EGF诱导的Src信号动力学的实时光学成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质酪氨酸磷酸化对诸多基本细胞过程起着关键的调控作用,包括细胞生长、粘附、增殖等。因为蛋白质酪氨酸激酶(Protein Tyrosine Kinases, PTKs)与蛋白质酪氨酸磷脂酶(Protein Tyrosine Phosphatases, PTPs)的相互拮抗,所以一个特定蛋白质的酪氨酸磷酸化水平是PTKs和PTPs共同作用的结果。最近研究发现酪氨酸磷酸化过程受双氧水(Hydrogen Peroxide, H_2O_2)介导的氧化还原过程调节。证据显示H_2O_2可以通过氧化PTPs活性中心的半胱氨酸残基而抑制其活性。目前逐渐形成有关H_2O_2在生长因子诱导的酪氨酸磷酸化信号中的作用的假说:PTKs的激活不足以提高蛋白质的酪氨酸磷酸化稳态水平,同时也需要内源性H_2O_2介导的PTPs抑制作用的参与。虽然H_2O_2参与酪氨酸磷酸化信号通路的分子机制已经被广为接受,但是H_2O_2是以何种方式调节酪氨酸磷酸化信号动力学过程及其特点仍不清楚,尤其是缺乏活细胞内的实时动态调节信息;此外,在外源性H_2O_2诱导的氧化应激中,细胞内谷胱甘肽(Glutathione, GSH)氧化还原电势与酪氨酸磷酸化动力学之间的关系至今未见报道。
     本研究使用基于荧光蛋白的荧光能量共振转移(Fluorescence Resonance EnergyTransfer, FRET)探针Src探针在活细胞水平对上表皮生长因子(Epidermal GrowthFactor, EGF)诱导的和Src激酶介导的酪氨酸磷酸化过程(简称Src信号)进行了定量研究,发现内源性H_2O_2通过抑制PTPs活性,正向地调节Src信号的峰值强度和持续时间。为了在单个细胞内对Src信号动力学与外源性H_2O_2诱导的细胞GSH氧化还原电势变化动力学进行同步研究,我们发展了基于mVenus/mKOκ FRET对的Src探针和基于单个荧光蛋白的Grx1-roGFP2探针的双分子成像方法,在单个细胞中,实现了Src信号和氧化还原电势信号动力学变化的实时同步成像。研究显示,在外源性H_2O_2诱导下,细胞内GSH氧化还原体系参与负调节EGF诱导的Src信号。
     主要研究结果如下:
     1)活细胞内,在EGF刺激下,利用Src光学探针,我们得到了Src信号动力学。
     结果显示Src信号动力学曲线与用生化方法得到的EGF诱导的细胞外信号调节激酶(Extracellular signal-regulated kinase, ERK)信号动力学曲线类似,通过借鉴用来描述ERK动力学的数学模型和参数,我们引入三个简化的参数来定量描述Src信号动力学:信号峰值、信号持续时间和积分信号强度。并建立了这三个参数与Src活化程度和PTPs活性之间的关联。
     2)在活细胞内,发现内源性H_2O_2通过抑制PTPs活性来调节Src的信号峰值和持续时间。通过细胞内表达H_2O_2相关调节基因Rac1-N17和Prx1-Y197F,降低内源H_2O_2水平,结果显示Src的信号峰值和持续时间均大大降低。而PTPs特异抑制剂vanadate能够消除此影响。
     3)结果提示EGF诱导的内源性H_2O_2必须局部产生,这样可以避免触发细胞抗氧化防御机制。动力学数据显示这个防御机制不利于Src介导的酪氨酸磷酸化信号。
     4)发展了基于黄色荧光蛋白mVenus和橙色荧光蛋白mKOκ的新FRET对,建立了基于mVenus/mKOκ (简称YO) FRET对和单荧光蛋白探针Grx1-roGFP2的双比率实时同步成像新方法。实验结果显示,在进行多色荧光信号双比率实时成像时,无需特殊的算法处理,即可获得双生物分子信号互不干扰的动态信息。
     5)设计了基于YO FRET对的Src激酶探针:YO-Src。在单细胞内,对YO-Src和Grx1-roGFP2探针进行同步成像,结果显示,外源H_2O_2对EGF诱导的Src信号起负向调节作用。
     本论文,以可视化、定量化的实验方法,在活细胞水平,显示了EGF诱导的Src信号动力学。阐明了内源性和外源性H_2O_2在Src信号动力学中的作用特点,同时增进了对信号分子H_2O_2在细胞中重要作用的理解。本论文建立的荧光信号定量表征分子事件的研究方法,也适用于其它信号途径中分子事件的研究;建立的双比率成像方法,可以广泛地应用到细胞信号转导途径双分子事件时空特性描述中。
Reversible protein tyrosine phosphorylation controls a wide range of fundamentalcellular processes, including cell growth, adhesion, and proliferation. Because proteintyrosine kinases (PTKs) are counteracted by protein tyrosine phosphatases (PTPs), thetyrosine phosphorylation level of a given protein is the result of the concerted action of therelated PTKs and PTPs. Recently, accumulating evidence reveals a critical role ofhydrogen peroxide (H_2O_2)-dependent modification in regulating tyrosine phosphorylationsignaling that is induced by growth factors such as epidermal growth factor (EGF) andplatelet-derived growth factor (PDGF). H_2O_2potentially inhibits activity of PTPs throughoxidizing a cysteine in the active site of PTPs to create a cysteine-sulfenic derivative. Thecurrent paradigm proposes that activation of PTKs is insufficient for elevating thesteady-state level of protein tyrosine phosphorylation and that H_2O_2-mediated inhibition ofPTPs is also required. However, this proposal lacks real-time dynamic evidence in livingcells. Furthermore, the temporal kinetic correlation of tyrosine phosphorylation signlingand GSH redox potential under H_2O_2exposure is also unclear.
