基于氢键活化的不对称有机催化的硫醚氧化和phospha-Michael加成反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于“氢键活化”的概念,以手性的联萘酚(BINOL),金鸡纳碱,1,2-环己二胺,1,2-二苯基乙二胺(DPEN)为原料,合成了一系列氢键供体型有机小分子催化剂。系统研究了手性磷酸催化的不对称硫醚氧化反应以及手性硫脲催化的不对称phospha-Michael加成反应,探索了有机小分子对亚磷酸酯与苯亚甲基丙二腈的不对称phospha-Michael加成反应的催化性能。
     论文的第一部分工作,我们以(R)-BINOL为原料,合成了一系列手性磷酸催化剂,实现了手性磷酸催化的芳基烷基硫醚和芳醛衍生的双缩硫醛的不对称氧化反应,以双氧水为氧化剂,反应分别能以中等到良好的收率(35–92%)和良好的对映选择性(83:17–91:9er)得到手性芳基烷基亚砜,以良好到优秀的收率(60–99%)、优秀的非对映选择性(up to>99:1)和良好的对映选择性(78:22–87:13er)得到缩硫醛单氧化物。反应过程中无其他副产物生成。同时,我们通过实验证明本反应为直接磺氧化反应,不存在亚砜过氧化导致的动力学拆分过程。
     第二部分工作中,我们以金鸡纳碱和DPEN为原料合成了一系列叔胺硫脲型催化剂,成功实现了手性硫脲催化的亚磷酸二烷基酯对靛红丙二腈缩合物的不对称phospha-Michael加成反应。优化条件下,反应能以良好到优秀的收率(78–98%)以及良好到优秀的对映选择性(64–95%ee)得到亚磷酸酯与不饱和丙二腈的加成产物。在本方法中,不需要氮保护的靛红丙二腈底物的活性和对映选择性最高,避免了这类底物通常需要的保护和脱保护的步骤,具有较高的应用价值。
     本论文的第三部分工作,我们首先合成了四种手性方酰胺催化剂,之后以苯亚甲基丙二腈作为不对称phospha-Michael加成反应的底物,探索了几种有机小分子催化剂对亚磷酸酯作为磷亲核试剂的催化性能。实验结果表明,常见的氢键给体型催化剂不能高对映选择性地催化本反应。我们将继续寻找适于小分子催化的不对称phospha-Michael加成体系。
Hydrogen bonding to an electrophile serves to decrease the electron density of thisspecies, activating it toward nucleophilic attack. Some small molecule chiralhydrogen-bond donors were prepared following the reported procedures, which havebeen successfully applied to promoting the asymmetric phospha-Michael addition ofdiethyl phosphites to isatylidenemalononitriles and asymmetric oxidation of aryl alkylsulfides and aldehyde-derived1,3-dithianes.
     In the first part,(R)-BINOL derived chiral phosphoric acids have been explored asorganocatalysts for the asymmetric oxidation of a series of aryl alkyl sulfides and1,3-dithianes derived from aldehydes with aqueous H2O2as the terminal oxidant. Theenantiomerically enriched sulfoxides are obtained in moderate to excellent yield (up to99%) with excellent diastereoselectivity (up to>99:1dr) and moderate to goodenantioselectivity (up to91:9er). In particular, the present protocol stereoselectivelyprovides an efficient access to enantiomerically enriched aryl alkyl sulfoxides anddithioacetal mono-sulfoxides, which sternly restrains the formation of the undesirablebyproducts of sulfones or disulfoxides. The tracking experiments also verify that thisapproach proceeds via a direct sulfoxidation process, instead of a kinetic resolutionroute by overoxidation of the resulting sulfoxides.
     α-Functionalized phosphonic acids are valuable intermediates for the preparationof medicinal compounds and synthetic intermediates. An unprecedented and highlyenantioselective organocatalytic synthesis of dialkyl3-(dicyanomethyl)-2-oxoindolin-3-ylphosphonate was achieved through an asymmetric conjugate addition of diethylphosphites to isatylidenemalononitriles catalyzed by DPEN-based bifunctional thiourea.Optically active products bearing quaternary chiral carbon stereocenters were obtainedin high yields (78–98%) with good to excellent enantioselectivities (up to95%ee).Masking of the "N"(e.g., Me-) led to dramatic decrease of the ee values and yields.
