基于场—路耦合模型的涡流探头设计及提离干扰抑制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合某国防预研项目,以飞机机身结构和发动机特殊部件涡流检测的应用研究为背景,论文深入研究了常规/脉冲涡流检测技术在涡流场-电路耦合问题上的理论建模、提离等主要检测干扰源的抑制方法及特殊待测件的探头设计等方面的问题,其主要内容及创新点如下:
     以电磁场和电路理论为基础,导出了涡流线圈外接电压源和接入电桥电路两.种典型情况下三维涡流场-电路耦合问题的理论模型。针对复杂边界条件下三维涡流场-电路耦合问题,应用A-φ,A法描述涡流场定解问题必须满足的位函数方程和边界条件式,并结合外电路约束下涡流线圈所满足的电路方程,建立了基于线圈磁链的场-路直接耦合的数学模型。考虑采用数值法求解计算,用伽辽金加权余量法导出了涡流线圈接电压源和接入电桥电路两种典型情况下三维涡流场-路耦合问题的有限元方程组。给出了有限元仿真的基本步骤和实现方法,对其中一些关键性问题如涡流场开域问题的处理、离散网格的生成、网格密度的控制、节点自由度设置和边界条件设定等给出了解决方法。
     研究小曲率半径弧面涡流检测中探头提离和倾斜效应,提出了利用相位旋转和信号增强相结合抑制干扰的方法。建立三类检测表面-凹面、平面和凸面所对应的三维涡流场-路耦合分析的有限元模型,计算分析了表面形状、曲率半径变化对导体内涡流分布及线圈阻抗的影响,结果表明试件形状和曲率半径大小仅改变线圈阻抗变化的值,并不影响其变化规律。进一步着重研究了三类试件上方线圈提离变化所形成的阻抗轨迹特征及其对缺陷检测的影响,其结果表明提离轨迹可近似为一条直线,随检测频率增大,缺陷信号绕提离轨迹顺时针旋转,存在一个频率点使两者之间的夹角为90°,并从物理层面解释了上述变化的本质。研究了线圈倾斜时与导体之间电磁耦合作用的变化特征,对比分析了线圈倾斜度和提离增大时的阻抗轨迹,结果表明当线圈倾斜角小于某一特定角度时(约69°),倾斜轨迹也可近似为直线,且它几乎与提离轨迹重合,这一现象说明抑制提离干扰的同时,也可抑制极大部分倾斜干扰。基于上述结论,提出了用相位旋转和信号增强相结合抑制提离和倾斜干扰源的方法,并分析了当线圈接入检测桥路后,桥路连接方式及参数变化对上述阻抗信号特征及抑制方法产生的影响。通过实验数据验证了数值结果及理论分析的正确性,表明所提出的方法确实可行。
     针对盘孔裂纹检测问题,提出和设计了两种结构的涡流探头-单线圈绝对式探头(接入电桥电路)和三线圈差分式探头,并与一种双线圈正交式探头作了对比分析。根据盘孔几何结构和裂纹走向,选择探头插入式的检测方式,提出了两种不同结构形式的探头,并与另一种探头对比分析。针对三种探头对盘孔裂纹的检测,建立对应的三维涡流场-路耦合分析有限元模型,首先研究了探头中激励线圈的尺寸选取对检测灵敏度的改善,结果表明当激励线圈高度高于盘厚3.0mm时,探头具有最佳的检测灵敏度。然后根据三种探头自身的独特性,着重分析了其特定参数变化对检测灵敏度和裂纹信号的影响,结果表明绝对式探头内、外径增大均能提高检测灵敏度,但内径增大同时也会减小桥路输出信号的绝对变化量;差分式探头中激励线圈和检测线圈匝数比小于1有利于提高检测灵敏度和增强裂纹信号;减小正交式探头中检测线圈的长径比可增强裂纹信号,但这种探头的检测具有方向性,即它只对与检测线圈中轴线平行走向的裂纹最灵敏,对其它走向的裂纹,其检测灵敏度迅速下降,甚至为零。从检测特征及灵敏度上对比分析了三种探头的优、缺点。最后,用实际制作的涡流探头对某型飞机发动机篦齿盘标准件进行检测,其结果表明所提出的两种探头能够很好地实现盘孔周边微小裂纹的检测,其中差分式探头比绝对式探头具有更高的检测灵敏度,但同时它对两检测线圈的结构和位置对称性的要求严格;两种探头均可消除正交式探头的检测方向性问题。
     研究多层金属结构脉冲涡流检测中探头的提离效应,提出了利用“相位跳变点”从提离干扰中识别缺陷的方法。飞机机身多层胶(铆)接金属结构脉冲涡流检测中,探头提离变化极易对表面下缺陷信号造成干扰,使有效识别缺陷变得极为困难。为解决这一问题,建立对应的三维瞬态涡流场-路耦合分析的有限元模型,首先研究了仅有提离、仅有缺陷及提离和缺陷同时存在时三类检测信号Δξl、Δξc和Δξl+c的时域响应和时频域能量分布特征,结果表明随缺陷所处位置越深,Δξc的峰值越小,起始时间也越晚,整个信号的能量分布出现沿频率轴往下压缩,沿时间轴向右扩展的现象,从导体内瞬态感应场的渗透特性解释了上述变化的本质。提离信号Δξl的时域响应无延迟,且随探头提离增大其峰值增大;当提离变化较大时,信号能量分布沿频率轴轻微移动,主要表现在较高频部分,时间轴上则无明显变化。由此看出,Δξl和Δξc两者区别明显,但一旦缺陷信号中混杂进提离干扰,不论时域还是时频域,Δξl+c与Δξl,极其相似,无法判断是否存在缺陷。进一步地,根据信号波形的改变,着重分析了提离和缺陷所引起各频率成分的相位变化发现:提离增大导致幅值明显减小,但相位变化甚微,而缺陷则会使到达其所处位置的频率分量发生明显相变。基于这一特征,用相位信息从提离干扰中识别缺陷,并找到一种有效的分析工具-双复数小波变换,提取信号在时间-尺度平面上的相位,结果发现上述三类信号的相位曲线均存在一个非常明显的“相位跳变点”,在这一时间点小波系数的相位从“负”跳变到“正”。提离改变,其“相位跳变点”的位置几乎不变;缺陷信号则明显后移,且随缺陷位置越深,其“相位跳变点”越后;当提离和缺陷同时存在时,其跳变点介于上述两者之间。因此,提出了用“相位跳变点”从混杂了提离干扰的检测信号中识别缺陷的方法,通过实验验证了上述结论及理论分析的正确性,表明所提出的方法行之有效。
Supported by National Defense Project to apply eddy current technique to inspect airframe structures and critical engine components, theoretic model of eddy current field-circuit coupled problem, method to suppress probe's lift-off noise as a significant obstacle and the design of a novel probes for inspection of the specific specimen in Conventional/Pulsed eddy current testing are studied in this paper. The brief of these researches and the novel approaches are as follows:
     Based on electromagnetic field theory and electric circuit theory, mathematical model of three-dimensional eddy current field-circuit coupled problem are derived for two typical cases that coil is driven by voltage source and connected to bridge circuit. For three-dimensional eddy current-circuit coupled problem with complex boundary conditions, potential equation and boundary condition formulation of eddy current field problem are expressed by using A—φ, A method. And circuit equation of eddy current coil connected into outer circuit network is presented. Furthermore, mathematic model of field-circuit coupled directly is derived based on coil's flux linkage. Numerical calculation is adopted here. Finite element formulation is derived by using Galerkin method as coil is driven by voltage source and connected to bridge circuit. Solution steps of finite element analysis are presented. Furthermore, some keys such as open boundary problem, mesh, element density, the degrees of freedom at a node and boundary condition are illustrated detailedly.