     In this dissertation, we used a genetically encoded Src kinase-specific biosensor basedon fluorescence resonance energy transfer (FRET) to image the kinetics of theSrc-mediated tyrosine phosphorylation signaling (Src signaling) induced by epidermalgrowth factor (EGF). Through straightforward quantitative analyses method thatcharacterized the signaling kinetics, we demonstrated that H_2O_2modulated both theamplitude and the duration of the signal by inhibiting PTPs’ activity. Furthermore, weestablished a novel combination of FP biosensors for dual-parameter ratiometric imaging,consisting of a new fluorescence resonance energy transfer pair mVenus (yellowFP)/mKOκ (orange FP)-based (abbreviated as YO) biosensor and a single FP-based biosensor. By using this dual-parameter ratiometric imaging approach, we achievedsimultaneous imaging of Src signaling and glutathione (GSH) redox potential in a singlecell. The results showed that the GSH redox system negatively regulate EGF-induced Srcsignaling upon exogenous H_2O_2stimulation. The main results are shown as following:
     1) In living cells, we obtained kinetics of EGF-induced Src signaling using Srckinase biosensor. Given that the kinetic profile of Src signaling resembles that of ERK(Extracellular signal-regulated kinase) signaling, we introduced three simplifiedparameter to quantatively describe Src signaling, namely, peak amplitude of signaling(PAS), duration of signaling (DS) and integral signaling strength (ISS). We furthercorrelated those parameter with Src and PTPs’ activity.
     2) We found that H_2O_2modulated both the amplitude and the duration of the signalby inhibiting PTPs’ activity under EGF simulation. By down-regualting endogenous H_2O_2via expressing Rac1-N17and Prx1-Y197F protein, results showed that PAS and DS ofSrc signaling are substantially reduced. PTPs specific inhibitor vanadate is able to abolishthis effect.
     3) Our results suggested that in the context of EGF-induced signal transductionpathway, EGF-induced H_2O_2has to be locally generated. Otherwise, it triggersantioxidant defenses, leading to attenuation of EGF signal transduction.
     4) We developed a novel combination of FP biosensors for dual-parameterratiometric imaging, consisting of a new FRET pair mVenus (yellow FP)/mKOκ (orangeFP)-based (abbreviated as YO) biosensor and a single FP-based biosensor. Resultsshowed that this combination of FP biosensor does not require intensity correcton inliving cell imaging.
     5) We designed a Src specific biosensor based on YO FRET pair (named YO-Src).By using this dual-parameter ratiometric imaging approach, we achieved simultaneousimaging of Src signaling and glutathione (GSH) redox potential in a single cell, providing direct evidence that epidermal growth factor (EGF)-induced Src signaling was negativelyregulated by H_2O_2via its effect on GSH-based redox system.
     Collectively, we quantitatively visualize the EGF-induced Src signaling in living cells.And we elucidate the effect of endogenous and exogenous H_2O_2on Src signaling. Theresults promote understanding of H_2O_2, which is considered the important signalmolecule. Furthermore, our research approach, which analyzes the FRET-biosensorderived kinetic data with mathematical parameters, can be applied to molecular event inother signal transduction. The dual-molecule ratiometric imaging approach can beextensively applied for the elucidation of the interplay of two molecular events in singleliving cells.
