像素级图像融合方法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着图像传感器技术的发展,多传感器图像融合已成为图像理解、计算机视觉以及遥感领域中的一个研究热点,并广泛应用于自动目标识别、智能机器人、遥感、医学图像处理和制造业等领域。像素级多传感器图像融合获取的原始信息量最多、检测性能最好、应用范围最广,是各级图像融合的基础。本论文结合有关国家自然科学基金、航天技术创新基金等课题要求,针对像素级多传感器图像融合方法和应用进行了深入研究。主要工作可总结为以下几个方面:
    多传感器图像配准是进行像素级多传感器图像融合的前提,其误差大小直接影响融合结果的有效性。对图像配准方法进行了综述,分析了各种方法的适用性、优点和不足之处。在此基础上,针对目前研究中存在的问题,提出了一种基于Harris 角点特征的图像自动配准方法。该方法首先提取参考图像和待配准图像的Harris 角点特征点集,然后通过角点邻域相关匹配和马氏距离仿射变换不变性实现角点的匹配,从而完成图像的配准。实验结果表明该算法在保持高配准精度的同时有较高的执行速度,能够实现有大旋转角度、平移以及灰度差条件下不同传感器或波段的图像自动配准。
    传统的基于小波变换的图像融合方法存在移变问题。针对此问题,提出了一种具有平移不变性基于离散小波框架的多传感器图像融合方法。提出了低频基于改进的邻域熵、高频基于跨尺度的邻域空间频率的融合策略,有效地抽取了变换域各尺度、方向上的显著特征,并将它们融合在一起。大量的实验验证了该方法的有效性。
    为了进一步满足图像融合对连续方向的要求,在研究了可操纵方向金字塔变换的原理和性质的基础上,提出了另一种具有平移不变性基于可操纵方向金字塔变换的多传感器图像融合方法。该方法利用可操纵方向金字塔变换良好的方向控制能力和平移不变性,有效地捕获了源图像的方向信息,提高了融合图像的直觉可视性,获得较基于离散小波框架方法质量更高的融合图像。
    提出了一种基于双树复小波变换的多传感器图像融合方法。该方法在保持近似的平移不变性和良好的方向分析能力的同时,只引入有限的数据冗余,在获得较高质量融合图像的同时,进一步降低了算法复杂度,减少了计算量和对
With the development of image sensor technology, multi-sensor image fusion has attracted many attentions in image analysis, computer vision and remote sensing, which is widely applied in a variety of fields such as automatic target recognition, intelligent robots, remote sensing, medical image analysis and manufacturing. Pixel level multi-sensor image fusion can obtain more original information, and has a better detection performance and application. Therefore, it is the basis of the image fusion on other levels. The researches in this thesis were partly supported by three national research grants and focused on the techniques and applications of pixel level multi-sensor image fusion. The main contents of the thesis include:
    Multi-sensor image registration is the prerequisite of pixel level multi-sensor image fusion. The error of image registration significantly affects the result of image fusion. First, image registration techniques are reviewed, and their advantages and drawbacks are analyzed. To solve these problems, a multi-sensor image registration method based on Harris corner was proposed. The first step is Harris corner detection in the reference and sensed images. At the second step, the corner points are matched based on neighborhood correlation and affine invariance of Mahalanobis distance. The final step, based on the set of correctly matched corner point pairs, the accurate transformation parameters between the reference and sensed images are estimated. Experiments demonstrated that our image registration method can register images with a big rotation angle, shift, or gray level difference, and have both high registration accuracy and speed.
    Discrete wavelet transform has a shift variance problem. To solve this problem, a shift invariant fusion approach based on discrete wavelet frames was developed. The method defines two fusion measurements, improved-neighborhood-entropy for lowpass subband and across-band-neighborhood-space-frequency for highpass subbands. It effectively extracts salient features at different scales and directions and fuse them.