     Four chiral squaramides were synthesized using simple methods. Their catalyticeffects on the asymmetric addition of diethyl phosphite to benzylidenemalononitrilewere evaluated, and it was found that they could promote the reaction with only23%ee.Investigations are still ongoing in our laboratory to utilize other optically smallmolecule as catalysts for this asymmetric transformation.
引文
1. List, B. The Direct Catalytic Asymmetric Three-Component MannichReaction. J. Am. Chem. Soc.2000,122,9336-9337.
    2. List, B.; Lerner, R. A.; Barbas, C. F. Proline-Catalyzed DirectAsymmetric Aldol Reactions. J. Am. Chem. Soc.2000,122,2395-2396.
    3. Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. New Strategies forOrganic Catalysis: The First Highly Enantioselective OrganocatalyticDiels Alder Reaction. J. Am. Chem. Soc.2000,122,4243-4244.
    4. Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. New Strategies forOrganic Catalysis: The First Enantioselective Organocatalytic1,3-DipolarCycloaddition. J. Am. Chem. Soc.2000,122,9874-9875.
    5. Sigman, M. S.; Jacobsen, E. N. Schiff Base Catalysts for the AsymmetricStrecker Reaction Identified and Optimized from Parallel Synthetic Libraries. J.Am. Chem. Soc.1998,120,4901-4902.
    6. Sigman, M. S.; Vachal, P.; Jacobsen, E. N. A General Catalyst for theAsymmetric Strecker Reaction. Angew. Chem. Int. Ed.2000,39,1279-1281.
    7. Vachal, P.; Jacobsen, E. N. Enantioselective Catalytic Addition of HCN toKetoimines. Catalytic Synthesis of Quaternary Amino Acids. Org. Lett.2000,2,867-870.
    8. Aleman, J.; Cabrera, S. Applications of asymmetric organocatalysis inmedicinal chemistry. Chem. Soc. Rev.2013,42,774-793.
    9. Bernardi, L.; Fochi, M.; Comes Franchini, M.; Ricci, A. Bioinspiredorganocatalytic asymmetric reactions. Org. Biomol. Chem.2012,10,2911-2922.
    10. Albrecht,.; Jiang, H.; J rgensen, K. A. A Simple Recipe forSophisticated Cocktails: Organocatalytic One-Pot Reactions—Concept,Nomenclature, and Future Perspectives. Angew. Chem. Int. Ed.2011,50,8492-8509.
    11. Bertelsen, S.; J rgensen, K. A. Organocatalysis-after the gold rush. Chem.Soc. Rev.2009,38,2178-2189.
    12. MacMillan, D. W. C. The advent and development of organocatalysis.Nature2008,455,304-308.
    13. Marcia de Figueiredo, R.; Christmann, M. Organocatalytic Synthesis ofDrugs and Bioactive Natural Products. Eur. J. Org. Chem.2007,2007,2575-2600.
    14. List, B.; Yang, J. W. The Organic Approach to Asymmetric Catalysis.Science2006,313,1584-1586.
    15. Dalko, P. I.; Moisan, L. In the Golden Age of Organocatalysis. Angew.Chem. Int. Ed.2004,43,5138-5175.
    16. Dalko, P. I.; Moisan, L. Enantioselective Organocatalysis. Angew. Chem.Int. Ed.2001,40,3726-3748.
    17. Yu, X.; Wang, W. Hydrogen-Bond-Mediated Asymmetric Catalysis.Chem. Asian J.2008,3,516-532.
    18. Yu, J.; Shi, F.; Gong, L.-Z. Br nsted-Acid-Catalyzed AsymmetricMulticomponent Reactions for the Facile Synthesis of Highly EnantioenrichedStructurally Diverse Nitrogenous Heterocycles. Acc. Chem. Res.2011,44,1156-1171.