引文
[1] Chiarugi P, Buricchi F. Protein tyrosine phosphorylation and reversible oxidation:Two cross-talking posttranslation modifications. Antioxidants&Redox Signaling.2007,9(1):1-24.
    [2] Tremblay ML, Julien SG, Dube N, et al. Inside the human cancer tyrosinephosphatome. Nature Reviews Cancer.2011,11(1):35-49.
    [3] Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the humangenome. Oncogene.2000,19(49):5548-5557.
    [4] Jiang G, Hunter T. Receptor signaling: when dimerization is not enough. CurrentBiology.1999,9(15): R568-571.
    [5] Sicheri F, Kuriyan J. Structures of Src-family tyrosine kinases. Curr Opin StructBiol.1997,7(6):777-785.
    [6] Guan KL, Dixon JE. Evidence for protein-tyrosine-phosphatase catalysisproceeding via a cysteine-phosphate intermediate. Journal of Biological Chemistry.1991,266(26):17026-17030.
    [7] Denu JM, Tanner KG. Redox regulation of protein tyrosine phosphatases byhydrogen peroxide: detecting sulfenic acid intermediates and examining reversibleinactivation. Methods Enzymol.2002,348:297-305.
    [8] Yeatman TJ. A renaissance for SRC. Nature Reviews Cancer.2004,4(6):470-480.
    [9] Boggon TJ, Eck MJ. Structure and regulation of Src family kinases. Oncogene.2004,23(48):7918-7927.
    [10] Giannoni E, Taddei ML, Chiarugi P. Src redox regulation: Again in the front line.Free Radical Biology and Medicine.2010,49(4):516-527.
    [11] Toledano MB, Autreaux B. ROS as signalling molecules: mechanisms thatgenerate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology.2007,8(10):813-824.
    [12] Rhee SG. H2O2, a necessary evil for cell signaling. Science.2006,312(5782):1882-1883.
    [13] Sundaresan M, Yu ZX, Ferrans VJ, et al. Requirement for generation of H2O2forplatelet-derived growth factor signal transduction. Science.1995,270(5234):296-299.
    [14] Bae YS, Kang SW, Seo MS, et al. Epidermal growth factor (EGF)-inducedgeneration of hydrogen peroxide-Role in EGF receptor-mediated tyrosinephosphorylation. Journal of Biological Chemistry.1997,272(1):217-221.
    [15] Leto TL, Morand S, Hurt D, et al. Targeting and Regulation of Reactive OxygenSpecies Generation by Nox Family NADPH Oxidases. Antioxidants&RedoxSignaling.2009,11(10):2607-2619.
    [16] Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases:Physiology and pathophysiology. Physiological Reviews.2007,87(1):245-313.
    [17] Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker forgene expression. Science.1994,263(5148):802-805.
    [18] Wang YX, Shy JY, Chien S. Fluorescence proteins, live-cell imaging, andmechanobiology: Seeing is believing. Annual Review of Biomedical Engineering.2008,10:1-38.
    [19] Remington SJ. Fluorescent proteins: maturation, photochemistry and photophysics.Current Opinion in Structural Biology.2006,16(6):714-721.
    [20] Heim R, Prasher DC, Tsien RY. Wavelength mutations and posttranslationalautoxidation of green fluorescent protein. Proc Natl Acad Sci U S A.1994,91(26):12501-12504.
    [21] Zimmer M, Lemay NP, Morgan AL, et al. The role of the tight-turn, brokenhydrogen bonding, Glu222and Arg96in the post-translational green fluorescentprotein chromophore formation. Chemical Physics.2008,348(1-3):152-160.
    [22] Piston DW, Kremers GJ, et al. Fluorescent proteins at a glance. Journal of CellScience.2011,124(2):157-160.
    [23] Mena MA, Treynor TP, Mayo SL, et al. Blue fluorescent proteins with enhancedbrightness and photostability from a structurally targeted library. NatureBiotechnology.2006,24(12):1569-1571.
    [24] Ai HW, Shaner NC, Cheng ZH, et al. Exploration of new chromophore structuresleads to the identification of improved blue fluorescent proteins. Biochemistry.2007,46(20):5904-5910.
    [25] Subach OM, Gundorov IS, Yoshimura M, et al. Conversion of Red FluorescentProtein into a Bright Blue Probe. Chemistry&Biology.2008,15(10):1116-1124.
    [26] Rizzo MA, Springer GH, Granada B, et al. An improved cyan fluorescent proteinvariant useful for FRET. Nature Biotechnology.2004,22(4):445-449.