    Experimental results demonstrated that satisfactory results were obtained using the proposed method. In order to satisfy the requirement of more directions in image fusion, based on the study of steerable pyramid’s principle and characters, another shift invariant fusion approach based on steerable pyramid was presented. This method makes use of the multi-orientation and invariant property of steerable pyramid to obtain better results than the method based on discrete wavelet frames. An image fusion approach based on dual tree complex wavelet transform was proposed in Chapter 5. This method provides approximate shift invariance and good directional selectivity with limited redundancy. It obtained a good fusion performance and dramatically decreased the computational complexity. How to assess image fusion performance is important for evaluating image fusion method. First, the evaluation measurements proposed are reviewed, and the qualitative and quantitative comparison rules are set up. Furthermore, use the proposed methods to evaluate the methods developed in this thesis. Finally, the effect of the size of neighborhood window, decomposition level and fusion rules on the performance were investigated, and some conclusions were concluded.
引文
[1] 刘同明, 夏祖勋, 解洪成. 数据融合技术及其应用. 北京: 国防工业出版社, 1998. 1 ~ 276
    [2] 何友,王国宏,陆大金等. 多传感器信息融合及应用. (第1 版). 北京:电子工业出版社,2000. 1 ~ 336
    [3] 刘贵喜. 多传感器图像融合方法研究. [博士学位论文]. 西安电子科技大学图书馆, 2001
    [4] 吴艳. 多传感器数据融合算法研究. [博士学位论文]. 西安电子科技大学图书馆, 2003
    [5] P.K. Varshney. Multi-sensor data fusion. Electronics and Communication Engineering Journal, 1997, 9(12): 245 ~ 253
    [6] 王耀南, 李树涛. 多传感器信息融合及其应用综述. 控制与决策, 2001,16(5): 518 ~ 522
    [7] 周前祥, 敬忠良, 姜世忠. 多源遥感影像信息融合研究现状与展望. 宇航学报, 2002, 23(5): 89 ~ 94
    [8] A. Bastiere. Methods for multisensor classification of airborne targets integrating evidence theory. Aerospace Science and Technology, 1998, 2 (6): 401 ~ 411
    [9] D.D. Sworder, J.E. Boyd, G.A. Clapp. Image fusion for tracking manoeuvring targets. International Journal of Systems Science, 1997, 28(1): 1 ~14
    [10] D. Borghys, P.Verlinde, C. Perneel, et al. Multi-Level data fusion for the detection of targets using multi-spectral image sequences. Optical Engineering, 1998, 37(2): 477 ~ 484
    [11] D. Ryan, R. Tinkler. Night Pilotage Assessment of Image Fusion. In: Proceedings of the SPIE -International Symposium on Aerospace/Defense Sensing, Simulation and Controls. Bellingham, WA, USA.1995, 2465: 50 ~ 67
    [12] A. Toet, J.K. Ijspeert, A.M. Waxman. Fusion of visible and thermal imagery improves situational awareness. Displays, 1997, 18(2): 85 ~ 95
    [13] M.A. Abidi, R.C. Gonzalez. Data fusion in robotics and machine intelligence. London: Academic Press, 1992. 1 ~ 546
    [14] J.A. Castellanos, J.D. Tardos. Mobile robot localization and map building: a multisensor fusion approach. Boston: Kluwer Academic Publishers. 1999. 1 ~ 224
    [15] D. Hill, P. Edwards, D. Hawkes. Fusing medical images. Image Processing. 1994, 6(2): 22 ~ 24
    [16] G.K. Matsopoulos, S. Marshall. Application of morphological pyramids: fusion of mr and ct phantoms. Journal of Visual Communication and Image Representation. 1995, 6 (2): 196 ~ 207
    [17] C. Pohl, J.L. Genderen. Multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 1998, 19 (5): 823 ~ 854
    [18] I. Couloigner, T. Ranchin, V.P. Valtonen, L. Wald. Benefit of the future spot-5 and of data fusion to urban roads mapping. International Journal of Remote Sensing, 1998, 19 (8): 1519 ~ 1532
