : 527–530
    [21] 陈星弼,张庆中. 晶体管原理与设计. 北京: 电子工业出版社, 2006. 230-247
    [22] 刘伦才,王若虚,张正璠. SiGeHBT 的速度优化设计. 微电子学, 2003, 33 (6): 473-476
    [23] 谢孟贤,刘诺. 化合物半导体材料与器件. 成都: 电子科技大学出版社, 2000. 81-97
    [24] John D. Cressler, “SiGe HBT Technology: A New Contender for Si-Based RF and Microwave Circuit Applications,” IEEE Transactions on Microwave Theory and Techniques, 1998 ,46 (5): 572-589
    [25] A.Rennane, L.Bary, G Niu, et al., “Scaleable non linear low frequency noise model of SiGe HBT,” Silicon Monolithic Integrated Circuits in RF Systems, 2003. Digest of Papers. 2003 Topical Meeting on 9-11 April 2003 : 189-191
    [26] Guillermo Gonzalez. 微波晶体管放大器分析与设计(,白晓东). 北京: 清华大学出版社, 2003. 64-81
    [27] 黄文韬. SiGe/Si 外延与 SiGe HBT微波单片放大电路研究:[博士学位论文] . 北京: 清华大学微电子学研究所, 2003
    [28] Shiming Zhang, Guofu Niu, et al., “The Effects of Geometrical Scaling on the Frequency Response and Noise Performance of SiGe HBTs,” IEEE Transactions on Electron Devices, 2002,49 (3): 429-435
    [29] Umut Basaran, Nikolai Wieser, Gernot Feiler, et al., “Small-Signal and High-Frequency Noise Modeling of SiGe HBTs,” IEEE Transactions on Microwave Theory and Techniques, 2005,53 (3): 919-928
    [30] J. A. Chroboczek and G. Ghibaudo, “Has SiGe lowered the noise in transistors?” IEE Proc.-Cirniits Devices Syst., 2002,149 (1): 51-58
    [31] Sorin P. Voinigescu, Michael C. Maliepaard, et al., “A Scalable High-Frequency Noise Model for Bipolar Transistors with Application to Optimal Transistor Sizing for Low-Noise Amplifier Design,” IEEE Journal of Solid-State Circuits, 1997, 32 (9): 1430-1439
    [32] 杨之廉. 超导规模集成电路设计方法学导论. 北京: 清华大学出版社, 1990. 78-102
    [33] 郭本青. 射频功率晶体管研究:[硕士学位论文] . 成都: 电子科技大学, 2005
    [34] 詹福春,王文骐,李长生. 2.4GHz 0.25μm CMOS集成低噪声放大器的设计. 半导体技术, 2004, 29 (5): 81-85
    [35] Hee-Tae Ahn and David J. Allstot, “A 0.5~8.5-GHz Fully Differential CMOS Distributed Amplifier,” IEEE Journal of Solid-State Circuits, 2002,37 (8): 985-993
    [36] Thomas H.Lee. CMOS射频集成电路设计. 北京: 电子工业出版社, 2004. 197-220
    [37] 刘光祜,饶妮妮. 模拟电路基础. 成都: 电子科技大学出版社, 1999. 139-149
    [38] 陈天麒. 微波低噪声晶体管放大器. 北京: 人民邮电出版社, 1983. 242-271
    [39] 李振国. 高频SiGe HBT低噪声放大器的研究: [硕士学位论文]. 北京: 北京工业大学, 2005
    [40] Yinggang Li, Mingquan Baol, et al., “23GHz Front-end Circuits in-SiGe BiCMOS Technology,” 2003 IEEE Radio Frequency Integrated Circuits Symposium, 2003: 99-102
    [41] Gerd Schuppener, Takashi Harada and Yinggang Li, “A 23-GHz Low-Noise Amplifier in SiGe Heterojunction Bipolar Technology,”2001 IEEE Radio Frequency Integrated Circuits Symposium, 2001: 177-180
    [42] Qingqing Liang, Guofu Niu, et al., “Geometry and Bias Current Optimization for SiGe HBT Cascode Low-Noise Amplifiers,” IEEE Radio Frequency Integrated Circuits Symposium, 2002 : 407-410
    [43] Gordon, Michael and Voinigescu, Sorin P. “An inductor-based 52-GHz 0.18 μm SiGe HBT cascode LNA with 22 dB gain,” ESSCIRC 2004 - Proceedings of the 30th European Solid-State Circuits Conference, 2004: 287-290
    [44] www.nec.com
    [45] Taniguchi.E, Maeda.K, et al., “Dual bias feed SiGe HBT low noise linear amplifier,” IEEE MTT-S International Microwave Symposium Digest, 2001 (1): 285-288
    [46] Axel Schmidt and Stéphane Catala, “A Universal Dual Band LNA Implementation in SiGe Technology for Wireless Applications,” IEEE Journal of Solid-State Circuits, 2001, 36 (7): 1127-1131
    [47] Jeiyoung Lee, Geunho Lee, et al., “The Design of SiGe HBT LNA for IMT-2000 MobileApplication,” 2002 IEEE M7T-S Digest: 1261-1264
    [48] Rothe H, Dahlke W. “Theory of noisy fourpoles,” Proceedings of the IRE, 1956, 44 (6): 811-818.
    [49] Hartmann K, Strutt M. “Changes of the four noise parameters due to general changes of linear two-port circuits,” IEEE Transactions on Electron Devices, 1973, ED-20 (10): 874-877.
    [50] Boglione L, Pollard R D, Postoyalko V. “Analytical behavior of the noise resistance and the noise conductance for a network with parallel and series feedback,”IEEE Transactions on Microwave Theory and Techniques, 1997, 45 (3): 301-304.
    [51] 黄煜梅. CMOS 蓝牙收发器中低噪声放大器设计及高频噪声研究: [博士学位论文] .上海: 复旦大学微电子学系, 2004
    [52] 朱正涌. 半导体集成电路. 北京: 清华大学出版社, 2001. 50-65
    [53] 言华. 微波固态电路. 北京: 北京理工大学出版社, 1995. 214-219
    [54] 李伟华. VLSI设计基础. 北京:电子工业出版社, 2002. 130-137
    [55] 刘 畅,陈学良,严金龙. 一种提高硅集成电感Q值的方法. 功能材料与器件学报, 2002, 8 (1): 1-4
    [56] 孙润, 陈宝钦. TANNER集成电路设计教程. 北京: 北京希望电子出版社, 2002. 12-421

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700