     A probe-coil's lift-off and tilt effects for the curved specimen with small curvature radius in practical eddy current testing are analyzed. An approach using phase rotation and signal enhancement technique to eliminate lift-off and tilt noise is presented. For three typical detected surfaces-concave, plane and convexity, the relevant finite element models of three-dimensional eddy current field-circuit coupled problem have been built. The surface shape and curvature radius effects on eddy current distribution in the conductor and coil impedance have been investigated. The results show that the coil impedance magnitude is changed by the specimen's shape and curvature radius, but its characteristic is not influenced. Furthermore, the characteristics of the impedance locus produced by coil's lift-off variation and lift-off effect on defect detection for three specimens have been analyzed thoroughly. The results show that lift-off locus is always straight line. Defect signal is characteristic of rotating clockwise on lift-off locus as test frequency is increased. And the angle between defect signal and lift-off locus is 90 degree at a certain frequency. The physical essence of this characteristic is interpreted. Electromagnetic coupling between coil and specimen caused by coil's tilt angle variation has been analyzed. The impedance locus produced by coil's tilt has been compared with lift-off locus. The results show that the tilt locus is approximately straight line and close with lift-off locus as coil's tilt angle is less than a certain angle (about 69°). The above-mentioned property shows that tilt noise is suppressed mostly with lift-off noise. On this merit, an approach using phase rotation and signal enhancement technique are presented to eliminate lift-off and tilt noise. Moreover, the mode of operation and element of the bridge effects on signal and the proposed method have been researched as coil is connected to bridge circuit. Numerical results and theoretical analysis are validated by experiments. It is showed that the proposed method to suppress the lift-off and tilt noise is feasible.
     For inspecting the crack breaking away from the aperture of a disk, two eddy current probes with different configuration-an absolute probe with a coil (connecting to bridge circuit) and a differential probe with three coaxial coils, are proposed and designed, and compared with another probe with two cross-axis coils. According to the geometry of disk aperture and the direction of a fatigue crack around a disk aperture, the plug-in detection mode is chosen. Moreover, two eddy current probes with different configuration are proposed and compared with another probe. For detecting crack around a disk aperture by three eddy current probes, three-dimension finite element models of eddy current field-circuit coupled problem have been built respectively. The excitation coil's dimension effects on the test sensitivity have been analyzed. The results show that the probe has best sensitivity if excitation coil height is 3.0mm higher than disk thickness. Furthermore, according to the uniqueness of three probes, the specific parameters effects on the test sensitivity and crack signal have been investigated thoroughly. The results show that the larger an absolute probe's inner and outer radius, the higher the probe sensitivity. But the absolute change of bridge circuit output voltage is increased inversely with coil inner radius. For a differential probe, it is advantageous to improve the sensitivity and enhance crack signal that the turn ratio of excitation coil to pickup coil is less than 1. For a cross-axis probe, defect signal can be enhanced by decreasing the ratio of pickup coil's height to diameter. But the probe's sensitivity has directionality. That is, its sensitivity to a crack parallel to pickup coil's central axis is best. And its sensitivity to the cracks with another directions decreases rapidly to zero. The advantage and disadvantage over test performance and sensitivity of three probes are presented. Eddy current probes have been fabricated to inspect the standard castor gear specimen. The test results show that the absolute probe and differential probe can be applied to detect small crack breaking away from the disk aperture accurately. And the sensitivity of the differential probe is better than the absolute probe's sensitivity, but in the differential probe, two pickup coils must be configured and located symmetrically about the excitation coil. Compared with the cross-axis probe, the proposed eddy current probes have no directionality in the test sensitivity.
     A probe's lift-off effects for the multi-layered conductive structure inspected by pulsed eddy current technique are analyzed. An approach using "phase jump point" to distinguish a defect from lift-off noise is proposed. In order to suppress probe's lift-off noise that masks signal produced by a defect beneath the surface of the first-layer conductor, the three-dimensional finite element model of transient eddy current-circuit coupled problem has been built. The time-domain reponse and signal energy distribution characteristic in the time-frequency plane of three test signals-Δξl caused by probe's lift-off variation,Δξc produced by a defect, andΔξl+c caused by a defect together with lift-off, have been investigated. The results show that the deeper the crack location, the smaller the peak value ofΔξc, the longer the starting time ofΔξc and signal energy distribution in the time-frequency plane tends to compress downward in the frequency axis and extend rightward in the time axis. Based on penetration property of transient field into the conductor, the essence of signal features has been interpreted. The starting time of lift-off signalΔξl has no delay. And its peak value increases rapidly with probe's lift-off. As probe's lift-off is changed greatly, signal energy, especially the high frequency portion of the signal, tend to shift slightly in the frequency axis and remain unchanged in the time axis.Δξc is distinguished fromΔξl. ButΔξl+c are similar extremely toΔξl in time domain and the time-frequency plane. Consequently, a defect can not be identified visually from test signal with lift-off noise. Furhermore, according to the characteristic of signal shape, the phase of each frequency component in the signals caused by lift-off and defect has been analyzed. The results show that amplitude is decreased obviously and phase is unchanged almost by increasing probe's lift-off. But phase of frequency components that penetrate into defect's location is shifted significantly. On this merit, an approach using phase information to discriminate defect from lift-off noise is proposed. And an effective tool-dual-tree complex wavelet transform is adopted to extract signal phase in the time-scale plane. The results show that there is an important feature-"phase jump point (PJP)" in phase curves of three signals. The PJP is the time that wavelet coefficient's phase of signal is from "negative" to "positive". The PJP ofΔξl caused by lift-off variation remains unchanged. The PJP ofΔξc produced by a defect appears later than the PJP ofΔξl. And the deeper the defect location is, the later the PJP ofΔξc is. The PJP ofΔξl+c caused by a defect together with lift-off is between the PJP ofΔξl and the PJP ofΔξc.On this merit, an approach using "phase jump point" to identify a defect from signal with lift-off noise is proposed. These conclusions and theoretical analysis are validated by experiments. It is showed that the proposed method is feasible.
引文
[1]李家伟,陈积懋.无损检测手册[M].北京:机械工业出版社,2002:2-4.
    [2]《美国无损检测手册》评审委员会译.美国无损检测手册:电磁卷[M].上海:世界图书出版社,1999:21-22.
    [3]Hellier C J. Handbook of nondestructive evaluation[M]. New York: McGraw-Hill,2003:1-2.
    [4]Peter J S. Nondestructive evaluation:theory, techniques and applications[M]. New York:Marcel Dekker,2002:1-2.
    [5]Cohen B Y. Emerging NDE Technologies and Challenges at the Beginning of the 3rd Millennium--Part Ⅰ[EB/OL]. http://www.NDT.net,2000-01-05/2009-05-18.
    [6]Cohen B Y. Emerging NDE Technologies and Challenges at the Beginning of the 3rd Millennium--Part Ⅱ[EB/OL]. http://www.NDT.net,2000-02-05/2009-05-18.
    [7]谢小荣,杨小林.飞机损伤检测[M].北京:航空工业出版社,2006:6-8.
    [8]孙金立,段成美.无损检测及在航空维修中的应用[M].北京:国防工业出版社,2004:9-11.
    [9]耿荣生,郑勇.航空无损检测技术发展动态及面临的挑战[J].无损探伤,2002,24(1):1-5.