    [19] D.G. Leckie. Synergism of SAR and visible/infrared data for forest type discrimination. Photogrammetric Engineering and Remote Sensing, 1990, 56: 1237 ~ 1246
    [20] T. Toutin. SPOT and landsat stereo fusion for data extraction over mountainous areas. Photogrammetric Engineering and Remote Sensing, 1998, 64 (2): 109 ~ 113
    [21] K.N. Lou, L.G. Lin. An intelligent sensor fusion system for tool monitoring on a machining centre. International Journal of Advanced Manufacturing Technology, 1997, 13: 556 ~ 565
    [22] J.M. Reed, S. Hutchinson. Image fusion and subpixel parameter estimation for automated optical inspection of electronic components. IEEE Transactions on Industrial Electronics, 1996, 43(3): 346 ~ 354
    [23] O. Rockinger. Pixel-Level fusion of image sequences using wavelet frames. In: Proceedings of the 16th Leeds Applied Shape Research Workshop. Berlin, Germany. 1996. 149 ~ 154
    [24] G. Piella. A general framework for multiresolution image fusion: from pixels to regions. Information Fusion, 2003, 4: 259 ~ 280
    [25] J.A. Richards. Thematic mapping from multitemporal image data using the principal component transformation. Remote Sensing of Environment, 1984, 16: 36 ~ 46
    [26] E. Lallier, M. Farooq. A real time pixel-level based image fusion via adaptive weight averaging. In: Proceedings of the Third International Conference on Information Fusion. Paris, France. 2000, 2: WeC-3 ~ WeC-13
    [27] S.D. Béthune, F. Muller, M. Binard. Adaptive intensity matching filters: a new tool for multi-resolution data fusion. Remote Sensing and Radar, 1997, 28: 1 ~ 15
    [28] C.W. Therrien, J.W. Scrofani, W.K. Krebs. An adaptive technique for the enhanced fusion of low-light visible with uncooled thermal infrared imagery. In: IEEE International Conference on Imaging Processing. Washington, USA. 1997, 1: 405 ~ 408
    [29] A. Toet, J. Walraven. New false color mapping for image fusion. Optical Engineering, 1996, 35(3): 650 ~ 658
    [30] R.K. Sharma, M. Pavel. Adaptive and statistical image fusion. Society for Information Display, 1996, XXVII: 969 ~ 972
    [31] R.K. Sharma, T.K. Leen, M. Pavel. Probabilistic image sensor fusion. Advances in Neural Information Processing Systems, 1999, 11: 203 ~ 207
    [32] J.M. Lafert, F. Heitz, P. Perez, et al. Hierarchical statistical models for the fusion of multiresolution image data. In: Proceedings of the International Conference on Computer Vision. Cambridge, USA.1995. 908 ~ 913
    [33] R. Azencott, B. Chalmond, F. Coldefy. Markov fusion of a pair of noisy images to detect intensity valleys. International Journal of Computer Vision, 1995, 16(2): 135 ~ 145
    [34] W.A. Wright, F. Bristol. Quick markov random field image fusion. In: Proceedings of SPIE. 1998, 3374: 302 ~ 308
    [35] 李树涛. 多传感器图象信息融合方法与应用研究. [博士学位论文]. 湖南大学图书馆, 2001
    [36] E.A. Newman, P.H. Hartline. The infrared vision of snakes. Scientific American, 1982, 246(3): 116 ~ 127
    [37] E.A. Newman, P.H. Hartline. Intergration of visual and infrared information in bimodal neurons of rattlesnake optic tectum. Science, 1981, 213: 789 ~ 791
    [38] P. Ajjimarangsee, T.L. Huntsberger. Neural network model for fusion of visible and infrared sensor fusion. In: Proceedings of SPIE, 1988, 1003: 153 ~ 160
    [39] Z.Y. Li, Z.H. Liu, W.P. Yang. Method of visual-infrared sensor fusion for target recognition. In: Proceedings of SPIE. Orlando, FL, USA. 1997, 3068: 591 ~ 596
