双树复小波表面分析模型及加工过程形貌辨识方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械制造业中90%的工件失效源于表面问题,对工程表面形貌的准确分析和评定是提高机加工产品质量的重要保证。将表面计量方法与加工过程相关联则是当前表面计量领域的研究重点。这种联系建立的前提是:对表面各种特征的准确提取; 对特征的有效分析方法,即建立起特征变化与加工过程条件变化之间的联系。
    本文研究了用于工程表面分析的第一代和第二代小波模型,从幅度和相位传输特性的角度分析了不同小波基对工程表面分析评定的影响。指出基于提升格式算法的双正交小波由于具有线性相位、好的幅度传输特性以及较高的运算效率,从而是当前用于表面计量的最优小波滤波器之一。
    为了解决基于实小波变换的第一、二代小波模型的平移敏感性和方向性差的缺点,本文将双树复小波变换引入到表面计量领域中,建立了工程表面分析的双树复小波模型。由于双树复小波变换具有近似的平移不变性以及改进的方向选择性等优点,从而成功地解决了实小波模型用于提取表面功能特征(如峰、坑、脊、谷等)时所存在的沿特征边缘的信号畸变问题。对复小波滤波器的表面计量特性进行了分析,结果表明其具有线性相位和近似理想的幅频传输特性,对于表面粗糙度等频率成分具有很好的分辨特性。计算机模拟与实际二维三维数据处理的结果验证了其特性。
    本文提出了基于双树复小波变换的测量信号软阈值降噪方法。假定各层小波变换系数服从双指数分布、噪声服从高斯分布,采用最大后验估计方法推导了阈值计算方法,给出了该降噪方法的算法流程,模拟及实际数据的分析结果,验证了该方法的有效性。提出了复有限脊小波变换方法,通过对信号在有限Radon 变换上的投影进行双树复小波变换,将线奇异性转换为点奇异性,成功实现了对线特征的多尺度平移不变提取。
    本文提出了基于表面计量的加工过程状态辨识方法。分析了表面空间参数、空间自相关谱、空间功率谱、角谱和半径谱的物理意义,以及与加工过程的条件变化之间的关系。对铣削加工过程中颤振和刀具磨损时表面形貌变化的研究表明:已加工表面的空间谱,尤其是空间自相关谱的模式能够反映铣削加工过程的颤振发生及其发展; 表面空间参数和空间自相关谱的联合分析可以确定刀具磨损的程度。
It has been shown that the 90% of all engineering component failures in practice are surface initiated. The exact analysis and characterization of the surface topography is important to ensure the quality improvement of the machined components. The investigation of combining surface metrology with the machining process has been emphasized in the field of the modern surface precision metrology. The preconditions of building this relationship are: to extract different surface features correctly; to create an effective analysis method for these features, i.e., to establish the relation between the variation of the surface features and the variation of machining conditions.
    The first/second generations of wavelet surface analysis model based on the Real Discrete Wavelet Transform (real DWT) have been reviewed. The influences of different wavelet bases for surface analysis have also been investigated from the aspects of phase and amplitude transmission characteristics. It is pointed out that the second generation of wavelet model based on the lifting scheme and biorthogonal wavelet basis is currently one of the best wavelet filters for surface metrology, as it takes advantages of linear phase, near brick wall transmission and efficient algorithm.
    To solve the problems of shift-variance and poor directional selectivity existing in the Real DWT model, the Dual-tree Complex Wavelet Transform (DT-CWT) has been introduced into the field of surface metrology. Accordingly the third generation of wavelet model for engineering surface analysis is also built by using DT-CWT. Due to the good properties of approximately shift-invariance and improved directionality, the DT-CWT can extract the morphological features (such as the peaks/pits and ridges/valleys) without aliasing along the edges of these features. The metrological characteristics of the DT-CWT filter for surface analysis are investigated, especially on the aspect of transmission characteristics analysis. The property of linear phase ensures filtering results with no distortion and good ability for feature localization, the property of near brick wall transmission of the amplitude transmission enables DT-CWT filter to separate different frequency components (such as roughness, waviness and form errors) efficiently. Both Computer simulation and experimental results of practical surface 2D/3D filtering prove that the DT-CWT filter is very suitable for the separation and extraction of frequency components such as surface roughness, waviness and form.