    [27] Ai HW, Henderson JN, Remington SJ, et al. Directed evolution of a monomeric,bright and photostable version of Clavularia cyan fluorescent protein: structuralcharacterization and applications in fluorescence imaging. Biochemical Journal.2006,400:531-540.
    [28] Goedhart J, Van WL, Hink MA, et al. Bright cyan fluorescent protein variantsidentified by fluorescence lifetime screening. Nature Methods.2010,7(2):137-U174.
    [29] Pedelacq JD, Cabantous S, Tran T, et al. Engineering and characterization of asuperfolder green fluorescent protein. Nature Biotechnology.2006,24(1):79-88.
    [30] Griesbeck O, Baird GS, Campbell RE, et al. Reducing the environmentalsensitivity of yellow fluorescent protein-Mechanism and applications. Journal ofBiological Chemistry.2001,276(31):29188-29194.
    [31] Nagai T, Ibata K, Park ES, et al. A variant of yellow fluorescent protein with fastand efficient maturation for cell-biological applications. Nature Biotechnology.2002,20(1):87-90.
    [32] Nguyen AW, Daugherty PS. Evolutionary optimization of fluorescent proteins forintracellular FRET. Nature Biotechnology.2005,23(3):355-360.
    [33] Vinkenborg JL, Evers TH, Reulen, SW, et al. Enhanced sensitivity of FRET-basedprotease sensors by redesign of the GFP dimerization interface. Chembiochem.2007,8(10):1119-1121.
    [34] Henderson JN, Osborn MF, Koon N, et al. Excited State Proton Transfer in the RedFluorescent Protein mKeima. Journal of the American Chemical Society.2009,131(37):13212-+.
    [35] Shaner NC, Campbell RE, Steinbach PA, et al. Improved monomeric red, orangeand yellow fluorescent proteins derived from Discosoma sp red fluorescent protein.Nature Biotechnology.2004,22(12):1567-1572.
    [36] Karasawa S, Araki T, Nagai T, et al. Cyan-emitting and orange-emittingfluorescent proteins as a donor/acceptor pair for fluorescence resonance energytransfer. Biochemical Journal.2004,381:307-312.
    [37] Tsutsui H, Karasawa S, Okamura Y, et al. Improving membrane voltagemeasurements using FRET with new fluorescent proteins. Nature Methods.2008,5(8):683-685.
    [38] Merzlyak EM, Goedhart J, Shcherbo D, et al. Bright monomeric red fluorescentprotein with an extended fluorescence lifetime. Nature Methods.2007,4(7):555-557.
    [39] Kredel S, Oswald F, Nienhaus K, et al. mRuby, a Bright Monomeric RedFluorescent Protein for Labeling of Subcellular Structures. Plos One.2009,4(2).
    [40] Shaner NC, Lin MZ, McKeown MR, et al. Improving the photostability of brightmonomeric orange and red fluorescent proteins. Nature Methods.2008,5(6):545-551.
    [41] Campbell RE. Fluorescent-Protein-Based Biosensors: Modulation of EnergyTransfer as a Design Principle. Analytical Chemistry.2009,81(15):5972-5979.
    [42] Zhang J, DiPilato LM. Fluorescent protein-based biosensors: resolvingspatiotemporal dynamics of signaling. Current Opinion in Chemical Biology.2010,14(1):37-42.
    [43] Ibraheem A, Campbell RE. Designs and applications of fluorescent protein-basedbiosensors. Current Opinion in Chemical Biology.2010,14(1):30-36.
    [44] Chudakov DM, Matz MV, Lukyanov S, et al. A. Fluorescent Proteins and TheirApplications in Imaging Living Cells and Tissues. Physiological Reviews.2010,90(3):1103-1163.
    [45] Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZip andRel family proteins in living cells using bimolecular fluorescencecomplementation. Molecular Cell.2002,9(4):789-798.
    [46] Jares-Erijman EA, Jovin TM. FRET imaging. Nature Biotechnology.2003,21(11):1387-1395.
    [47] Campbell RE, Carlson HJ. Genetically encoded FRET-based biosensors formultiparameter fluorescence imaging. Current Opinion in Biotechnology.2009,20(1):19-27.
    [48] Ting AY, Kain KH, Klemke RL, et al. Genetically encoded fluorescent reporters ofprotein tyrosine kinase activities in living cells. Proceedings of the NationalAcademy of Sciences of the United States of America.2001,98(26):15003-15008.
    [49] Wang YX, Botvinick EL, Zhao YH, et al. Visualizing the mechanical activation ofSrc. Nature.2005,434(7036):1040-1045.