    [10]Groner D J. U.S. Air Force Aging Aircraft Corrosion[Z]. Columbus:American Institute of Aeronautics and Astronautics, Inc.1997.
    [11]刘晓山,郑立胜.飞机修理新技术[M].北京:国防工业出版社,2006:11-28.
    [12]许愕俊.缺陷、损伤、微裂纹对航空发动机构件服役总寿命及可靠性的影响[J].航空发动机,2003,29(2):11-15.
    [13]Rummel W D, Bowler J R. Integrated Quantitative Nondestructive Evaluation (NDE) and Reliability Assessment of Aging Aircraft Structures[R]. Ames:Center for NDE Iowa State University,2001,4-5.
    [14]杰夫·内格尔.展望航空航天业无损检测的未来[J].航空制造技术,2005,9:109-110.
    [15]Smith A R, Bending J M, Jones L D, et al. Rapid Ultrasonic Inspetion of Ageing Aircraft[C]. London:41st Annual Conf of the Brit Inst NDT,2002,25-30.
    [16]Lamarre A. Eddy Current Array[EB/OL]. http://www.qualitymag.com, 2008-08-27/2009-05-18.
    [17]Pelletier E, Grenier M, Chahbaz A, et al. Array Eddy Current for Fatigue Crack Detection of Aircraft Skin Structures[C]. Quebec:Proc. Vth International Workshop, Advances in Signal Processing for Non Destructive Evaluation of Materials.2005:85-92.
    [18]Sun H Y, Ali R, Johnson M, et al. Enhanced Flaw Detection Using an Eddy Current probe with a Linear Array Of Hall Sensors[J]. Review of Progress Quantitative Nondestructive Evaluation.2005,24,516-522.
    [19]安治永,李应红,梁华等.无损检测在航空维修中的应用[J].无损检测,2006,28(11):598-601.
    [20]Inagaki T, Ishii T, Iwamoto T. On the NDT and E for the diagnosis of defects using infrared thermograph[J]. NDT&E International,1999,32:247-257.
    [21]Snell J. Infrared thermography:a view from the USA[J]. Insight,2005,47(8): 486-490.
    [22]何永乐.涡流探伤在航空机轮上的应用[J].航空维修与工程,2003,5:33.
    [23]任吉林,林俊明.电磁无损检测[M].北京:科学出版社,2008:64-101.
    [24]Lingvall F, Stepinski T. Automatic detecting and classifying defects during eddy current inspection of riveted lap-joints[J]. NDT&E International,2000,33:47-55.
    [25]Libby H L. Introduction to electromagnetic nondestructive test methods[M]. New York:Wiley,1971:214-256.
    [26]Xiang P, Ramakrishnan S, Cai X, et al. Automated analysis of rotating probe multi-frequency eddy current data from steam generator tubes[J]. International Journal of Applied Electromagnetics and Mechanics,2000,12:151-164.
    [27]Bos B D, Sahle S, Andersson J. Automatic scanning with multi-frequency eddy current on multi-layered structures[J]. Aircraft Engineering and Aerospace Technology,2003,75(5):491-496.
    [28]Chady T, Enokizono M, Sikora R. Neural Network Models of Eddy Current Multi-Frequency System for Nondestructive Testing[J]. IEEE Transaction on Magnetics,2000,36(4):1724-1727.
    [29]Smith R A, G R Hugo. Deep Corrosion and crack detection in aging aircraft using transient eddy-current NDE[J]. Insight,2001,43(1):14-24.
    [30]Plotnikov Y A, Nath S C, Rose C W. Defect Characterization in Multi-Layered Conductive Components with Pulsed Eddy Current[J]. Review of progress in Quantitative Nondestructive Evaluation,2002,21(A):1976-1983.
    [31]Lepine B A, Giguere J R, Forsyth D S, et al. Applying pulsed eddy current NDI to the aircraft hidden corrosion problem[C]. Orlando:Proceedings of the Fifth Joint NASA/FAA/DoD Aging Aircraft Conference,2001:1-12.
    [32]Safizadeh M S, Liu Z, Mandache C, et al. Automated Pulsed Eddy Current Method for Detection and Classification of Hidden Corrosion[C]. Quebec:Proc.Vth International Workshop, Advances in Signal Processing for Non Destructive Evaluation of Materials,2005:75-84.
    [33]Vasic D, Bilas V, Ambrus D. Pulsed eddy current nondestructive testing of ferromagnetic tubes[J]. IEEE Transactions on Instrumentation and Measurement, 2004,53(4):1289-1294.
    [34]杨宾峰,罗飞路,张玉华,曹雄恒.飞机多层结构中裂纹的定量检测及分类识别[J].机械工程学报,2006,42(2):63-67.
    [35]Sophian A, Tian G Y, Taylor D, et al. Design of a pulsed eddy current sensor for detection of defects in aircraft lap-joints[J]. Sensors and Actuators A:Physical, 2002,101:92-98.
    [36]Cheng W, Komura I. Simulation of Transient Eddy-Current Measurement for the Characterization of Depth and Conductivity of a Conductive Plate[J]. IEEE Transactions on Magnetics,2008,44(11):3281-3284.
    [37]Young K S, Dong M C, Young J K, et al. Signal characteristics of differential-pulsed eddy current sensors in the evaluation of plate thickness[J]. NDT&E International,2009,42(3):215-221.
    [38]Lebrun B, Jayet Y, Baboux J C. Pulsed eddy current signal analysis:application to the experimental detection and characterization of deep flaws in highly conductive materials[J]. NDT&E International,1997,30(3):163-170.
    [39]Krause H J, Panaitov G I, Zhang Y. Conductivity Tomography for Non-Destructive Evaluation Using Pulsed Eddy Current with HTS SQUID Magnetometer[J]. IEEE Transaction on Applied Superconductivity,2003,13(2): 215-218.
    [40]Yang H C, Tai C C. Pulsed eddy-current measurement of a conducting coating on a magnetic metal plate[J]. Measurement Science and Technology,2002,13: 1259-1265.
    [41]Brown D J, Hils C M, Johnson M J. Massively Multiplexed Eddy Curent Testing and Its Comparison With Pulsed Eddy Current Testing[J]. Review of Quantitative Nondestructive Evaluation,2004,23:309-316.
    [42]Fitzpatrick G L, Thome D K, Skaugset R L, et al. Novel eddy current field modulation of magnetic-optic garent films for real-time imaging of fatigue cracks and hidden corrosion[J]. Nondestructive Inspection of Aging Aircraft, SPIE, 1993,2001:210-221.
    [43]Fitzpatrick G L, Thome D K, Skaugset R L, et al. Magneto-Optic/Eddy Current Imaging of Subsurface Corrosion and Fatigue Cracks in Aging Aircraft[J]. Review of Progress in Quantitative Nondestructive Evaluation,1996,15A:159-1166.
    [44]David K. Thome. Development of an Improved Magneto-Optic/Eddy-Current Imager[R]. Washington:Office of Aviation Research,1998,2-3.
    [45]Deng Y M, Liu X, Fan Y, et al. Characterization of Magneto-Optic Imaging Data for Aircraft Inspection[J]. IEEE Transactions on Magnetics,2006,42(10): 3228-3230.
    [46]Zeng Z W, Liu X, Deng Y M, et al. A Parametric Study of Magneto-Optic Imaging Using Finite-Element Analysis Applied to Aircraft Rivet Site Inspection[J]. IEEE Transactions on Magnetics,2006,42(11):3737-3744.