    A soft-threshold method in the DT-CWT domain is proposed to reduce the noise of measurement signals. By using the Maximum Posteriori estimator (MAP) and presuming that the wavelet coefficient of the noisy signals obey double exponential distribution and the noise obey the Gaussian distribution respectively, the value of soft-threshold has been induced
    and the procedure of algorithm to reduce the noise is also given. Simulated and practical denoising results have verified the effectiveness of the algorithm. A novel developed Complex Finite Ridgelet Transform (CFRIT), which provides approximate shift invariance and analysis of line singularities, is proposed by taking a DT-CWT on the projections of the Finite Radon Transform (FRAT). A surface metrology based machining-condition-monitoring methodology is proposed to analyse the change of the surface topography features during machining process. The physical meaning of the variation of the areal numerical parameters, Areal Autocorrelation Function (AACF), areal power spectrum density (APSD), angular spectrum and the radius spectrum has been analysed and associated to the variation of machining condition. Through a series of cutting experiments, the phenomena of Chatter and tool wear in peripheral milling have been investigated. The results show that the pattern of the areal spectrum, especially the AACF of the machined surface can reflect the chatter arising and development of milling process; the combination of analysis on the areal numerical parameters and the AACF can address the degree of tool wear.
引文
[1] B. Bhushan. Tribology and mechanics of magnetic storage devices, 2nd edn, New York, Springer-Verlag, 1996
    [2] K.J. Stout, P.J. Sullivan, W.P. Dong, E. Mainsah, N. Luo, T. Mathia. The development of methods for the characterisation of roughness in three dimensions, 1st edn, Commission of the European Communities (ISBN 0 70441 313 2), 1993
    [3] T.R. Thomas. Rough surface, 1st edn, London, Longman, 1982
    [4] D.J. Whitehouse. Surface Metrology, 1st edn, Bristol and Philadephia, Institute of physics publishing, 1994
    [5] Dragos A Axinte, Nabil Ginby, Kate Fox, Iker Unanue. Process monitoring to assist the workpiee surface quality in machining, Int. J. of Mach. Tools & Manu. 2004, 44: 1091-1108
    [6] 翁泽宇, 鲁建厦, 谢伟东, 贺兴书. 切削颤振控制研究进展,浙江工业大学学报,2002, 30(4): 323-327
    [7] Dimla E. Dimla Snr. Sensor signals for tool-wear monitoring in metal cutting operations-a review of methods, Int. J. of Mach. Tools & Manu., 2000, 40: 1073-1098
    [8] Ashraf A. Kassim, M.A.Mannan, Ma Jing. Machine tool condition monitoring using workpiece surface texture analysis, machine vision and applications, 2004, 11: 257-263
    [9] D.J. Whitehouse. Surfaces—a link between manufacure and function, Proc Inst Mech Eng, 1978, 192:178-188
    [10] D.J. Whitehouse. Typology of manufactured surfaces. Ann CIRP, 1971, 18:417-420.
    [11] D.J. Whitehouse. Assessment of surface typology analysis techniques in turing. Ann CIRP, 1974, 23(2): 265-274.