    [40] T. Fechner, G. Godlewski. Optimal fusion of TV and infrared images using artificial neural networks. In: Proceedings of SPIE. Orlando, FL, USA. 1995, 2492: 919 ~ 925
    [41] R.P Broussard, S.K. Roges, M.E. Oxley, et al. Physiologically motivated image fusion for object detection using a pulse coupled neural network. IEEE Transactions on Neural Networks, 1999, 3: 554 ~ 563
    [42] 张军英, 梁军利. 基于脉冲耦合神经网络的图像融合. 计算机仿真, 2004, 21(4): 102 ~ 104
    [43] 徐宝昌, 陈哲. 基于PCNN 的多尺度对比度塔图像融合算法. 计算机工程与应用, 2004, 10:15 ~ 17
    [44] A. Toet. Hierarchical image fusion. Machine Vision and Applications, 1990, 3(1): 1 ~ 11
    [45] P.J. Burt, E.H. Adelson. The laplacian pyramid as a compact image code. IEEE Transactions on Communications, 1983, 31(4): 532 ~ 540
    [46] A. Toet. Image fusion by a ratio of low pass pyramid. Pattern Recognition Letters, 1989, 9(4): 245 ~ 253
    [47] A. Toet, L.J. Van Ruyven, J.M. Valeton. Merging thermal and visual images by a contrast pyramid. Optical Enginering, 1989, 28 (7): 789 ~ 792
    [48] P.J. Burt. A gradient pyramid basis for pattern-selective image fusion. Society for Information Display Digest of Technical Papers, 1985, 16: 467 ~ 470
    [49] A.Toet. A morphological pyramid image decomposition. Pattern Recognition Letters, 1989, 9(4): 255 ~ 261
    [50] P.J. Burt. The pyramid as structure for efficient computation. Multiresolu-tion Image Processing and Analysis, 1984: 6 ~ 35
    [51] P.J. Burt, E. H. Adelson. Merging images through pattern decomposition. In: Proceedings of SPIE. 1985, 575: 173 ~ 182
    [52] S.C. Ahearn. Combining laplacian images of different spatial frequencies (scales) implications for remote sensing image analysis. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(6): 826 ~ 831
    [53] 王利平, 孙韶远, 张保民. 伪随机瞬态激光助视图像与常态微光图像融合技术研究. 红外与毫米波学报, 1999,18(6):455 ~ 459
    [54] 张加友, 王江安. 红外图像融合. 光电子?激光, 2000,11(5):537 ~ 539
    [55] A. Toet. Multiscale contrast enhancement with application to image fusion. Optical Engineering, 1992, 31(5): 1026 ~ 1031
    [56] M. Pavel, J. Larimer, A. Ahumada. Sensor fusion for synthetic vision. Society for Information Display Digest of Technical Papers, 1992: 475 ~ 478
    [57] P.J. Burt, R.J. Lolczynski. Enhanced image capture through fusion. In: Proceedings of the 4th International Conference on Computer Vision. Berlin, Germany. 1993. 173 ~ 182
    [58] S. Richard, F. Sims, M.A Phillips. Target signature consistency of image data fusion alternatives. Optical Engineering, 1997, 36(3): 743 ~ 754
    [59] G.K. Matsopoulos, S. Marshall, J. Brunt. Multiresolution morphological fusion of mr and ct images of the human brain. In: Proceedings of IEE, Vision, Image and Signal Processing, 1994, 141(3): 137 ~ 142
    [60] G.K. Matsopoulos, S. Marshall. Application of morphological pyramids: fusion of mr and ct phantoms. Journal of Visual Communication and Image Representation, 1995, 6(2): 196 ~ 207
    [61] 钟伟才, 刘静, 刘芳, 焦李成. 基于形态学top-hat 算子的多传感器图像融合. 电子学报, 2003, 31(9):1415 ~ 1417
    [62] S.G. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674 ~ 693
    [63] S.G. Mallat. Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustic Speech Signal Processing, 1989, 37(12): 2091 ~ 2110
    [64] M. Vetterli, C. Herley. Wavelets and filter banks: theory and design. IEEE Transactions on Signal Processing, 1992, 40: 2207 ~ 2232
    [65] 徐长发, 李国宽. 实用小波方法. 武汉: 华中科技大学出版社, 2001. 1 ~ 206
    [66] Z. Zhang, R.S. Blum. A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application. In: Proceedings of IEEE, 1999, 87(8): 1315 ~ 1326