    [47]Diraison Y, Joubert P, Placko D. Characterization of subsurface defects in aeronautical riveted lap-joints using multi-frequency eddy current imaging[J]. NDT&E International,2009,42:133-140.
    [48]Radtkea U, Zielkea R, Rademacher H G, et al. Application of magneto-optical method for realtime visualization of eddy currents with high spatial resolution for nondestructive testing[J]. Optics and Lasers in Engineering,2001,36:251-268.
    [49]朱目成.亚表面缺陷的磁光/涡流实时成像检测技术的研究[D].成都:四川大学,2004:116-117.
    [50]Schmidt T R. The remote field eddy current inspection technique[J]. Materials Evaluation,1984,42(2):225-230.
    [51]Raine G A, Smith N. NDT of Offshore Oil and Gas Installations Using the Alternating Current Field Measurement (ACFM) Technique[J]. Materials Evaluation,1996,4:461-465.
    [52]Udpa S, Udpa L. Eddy Current Testing-Are We at the Limits[EB/OL]? http://www.NDT.net,2004-07-06/2009-05-18.
    [53]Thompson J G. Subsuface Corrosion Detection in aircraft lap splices using a Dual Frequency Eddy Current Inspection Technique[J]. Materials Evaluation,1993, 10:1398-1401.
    [54]Roach D, Hohman E. Corrosion Detection in Multi-Layered Rotorcraft Structure[EB/OL]. http://www.osti.gov/,2000-07-06/2009-05-20.
    [55]Spencer F W. Detection Reliability for Small Cracks Beneath Rivet Heads Using Eddy-Current Nondestructive Inspection Techniques[R]. Washington:Office of Aviation Research,1999,1-2.
    [56]Krause H J, Hohmann R, Gruneklee M, et al. Aircraft Wheel and Fuselage Testing with Eddy Current and SQUID[EB/OL]. http://www.NDT.net, 1998-09-03/2009-05-20.
    [57]Hohmann R, Maus M, Lomparski D, et al. Aircraft Wheel Testing with Machine-Cooled HTS SQUID Gradiometer System[J]. IEEE Transactions on Applied Superconductivity,1999,9(2):3801-3804.
    [58]Leclerc R. Samson R. Eddy Current Array Probe for Corrosion Mapping on Ageing Aircraft[J]. Review of Progress in Quantitative Nondestructive Evaluation,2000(CP509):489-496.
    [59]Chady T. Enokizono M. Todaka T, et al. Eddy Current Tomography of Multi-layered Aluminum Structures[J]. Review of Progress in Quantitative Nondestructive Evaluation,2000(CP509):425-432.
    [60]Gartner S, Krause H J, Wolters N, et al. Multiplexed HTS RF SQUID Magnetometer Array for Eddy Current Testing of Aircraft Rivet Joints[J]. Review of Quantitative Nondestructive Evaluation,2002,21:520-527.
    [61]Bowler J R. Modeling of Eddy Current Array Sensor Sensitivities[R]. Ames: Center for NDE Iowa State University,2002:21-26.
    [62]Rempt R D. Magnetoresistive Sensors for Eddy Current Imaging Nondestructive Evaluation[R]. Seattle:Boeing Company Phantom Works,2003:2-12.
    [63]Dogaru T, Smith C H, Schneider R W, et al. Deep Crack Detection around Fastener Holes in Airplane Multi-Layered Structures using GMR-Based Eddy Current Probes[J]. Review of Quantitative Nondestructive Evaluation,2004,23: 398-405.
    [64]Nair N V, Melapudi V R, Jimenez H R, et al. A GMR-Based Eddy Current System for NDE of Aircraft Structures [J]. IEEE Transactions on Magnetics,2006,42(10): 3312-3314.
    [65]宋凯,康宜华,孙燕华,等.漏磁和涡流复合探伤时信号产生机理研究[J].机械工程学报,2009,45(7):233-237.
    [66]Liu Z, Forsyth D S, Safizadeh S, et al. Fusion of Visual and Eddy Current Inspection Results for the Evaluation of Corrosion Damage in Aircraft Lap Joints[C]. Bellingham:Proc. of SPIE,2005,5768:157-165.
    [67]Gupta K, Ghasr M T, Kharkovsky S, et al. Fusion of Microwave and Eddy Current Data for a Multi-modal Approach in Evaluation Corrosion Under Paint and in Lap Joints[J]. Review of Quantitative Nondestructive Evaluation,2007,26:611-618.
    [68]Beissner R E, J L Fisher. A Modal of Pulsed Eddy Current Crack Detection[J]. Review of Progress in Quantitative Nondestructive Evaluation, 1986,5A:189-197.
    [69]J L Fisher, Beissner R E. Pulsed Eddy Current Crack Characterization Experiment[J]. Review of Progress in Quantitative NDE,1986,5:199-206.
    [70]Beissner R E, J L Fisher. Use of a Chirp Waveform in Pulsed Eddy Current Crack Detection[J]. Review of Progress in Quantitative NDE,1987,6A:467-469.
    [71]Dood C V, Deed W E. Multiparameter Method with Pulsed Eddy Currents[J]. Conference on Review of Progress in Quantitative NDE,1986: 849-854.
    [72]Bowler J R. Prediction and Analysis of Transient Eddy-Current Probe Signal[J]. Review of Progress in Quantitative Nondestructive Evaluation,1990, 9:287-293.
    [73]Tai C C, Rose J H, Moulder J C. Thickness and conductivity of metallic layers from pulsed eddy-current measurements[J]. Rev. Sci. Instrum.,1996,167(11): 3965-3972.
    [74]Yang H C, Tai C C. Pulsed eddy-current measurement of a conducting coating on a magnetic metal plate[J]. Measurement Science and Technologe,2002,13: 1259-1265.
    [75]Lebrun B, Jayet Y, Baboux J C. Pulsed eddy current signal analysis:application to the experimental detection and characterization of deep flaws in highly conductive materials[J]. NDT&E International,1997,30(3):163-170.
    [76]Burkhardt G L, Creek E A, Beissner R E, et al. Eddy Current for Detecting Second-Layer Cracks Under Installed Fasteners[R]. San Antonio:Southwest Research Institute,1994:84-86.
    [77]Rose J H, Uzal Erol, Moulder J C. Pulsed Eddy-Current Characterization of Corrosion in Aircraft Lap Splices:Quantitative Model[J]. SPIE,1994,2160: 164-176.
    [78]Moulder J C, Bieber J A, Ward W W, et al. Scanned Pulsed Eddy Current Instrument for Non-destructive Inspection of Aging aircraft[J]. SPIE,1996,2945: 2-13.
    [79]Bowler N, Bowler J R, Podney W. Response Model of Superconductive, Pulsed Eddy-Current Probes for Detection of Deeplying Flaws[J]. Review of Progress in Quantitative Nondestructive Evaluation,2001,20:941-948.
    [80]Johnson M J, Bowler J R, Azeem F. Pulsed Eddy-Current NDE at Iowa State University-Recent Progress and Results[J]. Review of Quantitative Nondestructive Evaluation,2003,22:390-396.
    [81]Smith R A, Hugo G R. Deep Corrosion and Crack Detection in Aircraft using Transient Eddy-current NDE[J]. Review of Progress in Quantitative NDE,1999: 1401-1408.
    [82]Giguere J S R, Lepine B A, Dubois J M S. Detection of Cracks Beneath Rivet Heads via Pulsed Eddy Current Technique[J]. Review of Quantitative Nondestructive Evaluation,2002,21:1968-1975.