    [12] J. Fisher, D. Dowson, Hamdzah H. and Lee H. L. The effect of sliding velocity on the friction and wear of UHMWPE for use in total artificial joints, Wear, 1994, 175: 219-225
    [13] Hall R. M., Unsworth A., Siney P. and Wroblewski B. M. The surface-topography of retrieved femoral heads, Journal of Materials Science-Materials in Medicine, 1996, 7: 739-744
    [14] GB10610-89, 触针式仪器测量表面粗糙度的规则和方法,中国标准出版社,1990
    [15] ISO 4287-1997: Geometrical Product Specifications (GPS) —Surface texture: Profile method —Terms, definitions and surface texture parameters
    [16] 李柱,谢铁邦. 互换性与技术测量,武汉:华中理工大学出版社,1998
    [17] M. Krystek. Discrete L-spline filtering in roundness measurements, Measurement, 1996,18( 2): 129~138
    [18] ISO/DTS 16610-32: Geometrical Product Specifications (GPS)—Filtration—Part 32: Robust profile filters: Spline filters, 2002
    [19] J. Raja, B. Muralikrishnan, Shengyu Fu. Recent advances in separation of roughness, waviness and form, Precision Engineering, 2002, 5274: 1~14
    [20] Whitehouse D.J. Improved type of wavefilter for use in surface-finish measurement. Proc. Inst. Mech. Engrs., 1968, 182:306-318
    [21] Whitehouse D. J. The mean line found by a phase-corrected wave filter, Rank Taylor Hobson, 1967
    [22] ISO 11562: Geometrical product specification (GPS)—surface texture: profile method—metrological characteristics of phase correct filters. Geneva: International Organization for Standardization, 1996
    [23] Lou N L, Sullivan P J, Stout K J. Gaussian filtering of three-dimensional engineering surface topography, Proc. SPIE, 1993, 2101: 527~538
    [24] J. Raja, V. Radhakrishnan. Filtering of surface profiles using fast Fourier transform, Int. J. Mach. Tool, 1979,19: 133~141
    [25] M. Krystek. A fast Gauss filtering algorithm for roughness measurements, Precision Engineering, 1996, 19: 198~200
    [26] 袁怡宝.表面形貌测量若干基本理论的研究:[博士学位论文].北京:北京图书馆,1997
    [27] S. Brinkmann, H. Bodschwinna, H. W. Lemke. Accessing roughness in three-dimensions using Gaussian regression filtering, International Journal of Machine Tools and Manufacture,2001, 41(13): 2153~2161
    [28] ISO 13565-1: Geometrical product specification (GPS)—surface texture: profile method—Profile method for surfaces having stratified functional properties—Part 1, Filtering and general measurement conditions, 1996
    [29] 曾文涵, 谢铁邦, 蒋向前, 李柱. 表面粗糙度的稳健提取方法研究,中国机械工程,2004, 15(2): 127-130
    [30] 李惠芬. 表面形貌测量若干基本理论的研究:[博士学位论文].华中科技大学,2004
    [31] 姚天任,孙洪. 现代数字信号处理,武汉: 华中理工大学出版社,1999
    [32] 杨福生. 小波变换的工程分析与应用,北京:科学出版社,1999.
    [33] 蒋向前,L. Blunt. 三维表面测量的发展,工程设计,2000,4(25): 98~100
    [34] X. Chen, J. Raja, S. Simanapali. Multi-scale analysis of engineering surface, Int. J. Mach. Tools Manufact, 1995, 35(2): 231~238
    [35] Liu X, Raja J and Sannareddy H Assessment of plateau honed surface texture using Wavelet transform, Proc. of ASPE, 1995,14: 672-675
    [36] S. H. Lee, H. Zahouani, R. Caterini, T.G. Mathia, Multi-scale analysis of engineering surfaces, Int. J. Math. Tools Manufact., 38(1998), pp. 581-589.