    [50] Ouyang MX, Sun J, Chien S, et al. Determination of hierarchical relationship ofSrc and Rac at subcellular locations with FRET biosensors. Proceedings of theNational Academy of Sciences of the United States of America.2008,105(38):14353-14358.
    [51] Dooley CT, Dore TM, Hanson GT, et al. Imaging dynamic redox changes inmammalian cells with green fluorescent protein indicators. Journal of BiologicalChemistry.2004,279(21):22284-22293.
    [52] Hanson GT, Aggeler R, Oglesbee D, et al. Investigating mitochondrial redoxpotential with redox-sensitive green fluorescent protein indicators. Journal ofBiological Chemistry.2004,279(13):13044-13053.
    [53] Cannon MB, Remington SJ. Re-engineering redox-sensitive green fluorescentprotein for improved response rate. Protein Sci.2006,15(1):45-57.
    [54] Dooley CT, Dore TM, Hanson GT, et al. Imaging dynamic redox changes inmammalian cells with green fluorescent protein indicators. Journal of BiologicalChemistry.2004,279(21):22284-22293.
    [55] Lukyanov KA, Chudakov DM, Matz MV, et al. Fluorescent Proteins and TheirApplications in Imaging Living Cells and Tissues. Physiological Reviews.2010,90(3):1103-1163.
    [56] Schultz C, Piljic A. Simultaneous recording of multiple cellular events by FRET.Acs Chemical Biology.2008,3(3):156-160.
    [57] Campbell RE, Ai HW, Hazelwood KL, et al. Fluorescent protein FRET pairs forratiometric imaging of dual biosensors. Nature Methods.2008,5(5):401-403.
    [58] Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling.Molecular Cell.2007,26(1):1-14.
    [59] Fischer EH, Charbonneau H, Tonks NK. Protein tyrosine phosphatases: a diversefamily of intracellular and transmembrane enzymes. Science.1991,253(5018):401-406.
    [60] Juarez JC, Manuia M, Burnett ME, et al. Superoxide dismutase1(SOD1) isessential for H2O2-mediated oxidation and inactivation of phosphatases in growthfactor signaling. Proceedings of the National Academy of Sciences of the UnitedStates of America.2008,105(20):7147-7152.
    [61] Lee SR, Kwon KS, Kim SR, et al. Reversible inactivation of protein-tyrosinephosphatase1B in A431cells stimulated with epidermal growth factor. Journal ofBiological Chemistry.1998,273(25):15366-15372.
    [62] Chiarugi P, Fiaschi T, Taddei ML, et al. Two vicinal cysteines confer a peculiarredox regulation to low molecular weight protein tyrosine phosphatase in responseto platelet-derived growth factor receptor stimulation. Journal of BiologicalChemistry.2001,276(36):33478-33487.
    [63] Heinrich R, Neel BG, Rapoport TA. Mathematical models of protein kinase signaltransduction. Molecular Cell.2002,9(5):957-970.
    [64] Hornberg JJ, Bruggeman FJ, Binder B, et al. Principles behind the multifariouscontrol of signal transduction-ERK phosphorylation and kinase/phosphatasecontrol. Febs Journal.2005,272(1):244-258.
    [65] Ebisuya M, Kondoh K, Nishida E. The duration, magnitude andcompartmentalization of ERK MAP kinase activity: mechanisms for providingsignaling specificity. Journal of Cell Science.2005,118(14):2997-3002.
    [66] Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versussustained extracellular signal-regulated kinase activation. Cell.1995,80(2):179-185.
    [67] Zhang J, Campbell RE, Ting AY, et al. Creating new fluorescent probes for cellbiology. Nature Reviews Molecular Cell Biology.2002,3(12):906-918.
    [68] Abe J, Takahashi M, Ishida M, et al. c-Src is required for oxidative stress-mediatedactivation of big mitogen-activated protein kinase1(BMK1). Journal of BiologicalChemistry.1997,272(33):20389-20394.
    [69] Giannoni E, Buricchi F, Raugei G, et al. Intracellular reactive oxygen speciesactivate Src tyrosine kinase during cell adhesion and anchorage-dependent cellgrowth. Molecular and Cellular Biology.2005,25(15):6391-6403.
    [70] Krasnowska EK, Pittalluga E, Brunati AM, et al. N-acetyl-l-cysteine fostersinactivation and transfer to endolysosomes of c-Src. Free Radical Biology andMedicine.2008,45(11):1566-1572.
    [71] Tang H, Hao Q, Rutherford SA, et al. Inactivation of Src family tyrosine kinasesby reactive oxygen species in vivo. Journal of Biological Chemistry.2005,280(25):23918-23925.