    [83]Tian G Y, Sophian A, Taylor D, et al. Multiple Sensors on Pulsed Eddy-Current Detection for 3-D Subsurface Crack Assessment[J]. IEEE Sensors Journal,2005, 5(1):90-96.
    [84]Vasic D, Bilas V, Ambrus D. Pulsed eddy current nondestructive testing of ferromagnetic tubes[J]. IEEE Transactions on Instrumentation and Measurement, 2004,53(4):1289-1294.
    [85]Cheng W Y, Komural. Simulation of Transient Eddy-Current Measurement for the Characterization of Depth and Conductivity of a Conductive Plate[J]. IEEE Transactions on Magnetics,2008,44(11):3281-3284.
    [86]Plotnikov Y A, Nath S C, Rose C W. Defect Characterization In Multi-layered Conductive Components with Pulsed Eddy Current[J]. Review of Progress in Quantitative NDE,2002,21:1976-1983.
    [87]Plotnikov Y A, Bantz W J. Subsurface Defect Detection in Metals with Pulsed Eddy current[J]. Review of Progress in Quantitative NDE,2005,24:447-454.
    [88]Plotnikov Y A, Bantz W J, Hansen J P. Enhanced Corrosion Detection in Airframe Structure Using Pulsed Eddy Current and Advanced Processing[J]. Material Evaluation,2007,4:403-410.
    [89]杨宾峰.脉冲涡流无损检测若干关键技术研究[D].长沙:国防科技大学,2006:46-87.
    [90]张玉华,罗飞路,孙慧贤,等.基于三维磁场测量的脉冲涡流检测探头的设计[J].机械工程学报,2009,45(8):249-254.
    [91]Yang B F, Luo F L, Han D. Pulsed eddy current technique used for nondestructive inspection of aging aircraft[J]. Insight-Nondestructive Testing and Condition Monitoring,2006,48(7):411-414.
    [92]张玉华,罗飞路,孙慧贤,杨宾峰.脉冲涡流检测中三维磁场量的特征分析 与缺陷定量评估[J].传感技术学报,2008,21(6):801-805.
    [93]王韫江,王晓峰,李斌,等.管道腐蚀检测中新型脉冲涡流传感器的设计[J].无损检测,30(11):807-808.
    [94]Li S, Huang S L, Zhao W. Development of Differential Probes in Pulsed Eddy Current Testing for Noise Suppression[J]. Sensors and Actuators,2007,135 A: 675-679.
    [95]王长清.现代计算电磁学基础[M].北京:北京大学出版社.2005:2-10.
    [96]谢德馨.三维涡流场的有限元分析[M].北京:机械工业出版社,2008:7-8.
    [97]Dodd C V, Deeds W E. Analytical solutions to eddy-current probe-coil problems[J]. Journal of Applied Physics.1968,39(6):2829-2838.
    [98]Cheng C C, Dodd C V, Deeds W E. General analysis of probe coils near stratified conductorsInt[J]. J. Nondestr. Test,1971,3:109-130.
    [99]Uzal E, Moulder J C, Mitra S, et al. Impedance of Coils over Layered Metals with Continuously Variable Conductivity and Permeability:Theory and Experiment[J]. J. Appl. Phys.,1993:74(3):2076-2089.
    [100]Theodoulidis T P, Tsiboukis T D, Kriezis E E. Analytical Solutions in Eddy Current Testing of Layered Metals with Continuous Conductivity Profiles[J]. IEEE Transactions on Magnetics,1995,31(3):2254-2260.
    [101]雷银照,时谐电磁场解析方法[M].北京:科学出版社,2000:43-216.
    [102]Theodoulidis T P. Model of Ferrite-Cored Probes for Eddy Current Nondestructive Evaluation[J]. Journal of Applied Physics,2003:93(5): 3071-3078.
    [103]Auld B A, Moulder J C. Review of Advances in Quantitative Eddy Current Nondestructive Evaluation[J]. Journal of Nondestructive Evaluation,1999,18(1): 3-36.
    [104]Burke S K, Ibrahim M E. Mutual Impedance of Air-cored Coils above a Conducting Plate[J]. J. Phys. D:Appl. Phys.2004,37:1857-1868.
    [105]黄平捷.多层导电结构厚度与缺陷电涡流检测若干关键技术研究[D].杭州:浙江大学,2004:32-65.
    [106]Bowler J R, Theodoulidis T P. Eddy Currents Induced in a Conducting Rod of Finite Length by a Coaxial Encircling Coil[J]. J. Phys. D:Appl. Phys.2005,38: 2861-2868.
    [107]Tsaknakis H J, Kriezis E E. Field Distribution Due to a Circular Current Loop Placed in an Arbitrary Positon Above a Conducting Plate[J]. IEEE Transactions on Geoscience and Remote Sensing,1985,23(6):834-846.
    [108]Theodoulidis T P. Analytical Model for Tilted Coils in Eddy-Current Nondestructive Inspection[J]. IEEE Transactions on Magnetics,2005,41(9): 2447-2454.
    [109]Zhang Y H, Luo F L, Sun H X. Impedance Evaluation of a Probe-Coil's Lift-off and Tilt Effect in Eddy-Current Nondestructive Inspection by 3D Finite Element Modeling[C]. Shanghai:17th World conference of Nondestructive testing,2008, 10.
    [110]Theodoulidis T P, Kriezis E E. Impedance Evaluation of Rectangular Coils for Eddy Current Testing of Planar Media[J]. NDT&E International,2002,35: 407-414.
    [111]Wilde J, Lai Y. Design Optimization of an Eddy Current Sensor Using the Finite-Elements Method[J]. Microelectronics Reliability,2003,43:35-349.
    [112]Fava J O, Ruch M C. Calculation and Simulation of Impedance Diagrams of Planar Rectangular Spiral Coils for Eddy Current Testing[J]. NDT&E International,2006,39:414-424.
    [113]Rubinacci G, Tamburrino A, Ventre S. An Efficient Numerical Model for a Magnetic Core Eddy-Current Probe[J]. IEEE Transaction on Magnetics,2008, 44(6):1306-1309.
    [114]Theodoulidis T P. Analytical and Numerical Solution of the Eddy-Current Problem in Spherical Coordinates Based on the Second-Order Vector Potential Formulation[J]. IEEE Transactions on Magnetics,1997,33(4):2461-2472.
    [115]陈德智,邵可然,王涛.蒸气发生器管道涡流检测Benchmark模型的数值计算[J].无损检测,2000,22(10):435-438.
    [116]Theodoulidis T P, Burke S K. Theoretical and Experimental Eddy Current Study of Eddy Current Induction in a Conducting Cylinder[J]. Electromagnetic Nondestructive Evaluation,2004, VIII:11-18.
    [117]Bihan Y L.3-D Finite-Element Analysis of Eddy-Current Evaluation of Curved Plates[J]. IEEE Transaction on Magnetics,2002,38(2):1161-1164.
    [118]Theodoulidis T P, Bowler J R. Impedance of an Induction Coil at the Opening of a Borehole in a Conductor[J]. Journal of Applied Physics,2008,103:1-9.
    [119]Bowler J R. Eddy Current Interaction with an Ideal Crack. I. The Forward Problem[J]. J. Appl. Phys.,1994:75(12):8128-8137.
    [120]陈德智,邵可然,盛剑霓.平板导体中裂纹缺陷探伤涡流场的求解[J].中国 电机工程学报,2000,20(7):62-65.