    [37] 陈庆虎. 表面计量的小波频谱理论与方法的研究:[博士学位论文].武汉:华中科技大学图书馆,1998
    [38] Chen Q H, Yang S N and Li Z Surface roughness evaluation by using wavelets analysis Precision Engineering, 1999, 23(3):55-59
    [39] Shengyu Fu, B.Muralikrishnan, J. Raja, Engineering surface analysis with different wavelet bases, Journal of Manufacturing Science and engineering, 2003, 125: 844-852
    [40] X.Q. Jiang, L. Blunt, K.J. Stout Three-dimensional surface characterization for orthopaedic joint prostheses, Journal of Inst. Mech. Eng., Part H, 1999, 213: 49-68
    [41] X.Q. Jiang, L. Blunt , K.J. Stout, Development of a lifting wavelet representation for characterization of surface topography, Proc. R. Soc. Lond. A, 2000, 456: 2283-2313
    [42] X. Jiang, L. Blunt, K. J. Stout, Application of the lifting wavelet to rough surfaces, Precision Engineering, 2001, 25:83-89
    [43] X. Jiang, L. Blunt, K. J. Stout Lifting wavelet for three-dimensional surface analysis, Int. J. Mach. Tools Manufact., 2001, 41:2163-2169
    [44] Jiang X Q, Blunt L Morphological assessment of in Vivo wear of orthopedic implants using Multiscale wavelets, Wear, 2001, 250:217-221
    [45] W. Sweldens The lifting scheme: a custom-design construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal., 1996, 3(2):186-200
    [46] C. F. FAHL. Motif combination –a new approach to surface profile analysis, Wear, 1982, 83: 165~179
    [47] M. Dietzsch, K. Papenfuβ, T. Hartmann. the motif-method (ISO 12085)-a suitable description for functional, manufactural and metrological requirements, Int. J. Mach. Tools Manufact., 1998, 38(5-6): 625~632
    [48] ISO12085: Geometric Product Specification (GPS) —Surface texture: Profile method —Motif parameters, 1996
    [49] Bleau A., Leon L.J. Watershed-based segmentation and region merging, Computer Vision and Image understanding, 2000, 77: 317-370
    [50] Barré, F. & Lopez, J. Watershed lines and catchment basins: a new 3D-motif method, Int J. Mach. Tools Manufact., 2000, 40:1171-1184
    [51] Vincent L., Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Trans, Pattern Anal. Machine intell., 1991,13:583-598
    [52] H. Zahouani, M. Assoul, R. Vargiolu and T. Mathia The morphological tree transform of surface motifs Incidence in tribology, Int. J of Mach. Tools and Manu., 41(13-14): 1961-1979
    [53] P. J. Scott. Scale-space techniques. Proceeding of the Xth Int. Colloquium on Surfaces. Chemintz. 2000. 153~161
    [54] D. Choi, W.T. Kwon, C.N. Chu Real-time monitoring of tool fracture in turning using sensor fusion, International Journal of Advanced Manufacturing Technology, 1999, 15(5):305–310
    [55] K. Jemielniak, O. Otman Tool failure detection based on analysis of accoustic emission signals, Journal of Material Processing Technology, 1998, 76:192–197
    [56] S. Kakade, L. Vijayaraghavan, R. Krishnamurthy In-process tool wear and chip-form monitoring in face milling operation using acoustic emission, Journal of Material Processing Technology, 1994,44: 207–214
    [57] S.X. Zheng, R. McBride, J.S. Barton, J.D.C. Jones, K.F. Hale, B.E. Jones. Intrinsic optical fibre sensor for monitoring acoustic emission, Sensors and Actuators, A: Physical 1992, 31:110–114
    [58] W. K?nig, K. Kutzner and U. Schehl. Tool monitoring of small drills with acoustic emission, International Journal of Machine Tools and Manufacture 1992, 32(4): 487–493
    [59] T. Blum, I. Inasaki. A study on acoustic emission from the orthogonal cutting process, ASME Trans. Journal of Engineering for Industry 1990, 112(3): 203–211
    [60] Y.P. Chang, D.A. Dornfeld. Chatter and surface pattern detection for cylindrical grinding using a fluid coupled acoustic emission sensor, NIST Special Publication, 1993, 847: 159-167
    [61] Takeshita, Hirotoshi; Inasaki, Ichiro. Monitoring of milling process with an acoustic emission sensor, Journal of the Japan Society of Precision Engineering, 1993, 59(2): 269-274
    [62] M.J.M. Marques, R.M.D. Mesquita. Monitoring the wear of sintered high-speed steel tools, Journal of Material Processing Technology 1991, 25:195–213
    [63] M. Bayramoglu, ü. Düngel. A systematic investigation on the use of force ratios in tool condition monitoring for turning operations. Trans. Institute of Measurement and Control 1998,20(2): 92–97