    19. Schenker, S.; Zamfir, A.; Freund, M.; Tsogoeva, S. B. Developments inChiral Binaphthyl-Derived Br nsted/Lewis Acids and Hydrogen-Bond-DonorOrganocatalysis. Eur. J. Org. Chem.2011,2011,2209-2222.
    20. Rueping, M.; Kuenkel, A.; Atodiresei, I. Chiral Bronsted acids inenantioselective carbonyl activations-activation modes and applications. Chem.Soc. Rev.2011,40,4539-4549.
    21. Rueping, M.; Koenigs, R. M.; Atodiresei, I. Unifying Metal and Br nstedAcid Catalysis—Concepts, Mechanisms, and Classifications. Chem. Eur. J.2010,16,9350-9365.
    22. You, S.-L.; Cai, Q.; Zeng, M. Chiral Bronsted acid catalyzedFriedel-Crafts alkylation reactions. Chem. Soc. Rev.2009,38,2190-2201.
    23. Kampen, D.; Reisinger, C.; List, B., Chiral Br nsted Acids forAsymmetric Organocatalysis. In Asymmetric Organocatalysis, List, B., Ed. Springer:Heidelberg,2009; Vol.291, pp395-456.
    24. Doyle, A. G.; Jacobsen, E. N. Small-Molecule H-Bond Donors inAsymmetric Catalysis. Chem. Rev.2007,107,5713-5743.
    25. Akiyama, T. Stronger Br nsted Acids. Chem. Rev.2007,107,5744-5758.
    26. Akiyama, T.; Itoh, J.; Fuchibe, K. Recent Progress in Chiral Br nstedAcid Catalysis. Adv. Synth. Catal.2006,348,999-1010.
    27. Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. EnantioselectiveMannich-Type Reaction Catalyzed by a Chiral Br nsted Acid. Angew. Chem. Int.Ed.2004,43,1566-1568.
    28. Uraguchi, D.; Terada, M. Chiral Br nsted Acid-Catalyzed DirectMannich Reactions via Electrophilic Activation. J. Am. Chem. Soc.2004,126,5356-5357.
    29. Guo, Q.-X.; Liu, H.; Guo, C.; Luo, S.-W.; Gu, Y.; Gong, L.-Z. ChiralBr nsted Acid-Catalyzed Direct Asymmetric Mannich Reaction. J. Am. Chem. Soc.2007,129,3790-3791.
    30. Uraguchi, D.; Sorimachi, K.; Terada, M. Organocatalytic AsymmetricAza-Friedel Crafts Alkylation of Furan. J. Am. Chem. Soc.2004,126,11804-11805.
    31. Terada, M.; Sorimachi, K. Enantioselective Friedel Crafts Reaction ofElectron-Rich Alkenes Catalyzed by Chiral Br nsted Acid. J. Am. Chem. Soc.2006,129,292-293.
    32. Kang, Q.; Zhao, Z.-A.; You, S.-L. Highly Enantioselective Friedel CraftsReaction of Indoles with Imines by a Chiral Phosphoric Acid. J. Am. Chem. Soc.2007,129,1484-1485.
    33. Jia, Y.-X.; Zhong, J.; Zhu, S.-F.; Zhang, C.-M.; Zhou, Q.-L. ChiralBr nsted Acid Catalyzed Enantioselective Friedel–Crafts Reaction of Indoles andα-Aryl Enamides: Construction of Quaternary Carbon Atoms. Angew. Chem. Int.Ed.2007,46,5565-5567.
    34. Itoh, J.; Fuchibe, K.; Akiyama, T. Chiral Phosphoric Acid CatalyzedEnantioselective Friedel–Crafts Alkylation of Indoles with Nitroalkenes:Cooperative Effect of3Molecular Sieves. Angew. Chem. Int. Ed.2008,47,4016-4018.
    35. Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M.Enantioselective Br nsted Acid Catalyzed Transfer Hydrogenation:Organocatalytic Reduction of Imines. Org. Lett.2005,7,3781-3783.