    [121]辛玲玲,盛剑霓.涡流检测中平板导体的理想裂缝模型[J].中国电机工程学报,2002,22(2):41-46.
    [122]Bertrand V, Lesselier D. Numerical Modeling of Eddy Current Non-Destructive Evaluation with FEM-BEM TRIFOU Software in Controlled Configurations[J]. Electromagnetic Nondestructive Evaluation,2000, IV:32-41.
    [123]Tanaka M, Tsuboi H. Finite Element Model of Natural Crack in Eddy Current Testing Problem[J]. IEEE Transaction On Magnetic,2001,37(5):3125-3128.
    [124]Ishibashi K. Numerical Analysis of Eddy Current Testing by Integral Equation Method[J]. IEEE Transaction on Magnetics,2001,37(5):3229-3232.
    [125]Huang H Y, Takagi T T, Uchimoto T. Fast Numerical Calculation for Crack Modeling in Eddy Current Testing of Ferromagnetic Materials[J]. Journal of Applied Physics,2003,94(9):5866-5872.
    [126]Knopp J S, Aldrin J C, Sabbagh. Numerical and Experimental Study of Eddy Current Crack Detection Around Fasteners in Multi-Layer Structures[J]. Review of Quantitative Nondestructive Evaluation,2004,23:336-343.
    [127]Ho S L, Yang S, Ni G, et al. Numerical Analysis of Thin Skin Depths of 3-D Eddy-Current Problems Using a Combination of Finite Element and Meshless Methods[J]. IEEE Transaction on Magnetics,2004,40(2):1354-1357.
    [128]Zou J, Xie Y Q, Yuan J S. Analysis of the Thin Plate Eddy-Current Problem by Finite Volume Method[J]. IEEE Transaction on Magnetics,2004,40(2): 1370-1373.
    [129]Li Y. Edge Based Finite Element Simulation of Eddy Current Phenomenon and its Application to Defect Characterization[J]. Dissertation. Ames:Iowa State University,2004.
    [130]Theodoulidis T P, Bowler J R. Eddy-Current Interaction of a Long Coil With a Slot in a Conductive Plate[J]. IEEE Transactions on Magnetics,2005,41(4): 1238-1247.
    [131]Chen Z M, Rebican M, Yusa N. Fast Simulation of ECT Signal Due to a Conductive Crack of Arbitrary Width[J]. IEEE Transaction On Magnetic,2006, 42(4):683-686.
    [132]Morozov M, Rubinacci G, Tambrrion A. Numerical Models of Volumetric Insulating Cracks in Eddy-Current Testing with Experimental Validation[J]. IEEE Transaction on Magnetics,2006,42(52):1568-1576.
    [133]Ludwig R, Xiao W D. Numerical and Analytical Modeling of Pulsed Eddy Currents in a Conducting Half-Space[J]. IEEE Transactions on Magnetics,1990, 26(1):299-306.
    [134]Xiao W D, Ludwig R, Palanisamy R. Numerical Simulation of Pulsed Eddy-Current Nondestructive Testing Phenomena[J]. IEEE Transactions on Magnetics,1990,26(6):3089-3096.
    [135]Bowler J R, Johnson M. Pulsed eddy-current response to a conducting half-space[J]. IEEE Transactions on Magnetics,1997,33(3):2258-2264.
    [136]Bowler J R, Fu F W. Transient Eddy Current Interaction With An Open Crack[J]. Review of Quantitative Nondestructive Evaluation,2004,23:329-335.
    [137]Fu F W, Bowler J R. Transient Eddy Current Response due to an open Subsurface Crack in a Conductive Plate[J]. Review of Quantitative Nondestructive Evaluation,2006,25:337-343.
    [138]Fu F W, Bowler J R. Transient Eddy Current Response due a Conductive Cylindrical Rod[J]. Review of Quantitative Nondestructive Evaluation,2007,26: 332-339.
    [139]Pavo J. Numerical Calculation Method for Pulsed Eddy-Current Testing[J]. IEEE Transaction On Magnetic,2002,38(2):1169-1172.
    [140]Haan V O, Jong P A. Analytical expressions for transient induction voltage in a receiving coil due to a coaxial transmitting coil over a conducting plate[J]. IEEE Transactions on Magnetics,2004,40(2):371-378.
    [141]Tsuboi H, Seshima N, Pavo J, et al. Transient Eddy Current Analysis of Pulsed Eddy Current Testing by Finite Element Method[J]. IEEE Transaction On Magnetic,2004,40(2):1330-1333.
    [142]幸玲玲.用时域有限元边界元耦合法计算三维瞬态涡流场[J].中国电机工程学报.2005,25(19):131-134.
    [143]幸玲玲,王恩荣.脉冲涡流检测中系统冲激响应的快速计算[J].中国电机工程学报.2005,25(20):147-150.
    [144]Li Y, Tian G Y, Simm A. Fast Analytical Modelling for Pulsed Eddy Current Evaluation[J]. NDT&E International,2008,41:477-483.
    [145]Tsukerman I A, Konrad A, Meunier G, et al. Coupled Field-Circuit Problems: Trends and Accomplishments[J]. IEEE Transaction on Magnetics,1993,29(2): 1701-1704.
    [146]Shi Z W, Rajanathan C B. A Method of Approach to Transient Eddy Current Problems Coupled with Voltage Sources[J]. IEEE Transaction on Magnetics, 1996,32(3):1082-1085.
    [147]Park I H, Kwak I G, Lee H B, et al. Optimal Design of Transient Eddy Current Systems Driven by Voltage Source[J]. IEEE Transaction on Magnetics,1997, 33(2):1642-1629.
    [148]Zhou P, Fu W N, Ionescu B, et al. A General Cosimulation Approach for Coupled Field-Circuit Problems[J]. IEEE Transaction on Magnetics,2006,42(4): 1051-1054.
    [149]W N, Ho S L. Parameter Extraction of Eddy-Current Magnetic Field-Circuit Coupled Problems Using Matrix Analysis Method[J]. IEEE Transaction on Magnetics,2008,18(22):1-7.
    [150]张洋.三维瞬态涡流场-电路-运动系统耦合问题的研究[D].沈阳:沈阳工业大学,2008:37-51.
    [151]Maouche B, Alkama R, Feliachi M. Semi-analytical Calculation of the Impedance of a Differential Sensor for Eddy Current Non-Destructive Testing[J]. NDT&E International,2009,42(7):573-580.
    [152]Hoshikawa H, Koyama K, Karasawa H. A new ECT surface probe without lift-off noise and with phase information on flaw depth[J]. Proceedings of AIP conference,2001, (557):969-976.
    [153]Li S, Huang L S, Zhao W, etc. Improved Immunity to Lift-off Effect in Pulsed Eddy Current Testing with Two-Stage Differential Probes[J]. Russian Journal of Nondestructive Testing,2008,44(2):138-144.
    [154]Giguere S, Dubois J M S. Pulsed eddy current:Finding corrosion independently of transducer lift-off[J]. Review of Progress in Quantitative Nondestructive Evaluation,2000,449-456.
    [155]Giguere S, Lepine B A, Dubois J M S. Pulsed Eddy Current Technology: Characterizing Material Loss with Gap and Lift-off Variations[J]. Res Nondestr Eval,2001,13:119-129.
    [156]He D F, Yoshizawa M. Dual-frequency eddy-current NDE based on high-Tc rf SQUID[J]. Physica C:Superconductivity,2002,383(3):223-226.
    [157]高春法,宋凯,唐继红.涡流检测传感器提离效应的抑制[J].无损检测,2003,25(12):606-608.