    [64] S.E. Oraby, D.R. Hayhurst. Development of models for tool wear force relationships in metal cutting. International Journal of Machine Tools and Manufacture, 1991, 33(2): 125–138
    [65] L.C. Lee, K.S. Lee and C.S. Gan, On the correlation between dynamic cutting force and tool wear. International Journal of Machine Tools and Manufacture, 1989, 29(3): 295–303
    [66] D.E. Dimla, Snr and P.M. Lister. On-line metal cutting tool condition monitoring—I: Force and vibration analyses, International Journal of Machine Tools and Manufacture, 2000, 40(5): 739–768
    [67] S B Rao. Tool wear monitoring through the dynamics of stable turning, Journal of Engineering for Industry, 1986,108:183-190
    [68] Y.S.Tarng, T.C. Li. Adaptive pattern recognition of drilling chatter, Journal of Materials Processing Technology, 1995, 48(1-4): 247-253
    [69] T.I. El-Wardany, D. Gao and M.A. Elbestawi. Tool condition monitoring in drilling using vibration signature analysis, International Journal of Machine Tools and Manufacture, 1996, 36(6):687–711
    [70] Y. Yao, X.D. Fang, G. Arndt. On-line estimation of groove wear in the minor cutting edge for finish machining, Annals of the CIRP, 1991, 40(1): 41–44
    [71] L. Dan, J. Mathew. Tool wear and failure monitoring techniques for turning—a review, International Journal of Machine Tools and Manufacture, 1990, 30(4): 579–598
    [72] Kawai, Tadao; Ota, Hiroshi; Ye, Jianming; Kondo, Eiji. Monitoring of cutting conditions by using vibration analysis, Transactions of the Japan Society of Mechanical Engineers, Part C, 1991, 57(541): 3093-3099
    [73] M. Sarwar, J. Li, R. Penlington, W. Ahmed. Development of thermal imaging systems for metal cutting applications, Proceedings Advanced Manufacturing Processes Systems and Technologies Conference, Bradford, UK, 1996, 361–369
    [74] S. Raman, A. Shaikh and P.H. Cohen. A mathematical model for tool temperature sensing. ASME Computational Methods in Materials Processing, 1992, 61: 181–193
    [75] S. Kurada, C. Bradley. A review of machine vision sensors for tool condition monitoring, Computers in Industry, 1997, 34(1): 55–72
    [76] A. Noori-Khajavi, R. Komanduri. Frequency and time domain analyses of sensor signals in drilling—I. Correlation with drill wear, International Journal of Machine Tools and Manufacture, 1995, 35(6): 775–793
    [77] L.C. Lee, K.Y. Lam, X.D. Liu. Characterisation of tool wear and failure, Journal of Materials Processing Technology 1994, 40: 143–153
    [78] D. Zhang, S. Dai, Y. Han, D. Chen. On-line monitoring of tool breakage using spindle current in milling, 1st Asia–Pacific and 2nd Japan–China International Conference Progress of Cutting and Grinding, Shanghai, China, 1994, 270–276
    [79] N. Constantinides, S. Bennett. An investigation of methods for on-line estimation of tool wear, International Journal of Machine Tools and Manufacture, 1987, 27(2): 225–237
    [80] N.H. Abu-Zahra, T.H. Nayfeh. Calibrated method for ultrasonic on-line monitoring of gradual wear during turning operations, International Journal of Machine Tools and Manufacture, 1997 37 (10): 1475–1484
    [81] 陈日曜,金属切削原理,机械工业出版社
    [82] D.J.Whitehouse. Handbook of Surface Metrology Institute of Physics Publishing, Bristol, 1994
    [83] C. Bradley, Y.S. Wong. Surface texture indicators of tool wear-A machine vision approach, Int J Adv Manuf. Technol, 2001,17:435-443
    [84] Ashraf A. Kassim, M.A.Mannan, Ma Jing. Machine tool condition monitoring using workpiece surface texture analysis, machine vision and applications, 2004, 11:257-263
    [85] A.A. Kassim, Zhu Mian, M.A.Mannan. Connectivity oriented fast hough transform for tool wear monitoring, Pattern recognition, 2004, 37: 1925-1933
    [86] 崔锦泰著,程正兴译. 小波分析导论,西安,西安交通大学出版社,1995
    [87] 秦前清,杨宗凯. 实用小波分析,西安,西安电子科学技术大学出版社,1994
    [88] S.Q. Mallat. A theory for multiresolution signal decomposition: The Wavelet representation, IEEE transaction on pattern analysis and machine intelligence, 1989,11: 674-693
    [89] G. Strang, T. Nguyen. Wavelets and filter banks, 1st edn, Wellesley-Cambridge Press, 1996
    [90] I. Daubechies. Orthonormal bases of compactly supported Wavelets, Comm. In Pure and Applied Math., 1988, 41: 909-996
    [91] I. Daubechies. The Wavelet transform time-frequency localisation and signal analysis. IEEE Trans. on Info. Theory, 1990, 36: 961-1005