    [72] Kemble DJ, Sun GQ. Direct and specific inactivation of protein tyrosine kinases inthe Src and FGFR families by reversible cysteine oxidation. Proceedings of theNational Academy of Sciences of the United States of America.2009,106(13):5070-5075.
    [73] Brons-Poulsen J, Petersen NE, Horder M, et al. An improved PCR-based methodfor site directed mutagenesis using megaprimers. Molecular and Cellular Probes.1998,12(6):345-348.
    [74] Ge LM, Rudolph P. Simultaneous introduction of multiple mutations using overlapextension PCR. Biotechniques.1997,22(1):28-&.
    [75] Urban A, Neukirchen S, Jaeger KE. A rapid and efficient method for site-directedmutagenesis using one-step overlap extension PCR. Nucleic Acids Research.1997,25(11):2227-2228.
    [76] Pertz O, Hodgson L, Klemke RL, et al. Spatiotemporal dynamics of RhoA activityin migrating cells. Nature.2006,440(7087):1069-1072.
    [77] Woo HA, Yim SH, Shin DH, et al. Inactivation of Peroxiredoxin I byPhosphorylation Allows Localized H2O2Accumulation for Cell Signaling. Cell.2010,140(4):517-528.
    [78] Cool RH, Merten E, Theiss C, et al. Rac1, and not Rac2, is involved in theregulation of the intracellular hydrogen peroxide level in HepG2cells.Biochemical Journal.1998,332:5-8.
    [79] Bae YS, Sung JY, Kim, OS, et al. Platelet-derived growth factor-induced H2O2production requires the activation of phosphatidylinositol3-kinase. Journal ofBiological Chemistry.2000,275(14):10527-10531.
    [80] Park HS, Lee SH, Park D, et al. Sequential activation of phosphatidylinositol3-kinase, beta Pix, Rac1, and Nox1in growth factor-induced production of H2O2.Molecular and Cellular Biology.2004,24(10):4384-4394.
    [81] Chu J, Zhang ZH, Zheng Y, et al. A novel far-red bimolecular fluorescencecomplementation system that allows for efficient visualization of proteininteractions under physiological conditions. Biosensors&Bioelectronics.2009,25(1):234-239.
    [82] Rhee SG, Yang KS, Kang SW, et al. Controlled elimination of intracellular H2O2:Regulation of peroxiredoxin, catalase, and glutathione peroxidase viapost-translational modification. Antioxidants&Redox Signaling.2005,7(5-6):619-626.
    [83] Forman HJ. Use and abuse of exogenous H2O2in studies of signal transduction.Free Radical Biology and Medicine.2007,42(7):926-932.
    [84] Cuddihy S, Winterbourn CC, Hampton MB. Assessment of Redox Changes toHydrogen Peroxide-Sensitive Proteins During EGF Signaling. Antioxid RedoxSignal.2011.
    [85] Mishina NM, Tyurin-Kuzmin PA, Markvicheva KN, et al. Does Cellular HydrogenPeroxide Diffuse or Act Locally? Antioxidants&Redox Signaling.2011,14(1):1-7.
    [86] Ng CF, Schafer FQ, Buettner GR, et al. The rate of cellular hydrogen peroxideremoval shows dependency on GSH: Mathematical insight into in vivo H2O2andGPx concentrations. Free Radical Research.2007,41(11):1201-1211.
    [87] Gutscher M, Pauleau AL, Marty L, et al. Real-time imaging of the intracellularglutathione redox potential. Nature Methods.2008,5(6):553-559.
    [88] Barrett WC, DeGnore JP, Keng YF, et al. Roles of superoxide radical anion insignal transduction mediated by reversible regulation of protein-tyrosinephosphatase1B. Journal of Biological Chemistry.1999,274(49):34543-34546.
    [89] Cunnick JM, Dorsey JF, Standley T, et al. Role of tyrosine kinase activity ofepidermal growth factor receptor in the lysophosphatidic acid-stimulatedmitogen-activated protein kinase pathway. Journal of Biological Chemistry.1998,273(23):14468-14475.
    [90] Sun GQ, Ramdas L, Wang W, et al. Effect of autophosphorylation on the catalyticand regulatory properties of protein tyrosine kinase Src. Archives of Biochemistryand Biophysics.2002,397(1):11-17.
    [91] Hardwick JS, Sefton BM. The activated form of the Lck tyrosine protein kinase incells exposed to hydrogen peroxide is phosphorylated at both Tyr-394and Tyr-505.Journal of Biological Chemistry.1997,272(41):25429-25432.