    [158]Yin W, Binns R, Dickinson S J, et al. Analysis of the Lift-off Effect of Phase Spectra for Eddy Current Sensors[C]. Ottawa:Instrumentation and Measurement Technology Conference,2005:1779-1784.
    [159]张玉华,孙慧贤,罗飞路.涡流探头提离效应的理论分析与实验研究[J].电机与控制学报,2009,13(2):197-202.
    [160]张玉华,罗飞路,孙慧贤.飞机轮毂涡流检测中探头提离效应的分析与抑制[J].仪器仪表学报,2009,30(4):786-790.
    [161]Kim D, Udpa L, Udpa S S. Lift-off invariance transformations for eddy current nondestructive evaluation signals[J]. Review of Quantitative Nondestructive Evaluation,2001,21:615-622.
    [162]Safizadeh M S, Lepine B A, Forsyth D S, et al. Time-Frequency Analysis of Pulsed Eddy Current Signals[J]. Journal of Nondestructive Evaluation,2001, 20(2):73-86.
    [163]Tian G Y, Sophian A. Reduction of lift-off effects for pulsed eddy current NDT[J]. NDT&E International,2005,38(4):319-324.
    [164]高玄怡,朱志勇,张卫明.涡流探头结构优化的实验研究[J].无损探伤,2004,28(6):28-30.
    [165]Dufour I, Placko D, Geoffroy M. Active Shielding of Eddy Current Sensors:a Method to Focus the Magnetic Field in order to Improve Lateral Resolution and Coupling Coefficient[J]. NDT&E International,1995,28(4):225-233.
    [166]何文辉,颜国正,郭旭东.一种新型电涡流传感器的理论分析[J].上海交通大学学报,2006,40(3):495-498.
    [167]Shin Y K, Choi D M, Kim Y J, et al. Signal Characteristics of Differential-Pulsed Eddy Current Sensors in the Evaluation of Plate Thickness[J]. NDT&E International,2009,42:215-221.
    [168]Pavo J, Miya K. Optimal Design of Eddy Current Testing Probe Using Fluxset Magnetic Field Sensors[J]. IEEE Transaction on Magnetics,1996,32(3): 1597-1600.
    [169]Gasparics A, Daroczi C S, Vertesy G, et al. Benchmark Test on Improved ECT Probe Based on Fluxset Sensor[J]. Electromagnetic Nondestructive Evaluation Ⅲ, 1999:315-327.
    [170]Yamada S, Katou M, Iwahara M. Defect Images by Planar ECT Probe of Meander-Mesh Coils[J]. IEEE Transaction on Magnetics,1996,32(5): 4956-4958.
    [171]Yamada S, Fujiki H, Iwahara M, et al. Investigation of Printed Wiring Board Testing By Using Planar Coil Type ECT Probe[J]. IEEE Transaction on Magnetics,1997,33(5):3376-3378.
    [172]Fava J, Ruch M. Design, Construction and Characterisation of ECT Sensors with Rectangular Planar Coils[J]. Insight,2004,46(5):268-274.
    [173]Sadler D J, Ahn C H. On-chip Eddy Current Sensor for Proximity Sensing and Crack Detection[J]. Sensors and Actuators A,2001,91:340-345.
    [174]Chady T, Enokizono M, Todaka T, et al. Visualization of Fatigue Damage in Magnetic Material Using a High Resolution Electromagnetic Sensor. IEEE Transaction on Magnetics [J],2000,36(5):2788-2790.
    [175]Chady T, Sikora R. Optimization of eddy-current sensor for multifrequency systems[J]. IEEE Transaction on Magnetics,2003,39(3):1313-1316.
    [176]Tsuchida Y, chady T, Enokizono M. Development of a Moving Magnetic Flux Type Sensor using Shading Coils for ECT[J]. IEEE Transactions on Magnetics, 1998,34(4):1309-1311.
    [177]Hasimoto M, Kosaka D. Development of Rotation ECT Probe Detecting Axial and Circumferential Cracks Using Uniform Eddy Current Excitation Coils[J]. Electromagnetic Nondestructive Evaluation V,2001:242-247.
    [178]Oka M, Enokizono M. Non-destructive Testing by Using the Rotational Magnetic Flux Type Probe for SG Tubes[J]. Electromagnetic Nondestructive Evaluation VI,2002:174-180.
    [179]Bowler J R, Katyal V. Magnetic Sensor Array for Eddy Current Field Measurement with a Racetrack Coil Excitation[J]. Electromagnetic Nondestructive Evaluation VIII,2004:36-43.
    [180]周丹丽,赵辉,刘伟文等.基于三维有限元的电涡流传感器参数的仿真研究[J].计算机测量与控制,2005,13(6):618-620.
    [181]张敬因,雷银照.一种具有聚焦作用的线圈涡流问题解析解[J].无损检测,2007,29(2):75-78.
    [182]Sun H Y, Ali R, Johnson M, et al. Enhanced Flaw Detection Using an Eddy Current Probe with a Linear Array Of Hall Sensors[J]. Review of Quantitative Nondestructive Evaluation,2005,24:516-522.
    [183]Smith R A, Harrison D J. Hall Sensor Arrays for Rapid Large-Area Transient Eddy Current Inspection[J]. Insight,2004,46(3):142-146.
    [184]Grimberg R, Udpa L, Savin A, et al.2D Eddy current sensor array[J]. NDT&E International,2006,39:264-271.
    [185]金建华,杨叔子.一种新型油管缺陷磁性检测传感器[J].传感技术学报,2002, 9(3):238-241.
    [186]Uesaka M, Nakanishi T, Miya K, et al. Micro Eddy Current Testing by Micro Magnetic Sensor Array[J]. IEEE Transactions on Magnetics,1995,31(1): 870-876.
    [187]Uesaka M, Hakuta K, Miya K, et al. Eddy-Current Testing by Flexible Microloop Magnetic Sensor Array[J]. IEEE Transactions on Magnetics,1998,34(4): 2287-2297.
    [188]Goldfine N. Introduction to the Meandering Winding Magnetometer(MWM) and the Grid Measurement Approach[J]. SPIE,1996,2994:186-192.
    [189]Washabaugh A, Zilberstein V, Schlicker D, et al. Shaped-Field Eddy-Current Sensors and Arrays[J]. SPIE,2002,4702:63-75.
    [190]Ding T H, Chen X L, Huang Y P. Ultra-Thin Flexible Eddy Current Sensor Array for Gap Measurements[J]. Tsinghua Science and Technology,2004,9(6): 667-671.
    [191]陈祥林,丁天怀,黄毅平.新型接近式柔性电涡流阵列传感器系统[J].机械工程学报,2006,26(8):150-153.
    [192]Wincheski B, Namkung M, Perey D, et al. Development of Giant Magnetoresistive Inspection System for Detection of Deep Fatigue Cracks under Airframe Fasteners[J]. Review of Progress in Quantitative NDE,2002,21 A: 1007-1014.
    [193]Avrin W F. Eddy-current Measurements with Magnetoresistive sensors: Third-layer Flaw Detection in a Wing-splice 25mm thick[C]. San Diego: Proceedings of SPIE,2000,3994:29-36.
    [194]Dogaru T, Smith C H, Schneider R W, et al. Deep Crack Detection around Fastener Holes in Airplane Multi-Layered Structures using GMR-Based Eddy Current Probes[J]. Review of Quantitative Nondestructive Evaluation,2004,23: 398-405.