    [92] I. Daubechies. Ten lectures on Wavelets, 1st edn, Philadelphia, SIAM, 1992
    [93] Y. Meyer. Wavelets: algorithms and applications, 1st edn, Philadelphia, SIAM, 1993
    [94] 陈庆虎,李柱. 表面粗糙度提取的小波频谱法,机械工程学报, 1999, 35(3):41:43
    [95] W. Swelden. Construction and application of Wavelets in numerical analysis, PhD Thesis, 1994
    [96] W. Swelden. The lifting scheme: a custom-design construction of biorthogonal Wavelets, Bell Laboratories, 1995
    [97] W. Swelden. The lifting scheme: a construction of second generation Wavelets, Bell Laboratories, 1996
    [98] S.G. Mallat. A wavelet tour of signal processing, San Diego, academic press, 1998
    [99] P. Burt, E.H. Adelson. The laplacian pyramid as a compact image code, IEEE Trans. Comm., 1983, 31:532-540
    [100] E.P.Simoncelli, W.T.Freeman, E.H.Adelson, D.J.Heeger, Shiftable multiscale transforms, IEEE Trans. Inform. Theory,1992, 38:587-607
    [101] R.H. Bamberger, M.J.T.Smith, A filter bank for the directional decomposition of images: theory and design, IEEE Trans. Signal Process, 1992, 40: 882-893
    [102] N G Kingsbury. The dual-tree complex wavelet transform: a new efficient tool for image restoration and enhancement, Proc. European Signal Processing Conference, EUSIPCO 98, Rhodes, 1998:319-322.
    [103] J F A Magarey, N G Kingsbury. Motion estimation using a complex-valued wavelet transform, IEEE Trans. on Signal Processing, 1998, 46(4): 1069-84
    [104] N. Kingsbury. Image processing with complex wavelets, Phil. Tran. R. Soc. Lond. A, 1999, 357: 2543-2560
    [105] N. Kingsbury, Complex wavelets for shift invariant analysis and filtering of signals, Appli. Comput. Harmon. Anal., 2001, 10(3): 234-253
    [106] X. Jiang, L. Blunt. Third Generation Wavelet for the Extraction of Morphological Features from Micro and Nano Scalar Surfaces, Wear, 2004, 257: 1235-1240
    [107] Z. Cai, T.H. Cheng, C. Lu, K.R. Subramanian. Efficient wavelet based image denoising algorithm, Electron. Lett. 2001, 37(11):683-685
    [108] S.Chang, B.Yu, M.Vetterli. Adaptive wavelet thresholding for image denoising and compression, IEEE Trans. Image Processing, 2000, 9:1532-1546
    [109] D.L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inform. Theory
    [110] Levent Sendur, Ivan W. Selesnick. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency, IEEE transactions on signal processing, 2002, 50(11):2744-2756
    [111] S. G. Chang, B. Yu, and M. Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising, IEEE Trans. Image Processing, 2000, 9: 1522–1531
    [112] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk. Wavelet-based signal processing using hidden Markov models, IEEE Trans. Signal Processing, 1998, 46: 886–902
    [113] J.-C. Pesquet and D. Leporini. Bayesian wavelet denoising: Besov priors and non-Gaussian noises, Signal Process., 2001, 81: 55–66
    [114] D. L. Donoho. De-noising by soft-thresholding, IEEE Trans. Inform. Theory, 1995, 41: 613–627
    [115] M. A. T. Figueiredo, R. D. Nowak. Wavelet-based image estimation: An empirical bayes approach using Jeffrey’s noninformative prior, IEEE Trans. Image Processing, 2001, 10: 1322–1331
    [116] H. Gao. Wavelet shrinkage denoising using the nonnegative garrote, J. Comput. Graph. Stat., 1998, 7: 469–488
    [117] A. Hyvarinen. Sparse code shrinkage: Denoising of nongaussian data by maximum likelihood estimation, Neural Comput., 1999, 11: 1739–1768
    [118] M. K. Mihcak, I. Kozintsev, K. Ramchandran, and P. Moulin. Low complexity image denoising based on statistical modeling of wavelet coefficients, IEEE Signal Processing Lett., 1999, 6: 300–303
    [119] M. Rangaswamy, D. Weiner, and A. Ozturk. Non-Gaussian random vector identification using spherically invariant random processes, IEEE Trans. Aerosp. Electron. Syst., 1993, 29: 111–123
    [120] J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients, IEEE Trans. Acoust., Speech, Signal Processing, 1993, 41: 3445–3462
    [121] E. Simoncelli and B. Olshausen. Natural image statistics and neuralrepresentation, Annu. Rev. Neurosci., 2001, 24: 1193–1216
    [122] E. P. Simoncelli and E. H. Adelson. Noise removal via bayesian wavelet coring, Proc. IEEE Int. Conf. Image Process., 1996, I: 379–382.