    [92] Bjorge JD, Pang A, Fujita DJ. Identification of protein-tyrosine phosphatase1B asthe major tyrosine phosphatase activity capable of dephosphorylating andactivating c-Src in several human breast cancer cell lines. Journal of BiologicalChemistry.2000,275(52):41439-41446.
    [93] Zheng XM, Resnick RJ, Shalloway D. A phosphotyrosine displacementmechanism for activation of Src by PTP alpha. Embo Journal.2000,19(5):964-978.
    [94] Stone JR. An assessment of proposed mechanisms for sensing hydrogen peroxidein mammalian systems. Archives of Biochemistry and Biophysics.2004,422(2):119-124.
    [95] LaButti JN, Chowdhury G, Reilly TJ, et al. Redox regulation of protein tyrosinephosphatase1B by peroxymonophosphate (-O3POOH). Journal of the AmericanChemical Society.2007,129(17):5320-+.
    [96] Grecco HE, Schmick M, Bastiaens PI. Signaling from the Living PlasmaMembrane. Cell.2011,144(6):897-909.
    [97] Zhao Z, Tan Z, Diltz CD, et al. Activation of mitogen-activated protein (MAP)kinase pathway by pervanadate, a potent inhibitor of tyrosine phosphatases.Journal of Biological Chemistry.1996,271(36):22251-22255.
    [98] Brigelius-Flohe R, Kipp A. Glutathione peroxidases in different stages ofcarcinogenesis. Biochimica Et Biophysica Acta-General Subjects.2009,1790(11):1555-1568.
    [99] Cao C, Leng YM, Huang W, et al. Glutathione peroxidase1is regulated by thec-Abl and Arg tyrosine kinases. Journal of Biological Chemistry.2003,278(41):39609-39614.
    [100] Sun XG, Majumder P, Shioya H, et al. Activation of the cytoplasmic c-Abl tyrosinekinase by reactive oxygen species. Journal of Biological Chemistry.2000,275(23):17237-17240.
    [101] Halvey PJ, Watson WH, Hansen, JM, et al. Compartmental oxidation ofthiol-disulphide redox couples during epidermal growth factor signalling.Biochemical Journal.2005,386:215-219.
    [102] DiPilato LM, Zhang J. Fluorescent protein-based biosensors: resolvingspatiotemporal dynamics of signaling. Curr Opin Chem Biol.2010,14(1):37-42.
    [103] Wang Y, Shy JY, Chien S. Fluorescence proteins, live-cell imaging, andmechanobiology: seeing is believing. Annual Review of Biomedical Engineering.2008,10:1-38.
    [104] Carlson HJ, Campbell RE. Genetically encoded FRET-based biosensors formultiparameter fluorescence imaging. Current Opinion in Biotechnology.2009,20(1):19-27.
    [105] Sabouri-Ghomi M, Wu Y, Hahn K, et al. Visualizing and quantifying adhesivesignals. Curr Opin Cell Biol.2008,20(5):541-550.
    [106] VanEngelenburg SB, Palmer AE. Fluorescent biosensors of protein function. CurrOpin Chem Biol.2008,12(1):60-65.
    [107] Grant DM, Zhang W, McGhee EJ, et al. Multiplexed FRET to Image MultipleSignaling Events in Live Cells. Biophysical Journal.2008,95(10): L69-L71.
    [108] Peyker A, Rocks O, Bastiaens PI. Imaging activation of two Ras isoformssimultaneously in a single cell. Chembiochem.2005,6(1):78-85.
    [109] Tay LH, Griesbeck O, Yue DT. Live-cell transforms between Ca2+transients andFRET responses for a troponin-C-based Ca2+sensor. Biophysical Journal.2007,93(11):4031-4040.
    [110] Kawai H, Suzuki T, Kobayashi T, et al. Simultaneous real-time detection ofinitiator-and effector-caspase activation by double fluorescence resonance energytransfer analysis. Journal of Pharmacological Sciences.2005,97(3):361-368.
    [111] DiPilato LM, Cheng XD, Zhang J. Fluorescent indicators of cAMP and Epacactivation reveal differential dynamics of cAMP signaling within discretesubcellular compartments. Proceedings of the National Academy of Sciences ofthe United States of America.2004,101(47):16513-16518.
    [112] Piljic A, Schultz C. Simultaneous recording of multiple cellular events by FRET.ACS Chem Biol.2008,3(3):156-160.
    [113] Aw TY. Cellular redox: A modulator of intestinal epithelial cell proliferation. Newsin Physiological Sciences.2003,18:201-204.