    [195]Nair N V, Melapudi V R, Jimenez H R, et al. A GMR-Based Eddy Current System for NDE of Aircraft Structures[J]. IEEE Transactions on Magnetics, 2006,42(10):3312-3314.
    [196]Dogaru T, Smith S T. Giant Magnetoresistance-Based Eddy-Current Sensor[J]. IEEE Transaction on Magnetics,2001,37(5):3831-3838.
    [197]Smith C H, Schneider R W, Pohm A V. High-resolution giant magnetoresistance on-chip arrays for magnetic imaging[J]. Journal of applied physics,2003,93(10): 6864-6867.
    [198]Smith C H, Schneider R W, Dogaru T, et al. Eddy-Current Testing with GMR Magnetic Sensor Arrays[J]. Review of Progress in Quantitative Nondestructive Evaluation,2004,23:406-413.
    [199]Butin L, Wache G, Perez L, et al. New NDE Perspectives with Magnetoresistance Array Technologies-From Research to Industrial Applications[J]. Insight,2005,47(5):280-284.
    [200]Jeng J T, Yang S Y, Horng H E, et al. Detection of Deep Flaws by Using a HTS-SQUID in Unshielded Eviroment[J]. IEEE Transactions on Applied Superconductivity,2001,11(1):1259-1298.
    [201]Allweins K, Gierelt G, Krause H J, et al. Defect Detection in Thick Aircraft Samples Based on HTS SQUID-Magnetometry and Pattern Recognition[J]. IEEE Transactions on Applied Superconductivity,2003,13(2):250-253.
    [202]Hatsukade Y, Kosugi A, Mori K, et al. Detection of micro-flaws on thin copper tubes using SQUID-NDI system based on eddy current technique[J]. Physica C 2005:1585-1590.
    [203]Gersem H D, Mertens R, Lahaye D, et al. Solution Strategies for Transient, Field-Circuit Coupled Systems[J]. IEEE transactions on magnetics,2000,36(4): 1531-1534.
    [204]Gersem H D, Weiland T. Field-Circuit Coupling for Time-Harmonic Models Discretized by the Finite Integration Technique[J]. IEEE transactions on magnetics,2004,40(2):1334-1337.
    [205]Wang X Y, Xie D X. Analysis of Induction Motor Using Field-Circuit Coupled Time-Periodic Finite Element Method Taking Account of Hysteresis[J]. IEEE transactions on magnetics,2009,45(3):1740-1743.
    [206]盛新庆.计算电磁学要论[M].北京:科学出版社,2004:2-5.
    [207]Rothwell E J, Cloud M J. Electromagnetics[M]. New York:CRC press,2001: 475-503.
    [208]王泽忠,全玉生,卢斌先.工程电磁场[M].北京:清华大学,2004:121-122.
    [209]Biro O, Preis K. On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents[J]. IEEE transactions on magnetics, 1989,25(4):3145-3159.
    [210]张玉华.金属平板表面缺陷扰动的磁场量分布研究[D].长沙:国防科技大学,2003:17-21.
    [211]ANSYS Inc. ANSYS Theory Reference Manual:10.0Edition[Z]. NewYork: ANSYS Inc.,2005.
    [212]Amineh R K, Sadeghi H. Suppressing sensor lift-off effects on cracks signals in surface magnetic field measurement technique[J]. IEEE International Conference on Industrial Technology, Maribor, Slovenia,2003:360-363.
    [213]Mayos M, Mastorchio S, Aubry L, et al. Simulation of the Behavior of Cecco Probes to Lift-Off and Tilt Effects during Tube Inspection[J]. Electromagnetic Nondestructive Evaluation III,1999,208-216.
    [214]Takagi T, Hashimoto M, Fukutomi H, et al. Benchmark models of eddy current testing for steam generator tube:experiment and numerical analysis[J]. International Journal of Applied Electromagnetics in Materials,1994, 5(3):149-162.
    [215]陈德智,邵可然.管道裂纹涡流检测线圈阻抗信号的快速仿真[J].电工技术学报,2000,15(6):75-78.
    [216]高晋占.微弱信号检测[M].北京:清华大学出版社,2004:32-35.
    [217]康中尉,罗飞路,陈棣湘.利用正交型锁相放大器实现三维磁场微弱信号检测[J].传感器技术,2004,23(12):69-72.
    [218]高军哲,罗飞路,潘孟春,等.基于AD9850和AD9854的涡流检测系统信号源设计[J].电子器件,2009,32(2):394-497.
    [219]赵秀梅,熊瑛,林俊明.篦齿盘均压孔裂纹涡流检测方法研究[J].无损探伤,2008,32(1):9-11.
    [220]崔福绵,付肃真.某型发动机九级篦齿盘均压孔裂纹及断裂分析[C].全国第五届航空航天装备失效分析会议论文集,2006,156-160.
    [221]Lepine B A, Giguere J S R, Forsyth D S, etc. Interpretation of pulsed eddy current signals for locating and quantifying metal loss in thin skin lap splices[J]. Review of Quantitative Nondestructive Evaluation,2002,21:415-422.
    [222]Giguere S, Lepine B A, Dubois J M S. Pulsed eddy current (PEC) characterization of material loss in multi-layer structures[J]. Canadian Aeronautics and Space Journal,2000,46(4):204-208.
    [223]Lefebvre J V. Simultaneous conductivity and thickness measurements using pulsed eddy current[D]. Ottawa:Royal Military College of Canada,2003:1-4.
    [224]Dolabdjian C P, Perez L, Haan V O. D, et al. Performance of Magnetic Pulsed-Eddy-Current System Using High Dynamic and High Linearity Improved Giant MagnetoResistance Magnetometer[J]. IEEE Sensors Journal,2006,6(6): 1511-1517.
    [225]张玉华,孙慧贤,罗飞路.层叠导体脉冲涡流检测中探头瞬态响应的快速计算.中国电机工程学报,2009,29(36):129-134.
    [226]Tian G Y, Li Y, Mandache C. Study of Lift-off Invariance for Pulsed Eddy-Current Signals[J]. IEEE Transactions on Magnetics,2009,45(1):184-191.
    [227]Selesnick I W, Baraniuk R G, Kingsbury N G. The Dual-Tree Complex Wavelet Transform[J]. IEEE Signal Processing Magazine,2005,10:123-151.
    [228]Selesnick I W. Hilbert Transform Pairs of Wavelet Bases[J]. IEEE Signal Processing Letters 2001,8(6):170-173.
    [229]Ozkaramanli H, Yu R. On the Phase Condition and Its Solution for Hilbert Transform Pairs of Wavelet Bases[J]. IEEE Trans on Signal Processing,2003, 51(12):3293-3294.
    [230]Yu R, Ozkaramanli H. Hilbert Transform Pairs of Orthogonal Wavelet Bases: Necessary and Sufficient Condition[J]. IEEE Trans on Signal Processing 2005, 53(12):4723-4725.
    [231]Kingsbury N G. Image Processing with Complex Wavelets [J]. Philos. Trans. R. Soc. London A, Math. Phys. Sci.,1999,357(1760): 2543-2560.
    [232]Kingsbury N G. A Dual-Tree Complex Wavelet Transform with Improved Orthogonality and Symmetry Properties[C]. Vancouver:in Proc. IEEE Int. Conf. Image Processing,2000:375-378.
    [233]Kingsbury N G. Design of Q-Shift Complex Wavelets for Image Processing Using Frequency Domain Energy Minimization[C]. Barcelona:In Proc. IEEE Int. Conf. Image Processing,2003:1013-1016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700