    [67] H. Li, B.S. Manjunath, S.K. Mitra. Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing, 1995, 57(3): 235 ~ 245
    [68] D.A. Yochy. Image merging and data fusion by means of the discrete two-dimensional wavelet transform. Journal of Optical Society of America, Part A, 1995, 12(9): 1834 ~ 1841
    [69] L.C. Ramac, M.K. Uner, P.K. Varshney. Morphological filters and wavelet based image fusion for concealed weapons detection. In: Proceedings of SPIE, 1998, 3376: 110 ~ 119
    [70] M.A. Slamani, L.Ramac, P.K. Varshney, et al. Enhancement and fusion of data for concealed weapons detection. In: Proceedings of SPIE, 1997, 3068: 8 ~ 19
    [71] M.K. Uner, L.C. Ramac, P.K. Varshney. Concealed weapon detection: an image fusion approach. In: Proceedings of SPIE, 1997, 2942: 123 ~ 132
    [72] Z. Zhang, R. S. Blum. A region-based image fusion scheme for concealed weapon detection. In: Proceedings of 31st Annual Conference on Information Sciences and Systems. Baltimore, MD. 1997. 168 ~ 173
    [73] L. Grewe, R.R. Brooks. Atmospheric attenuation reduction through multi-sensor fusion. In: Proceedings of SPIE, 1998, 3376: 102 ~ 109
    [74] L.J. Chipman, T.M. Orr, L.N. Graham. Wavelets and image fusion. In: Proceedings of SPIE, 1995, 2569: 208 ~ 219
    [75] X. Jiang, L. Zhou, Z. Gao. Multispectral image fusion using wavelet transform. In: Proceedings of SPIE, 1996, 2898. 35 ~ 42
    [76] B. Zitova, J. Flusser. Image registration methods: a survey. Image and Vision Computing, 2003, 21: 977 ~ 1000
    [77] P. Chalermwat. High performance automatic image registration for remote sensing. Ph. D. thesis. George Mason University, 1999
    [78] R.K. Sharma, M. Pavel. Multisensor image registration. Society for Information Display, 1997, XXVIII: 951 ~ 954
    [79] I.B. Daniel, F.S. Harvery. A class of algorithm for fast digital image registration. IEEE Transactions on Computer, 1972,C-21(2): 179 ~ 185
    [80] L.G. Brown. A survey of image registration techniques. ACM Computing Surveys, 1992, 24(4): 326 ~ 376
    [81] 王东峰. 多模态和大型图像配准技术研究. [博士学位论文]. 中国科学院电子学研究所, 2002
    [82] 舒丽霞. 图像配准方法研究. [硕士学位论文]. 华中科技大学图书馆, 2003
    [83] A. Rosenfeld, A.C. Kak. Digital picture processing. London: Academic Press, 1982
    [84] P. Thevenaz, U.E. Ruttimann, M. Unser. A pyramid approach to subpixel registration based intensity. IEEE Transactions on Image Processing, 1998, 7(1): 27 ~ 41
    [85] D.I. Barnea, H.F. Silverman. A class of algorithms for fast digital registration. IEEE Transactions on Computers, 1972, C-21: 179 ~ 186
    [86] P. Violar, W.M. Wells III. Alignment by maximization of mutual information. In: Proceedings of 5th International Conference on Computer Vision. Boston, MA, USA.1995. 16 ~ 23
    [87] P. Violar, W.M. Wells III. Alignment by maximization of mutual information. International Journal of Computer Vision, 1997, 24(2): 137 ~ 154
    [88] P.W. Josien, J.B. Antoine, A.V. Max. Image registration by maximization of combined mutual information and gradient information. IEEE Transactions on Medical Imaging, 2000, 19(8), 809 ~ 814
    [89] P. Thevenaz, M. Unser. Optimization of mutual information for multiresolution image registration. IEEE Transactions on Image Processing, 2000, 9(12): 2083 ~ 2098
    [90] C.D. Kuglin, D.C. Hines. The phase correlation image alignment method. In: Proceedings of IEEE International Conference on Cybernetics and Society, 1975. 163 ~ 165