    [114] Honda T, Coppola S, Ghibelli L, et al. GSH depletion enhances adenoviralbax-induced apoptosis in lung cancer cells. Cancer Gene Therapy.2004,11(4):249-255.
    [115] Mank M, Santos AF, Direnberger S, et al. A genetically encoded calcium indicatorfor chronic in vivo two-photon imaging. Nature Methods.2008,5(9):805-811.
    [116] Piston DW, Kremers GJ. Fluorescent protein FRET: the good, the bad and the ugly.Trends in Biochemical Sciences.2007,32(9):407-414.
    [117] Kremers GJ, Gilbert SG, Cranfill PJ, et al. Fluorescent proteins at a glance. Journalof Cell Science.2011,124(2):157-160.
    [118] Wu B, Piatkevich KD, Lionnet T, et al. Modern fluorescent proteins and imagingtechnologies to study gene expression, nuclear localization, and dynamics. CurrOpin Cell Biol.2011,23(3):310-317.
    [119] McCombs JE, Palmer AE. Measuring calcium dynamics in living cells withgenetically encodable calcium indicators. Methods.2008,46(3):152-159.
    [120] Nagai T, Yamada S, Tominaga T, et al. Expanded dynamic range of fluorescentindicators for Ca2+by circularly permuted yellow fluorescent proteins.Proceedings of the National Academy of Sciences of the United States of America.2004,101(29):10554-10559.
    [121] Kremers GJ, Goedhart J, Van-Munster EB, et al. Cyan and yellow superfluorescent proteins with improved brightness, protein folding, and FRET Forsterradius. Biochemistry.2006,45(21):6570-6580.
    [122] Vogel SS, Thaler C, Koushik SV. Fanciful FRET. Sci STKE.2006,2006(331): re2.
    [123] Miyawaki A, Llopis J, Heim R, et al. Fluorescent indicators for Ca2+based ongreen fluorescent proteins and calmodulin. Nature.1997,388(6645):882-887.
    [124] Schultz C, Schleifenbaum A, Goedhart J, et al. Multiparameter imaging for theanalysis of intracellular signaling. Chembiochem.2005,6(8):1323-1330.
    [125] Lemjabbar H, Li D, Gallup M, et al. Tobacco smoke-induced lung cellproliferation mediated by tumor necrosis factor alpha-converting enzyme andamphiregulin. Journal of Biological Chemistry.2003,278(28):26202-26207.
    [126] Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. NatImmunol.2002,3(12):1129-1134.
    [127] Jones DP. Redox potential of GSH/GSSG couple: Assay and biologicalsignificance. Protein Sensors and Reactive Oxygen Species, Pt B, Thiol Enzymesand Proteins.2002,348:93-112.
    [128] Suzuki YJ, Cleemann L, Abernethy DR, et al. Glutathione is a cofactor forH2O2-mediated stimulation of Ca2+-induced Ca2+release in cardiac myocytes.Free Radical Biology and Medicine.1998,24(2):318-325.
    [129] Chiarugi P, Cirri P, Taddei ML, et al. New perspectives in PDGF receptordownregulation: the main role of phosphotyrosine phosphatases. Journal of CellScience.2002,115(10):2219-2232.
    [130] Chiarugi P, Cirri P. Redox regulation of protein tyrosine phosphatases duringreceptor tyrosine kinase signal transduction. Trends in Biochemical Sciences.2003,28(9):509-514.
    [131] Rhee SG, Chang TS, Bae YS, et al. Cellular regulation by hydrogen peroxide.Journal of the American Society of Nephrology.2003,14: S211-S215.
    [132] Kang SW, Baines IC, Rhee SG. Characterization of a mammalian peroxiredoxinthat contains one conserved cysteine. Journal of Biological Chemistry.1998,273(11):6303-6311.
    [133] Rhee SG, Chae HZ, Kim K. Peroxiredoxins: A historical overview and speculativepreview of novel mechanisms and emerging concepts in cell signaling. FreeRadical Biology and Medicine.2005,38(12):1543-1552.
    [134] Zhang J, Hupfeld CJ, Taylor SS, et al. Insulin disrupts beta-adrenergic signalling toprotein kinase A in adipocytes. Nature.2005,437(7058):569-573.
    [135] Depry C, Allen MD, Zhang J. Visualization of PKA activity in plasma membranemicrodomains. Molecular Biosystems.2011,7(1):52-58.
    [136] Gallegos LL, Kunkel MT, Newton AC. Targeting protein kinase C activity reporterto discrete intracellular regions reveals spatiotemporal differences inagonist-dependent signaling. Journal of Biological Chemistry.2006,281(41):30947-30956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700