    [123] V. Strela, J. Portilla, and E. Simoncelli. Image denoising using a local Gaussian scale mixture model in the wavelet domain, Proc. SPIE 45th Annu. Meet., 2000
    [124] Shaojun Xiao. Characterisation of Nano-scalar surface topography based on wavelet analysis, Phd thesis,University of Huddersfield, 2004
    [125] 盛骤,谢式千,潘承毅,概率论与数理统计,第二版,高等教育出版社,1997
    [126] E. J. Candès, D. L. Donoho. Ridgelets: a key to higher-dimensional intermittency, Phil. Trans. R. Soc. Lond. A., 1999, 357: 2495-2509
    [127] D. L. Donoho, Orthonormal ridgelets and linear singularities, SIAM J. Math. Anal., 2000, 31(5): 1062-1099
    [128] M. N. Do, M. Vetterli. The finite ridgelet transform for image representation, IEEE Trans. Image Proc., 2003, 12(1): 16-28
    [129] E. J. Candès, D. L. Donoho. Curvelets and curvilinear integrals, Approx. Theory, 2001,113: 59-90
    [130] J. L. Starck, E. J. Candès, D. L. Donoho. The curvelet transform for image denoising, IEEE Trans. Image Proc., 2002, 11(6): 670-684
    [131] D. Donoho. Tight frames of k-plane ridgelets and the problem of representing objects that are smooth away from d-dimensional singularities in R n, Proc. Natl. Acad. Sci. 1999, 96(5): 1828-1833
    [132] S. Helgason, The radon transform, Boston, Birkhauser, 1980
    [133] S.R. Deans. The Radon Transform and Some of Its Applications, Krieger publishing Company, Florida, 1993
    [134] A.C. Copeland, G. Ravichandran, M.M. Trivedi. Localized Radon transform-based detection of linear features in noisy images, Technical Report, University of Tennessee, 1995
    [135] E. D. Bolker, The finite Radon transform, Contemp. Math., vol. 63, pp. 27-50, 1987.
    [136] F. Matus, J. Flusser, Image representation via a finite Radon transform, IEEE Trans. Pattern Anal. Machine Intell., vol. 15, no. 10, pp. 996-1006, 1993.
    [137] Frantisek Matus, Jan Flusser. Image representation via a finite radon transform, IEEE Trans. On Pattern Analysis and Mach. Intell., 1993, 15(10): 996-1006
    [138] Liam Blunt, Xiangqian Jiang. Advanced Techniques for assessment surface topography, Kogan page science, London,2003
    [139] W.P., Dong, P.J. Sullivan, and K.J. Stout. Comprehensive study of parameters for characterising three-dimensional surface topography III: Parameters for characterising amplitude and some functional properties, Wear, 1994,178: 29-43
    [140] W.P., Dong, P.J. Sullivan, and K.J. Stout. Comprehensive study of parameters for characterising three-dimensional surface topography IV: Parameters for characterising special and hybrid properties, Wear, 1994,178: 45-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700