    [91] S. Alliney. Spatial registration of multispectral and multitemporal digital imagery using fast-fourier transform techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15(5): 499 ~ 504
    [92] H.S. Stone, M.T. Orchard, E.C. Chang, et al. A fast direct fourier-based algorithm for subpixel registration of images. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(10): 2235 ~ 2243
    [93] Q.S. Chen, M. Defrise, F. Deconinck. Symmetric phase-only matched filtering of fourier-mellin transforms for image registration and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994,16(10): 1156 ~ 1168
    [94] P.R. Beaudet. Rotationally invariant image operators. In: Fourth International Conference on Pattern Recognition. Tokyo, Japan. 1978. 579 ~ 583
    [95] R. Deriche, G. Giraudon. A computational approach for corner and vertex detection. International Journal of Computer Vision, 1993, 10(2): 101 ~ 124
    [96] C.G. Harris, M. J. Stephens. A combined corner and edge detector. In: Proceedings Fourth Alvey Vision Conference. Manchester, U. K. 1988.147 ~ 151
    [97] L. Kitchen, A. Rosenfeld. Gray-level corner detection. Pattern Recognition Letters, 1982,1: 95 ~ 102
    [98] S.M. Smith, J.M. Brady. SUSAN -a new approach to low level image processing. International Journal of Computer Vision, 1997: 23 (1), 45 ~ 78
    [99] Z. Yang, F.S. Cohen. Image registration and object recognition using affine invariants and convex hulls. IEEE Transactions on Image Processing, 1999, 8(7): 934 ~ 946
    [100] G.C. Stockman, S. Kopstein, S. Benett. Matching images to models for registration and object detection via clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, 4: 229 ~ 241
    [101] G. medioni, R. Nevatia. Matching images using linear features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, PAMI-6: 675 ~ 685
    [102] H. Li, B.S. Manjunath, S.K. Mitra. A contour-based approach to multisensor image registration. IEEE Transactions on Image Processing, 1995, 4(3): 320 ~ 334
    [103] E. Coiras, J. Santamaria, C. Miravet. Segment-based registration techniques for visual-infrared images. Optical Engineering, 2000,39(1): 282 ~ 289
    [104] J.W. Hsieh, H.Y.M. Liao, K.C. Fan, et al. Image registration using a new edge based approach. Computer Vision and Image Understanding, 1997, 67(2): 112 ~ 130
    [105] X. Dai, S. Khorram. A feature-based image registration algorithm using improved chain-code representation combined with invariant Moments. IEEE Transactions on Geo-science and Remote Sensing, 1999, 37(5): 2351 ~ 2362
    [106] J. Flusser, T. Suk. A moment-based approach to registration of images with affine geometric distortion. IEEE Transactions on Geo-science and Remote Sensing, 1994, 32(2): 382 ~ 387
    [107] L. Kitchen, A. Rosenfeld. Gray-level corner detection. Pattern Recognition Letters, 1982, 1: 95 ~ 102
    [108] R. Deriche, G. Giraudon. A computational approach for corner and vertex detection. International Journal of Computer Vision, 1993, 10(2): 101 ~ 124
    [109] S.M. Smith, J.M. Brady. SUSAN-A new approach to low level image processing. International Journal of Computer Vision, 1997, 23(1): 45 ~ 78
    [110] J.A. Noble. Finding corners. Image and Vision Computing, 1988, 6(2): 121 ~ 128
    [111] 陈昕, 向键勇, 杨宜禾. 不变性理论用于空中目标的识别. 红外与毫米波学报, 1997, 16(1):39 ~ 44
    [112] 余鄂西. 矩阵论. 第2 版. 北京: 高等教育出版社, 1995. 224 ~ 244
    [113] 周国库.基于小波提取边缘特征点的遥感图像配准技术. [硕士学位论文].西北工业大学图书馆, 2002
    [114] M.B. Stegmann. Image Warping. http://www.imm.dtu.dk/?mbs/, 2001:1 ~ 7