    36. Hoffmann, S.; Seayad, A. M.; List, B. A Powerful Br nsted Acid Catalystfor the Organocatalytic Asymmetric Transfer Hydrogenation of Imines. Angew.Chem. Int. Ed.2005,44,7424-7427.
    37. Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. EnantioselectiveOrganocatalytic Reductive Amination. J. Am. Chem. Soc.2005,128,84-86.
    38. Rueping, M.; Antonchick, A. P.; Theissmann, T. A Highly EnantioselectiveBr nsted Acid Catalyzed Cascade Reaction: Organocatalytic TransferHydrogenation of Quinolines and their Application in the Synthesis of Alkaloids.Angew. Chem. Int. Ed.2006,45,3683-3686.
    39. Li, G.; Liang, Y.; Antilla, J. C. A Vaulted Biaryl PhosphoricAcid-Catalyzed Reduction of α-Imino Esters: The Highly EnantioselectivePreparation of α-Amino Esters. J. Am. Chem. Soc.2007,129,5830-5831.
    40. Kang, Q.; Zhao, Z.-A.; You, S.-L. Highly Enantioselective TransferHydrogenation of α-Imino Esters by a Phosphoric Acid. Adv. Synth. Catal.2007,349,1657-1660.
    41. Wang, X.; List, B. Asymmetric Counteranion-Directed Catalysis for theEpoxidation of Enals. Angew. Chem. Int. Ed.2008,47,1119-1122.
    42. Lu, M.; Zhu, D.; Lu, Y.; Zeng, X.; Tan, B.; Xu, Z.; Zhong, G. ChiralBr nsted Acid-Catalyzed Enantioselective α-Hydroxylation of β-DicarbonylCompounds. J. Am. Chem. Soc.2009,131,4562-4563.
    43. Xu, S.; Wang, Z.; Zhang, X.; Zhang, X.; Ding, K. Chiral Br nsted AcidCatalyzed Asymmetric Baeyer–Villiger Reaction of3-Substituted Cyclobutanonesby Using Aqueous H2O2. Angew. Chem. Int. Ed.2008,47,2840-2843.
    44. Seayad, J.; Seayad, A. M.; List, B. Catalytic Asymmetric Pictet SpenglerReaction. J. Am. Chem. Soc.2006,128,1086-1087.
    45. Chen, X.-H.; Zhang, W.-Q.; Gong, L.-Z. Asymmetric OrganocatalyticThree-Component1,3-Dipolar Cycloaddition: Control of Stereochemistry via aChiral Br nsted Acid Activated Dipole. J. Am. Chem. Soc.2008,130,5652-5653.
    46. Chen, X.-H.; Wei, Q.; Luo, S.-W.; Xiao, H.; Gong, L.-Z. OrganocatalyticSynthesis of Spiro[pyrrolidin-3,3′-oxindoles] with High Enantiopurity andStructural Diversity. J. Am. Chem. Soc.2009,131,13819-13825.
    47. Dagousset, G.; Retailleau, P.; Masson, G.; Zhu, J. Chiral Phosphoric AcidCatalyzed Enantioselective Three-Component Povarov Reaction Using CyclicEnethioureas as Dienophiles: Stereocontrolled Access to EnantioenrichedHexahydropyrroloquinolines. Chem. Eur. J.2012,18,5869-5873.
    48. Connon, S. J. Chiral Phosphoric Acids: Powerful Organocatalysts forAsymmetric Addition Reactions to Imines. Angew. Chem. Int. Ed.2006,45,3909-3912.
    49. Terada, M. Enantioselective carbon-carbon bond forming reactionscatalyzed by chiral phosphoric acid catalysts. Curr. Org. Chem.2011,15,2227-2256.
    50. Terada, M. Chiral Phosphoric Acids as Versatile Catalysts forEnantioselective Carbon-Carbon Bond Forming Reactions. Bull. Chem. Soc. Jpn.2010,83,101-119.
    51. Okino, T.; Hoashi, Y.; Takemoto, Y. Enantioselective Michael Reaction ofMalonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. J. Am. Chem.Soc.2003,125,12672-12673.