    [115] 彭晓明. 多源图像配准与识别方法研究. [博士学位论文]. 华中科技大学图书馆, 2004
    [116] X.M. Peng, M.Y. Ding, Ch.P. Zhou, et al. A practical two-step image registration method for two-dimensional images. Information Fusion, 2004, 5: 283 ~ 298
    [117] R.C. Gonzalez, R.E. Woods. Digital image processing (second edition). 北京:电子工业出版社,2002. 1 ~ 646
    [118] G. Uytterhoeven. Wavelets: software and applications. Ph.D. thesis. Katholieke Universiteit Leuven. Belgium. 1999
    [119] M. Unser. Texture Classification and Segmentation Using Wavelet Frames. IEEE Transactions on Image processing, 1995, 4(11): 1549 ~ 1560
    [120] J.S. Pan, J.W. Wang, C.H. Chen, et al. A modified tabu search approach for texture segmentation using 2-D non-separable wavelet frames. In: Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence, 1998. 474 ~ 481
    [121] I. Daubechies. Ten lectures on wavelets. Number 61 in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia. 1992
    [122] 闫成新. 基于区域的图象分割技术研究. [博士学位论文]. 华中科技大学图书馆, 2004
    [123] A.M. Eskicioglu, P.S. Fisher. Image quantity measures and their performance. IEEE Transactions on Communications, 1995, 43(12): 2959 ~ 2965
    [124] 章毓晋.图象处理和分析(图象工程,上册).北京:清华大学出版社,1999. 1 ~ 291
    [125] W.T. Freeman, E.H. Adelson. Steerable filters for early vision, image analysis, and wavelet decomposition. In: Proceedings of 3rd International Conference on Compute Vision, 1990. 406 ~ 415
    [126] E.P. Simoncelli, W.T. Freeman, E.H. Adelson, et al. Shiftable multiscale transforms. IEEE Transactions on Information Theory, 1992, 38(2): 587 ~ 607
    [127] E.P. Simoncelli, W.T. Freeman. The steerable pyramid: A Flexible Architecture for Multiscale Derivative Computation. In: 2nd IEEE International Conference on Image Processing, 1995, III: 444 ~ 447
    [128] W.T. Freeman, E.H. Adelson. The design and use of steerable filters. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1991, 13(9): 891 ~ 907
    [129] E.P. Simoncelli. Design of multi-dimensional derivative filters. In: Proceedings of First International Conference on Image Processing, 1994. 790 ~ 793
    [130] N. Kingsbury. The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters. In: Proceedings of 8th IEEE Digital Signal Processing Workshop. Bryce Canyon, Utah, USA. 1998. 86 ~ 89
    [131] N. Kingsbury. The dual tree complex wavelet transform: a new efficient tool for image restoration and enhancement. In: Proceeding of EUSIPCO, 1998. 319 ~ 322
    [132] N. Kingsbury. Image processing with complex wavelets. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 1999, 357: 2543 ~ 2560
    [133] N. Kingsbury. Shift invariant properties of the dual-tree complex wavelet transform. In: IEEE International Conference on Acoustics, Speech, and Signal, 1999, 3: 1221 ~ 1224
    [134] N. Kingsbury. A dual-tree complex wavelet transform with improved orthogonality and symmetry properties. In: International Conference on Image Processing, 2000, 2: 375 ~ 378
    [135] N. Kingsbury. Complex wavelets for shift invariant analysis and filtering of signals. Applied and Computational Harmonic Analysis, 2001, 10(3): 234 ~ 253
    [136] N. Kingsbury. Design of q-shift complex wavelets for image processing using frequency domain energy minimization. In: International Conference on Image Processing, 2003(1): 1013 ~ 16
    [137] 王海晖, 彭嘉雄, 吴巍等. 多源遥感图像融合效果评价方法研究. 计算机工程与应用, 2003, 25: 33 ~ 37
    [138] 邵桂芳, 李祖枢, 成卫等. 基于视觉感知的融合图像质量评价. 计算机应用, 2004, 24(5): 69 ~ 75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700