    52. Zhang, Z.-H.; Dong, X.-Q.; Chen, D.; Wang, C.-J. Fine-TunableOrganocatalysts Bearing Multiple Hydrogen-Bonding Donors for Construction ofAdjacent Quaternary and Tertiary Stereocenters via a Michael Reaction. Chem.Eur. J.2008,14,8780-8783.
    53. Xu, X.; Furukawa, T.; Okino, T.; Miyabe, H.; Takemoto, Y.Bifunctional-Thiourea-Catalyzed Diastereo-and Enantioselective Aza-HenryReaction. Chem. Eur. J.2006,12,466-476.
    54. Alba, A.-N. R.; Companyó, X.; Valero, G.; Moyano, A.; Rios, R.Enantioselective Organocatalytic Addition of Oxazolones to1,1-Bis(phenylsulfonyl)ethylene: A Convenient Asymmetric Synthesis ofQuaternary α-Amino Acids. Chem. Eur. J.2010,16,5354-5361.
    55. Hoashi, Y.; Yabuta, T.; Yuan, P.; Miyabe, H.; Takemoto, Y.Enantioselective tandem Michael reaction to nitroalkene catalyzed by bifunctionalthiourea: total synthesis of ()-epibatidine. Tetrahedron2006,62,365-374.
    56. Yu, C.; Zhang, Y.; Song, A.; Ji, Y.; Wang, W. Interplay of DirectStereocontrol and Dynamic Kinetic Resolution in a Bifunctional Amine ThioureaCatalyzed Highly Enantioselective Cascade Michael–Michael Reaction. Chem. Eur.J.2011,17,770-774.
    57. Inokuma, T.; Hoashi, Y.; Takemoto, Y. Thiourea-Catalyzed AsymmetricMichael Addition of Activated Methylene Compounds to α,β-UnsaturatedImides: Dual Activation of Imide by Intra-and Intermolecular HydrogenBonding. J. Am. Chem. Soc.2006,128,9413-9419.
    58. Xie, J.; Yoshida, K.; Takasu, K.; Takemoto, Y. Thiourea-catalyzedasymmetric formal [3+2] cycloaddition of azomethine ylides with nitroolefins.Tetrahedron Lett.2008,49,6910-6913.
    59. Wang, X.-F.; Hua, Q.-L.; Cheng, Y.; An, X.-L.; Yang, Q.-Q.; Chen, J.-R.;Xiao, W.-J. Organocatalytic Asymmetric Sulfa-Michael/Michael AdditionReactions: A Strategy for the Synthesis of Highly Substituted Chromans with aQuaternary Stereocenter. Angew. Chem. Int. Ed.2010,49,8379-8383.
    60. Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Highly EnantioselectiveConjugate Addition of Nitromethane to Chalcones Using Bifunctional CinchonaOrganocatalysts. Org. Lett.2005,7,1967-1969.
    61. Song, J.; Wang, Y.; Deng, L. The Mannich Reaction of Malonates withSimple Imines Catalyzed by Bifunctional Cinchona Alkaloids: EnantioselectiveSynthesis of β-Amino Acids. J. Am. Chem. Soc.2006,128,6048-6049.
    62. Wang, Y.-Q.; Song, J.; Hong, R.; Li, H.; Deng, L. AsymmetricFriedel Crafts Reaction of Indoles with Imines by an Organic Catalyst. J. Am.Chem. Soc.2006,128,8156-8157.
    63. Varga, S.; Jakab, G.; Drahos, L.; Holczbauer, T.; Czugler, M.; Soós, T.Double Diastereocontrol in Bifunctional Thiourea Organocatalysis: IterativeMichael–Michael–Henry Sequence Regulated by the Configuration of ChiralCatalysts. Org. Lett.2011,13,5416-5419.
    64. Li, D. R.; Murugan, A.; Falck, J. R. Enantioselective, OrganocatalyticOxy-Michael Addition to γ/δ-Hydroxy-α,β-enones: Boronate-Amine Complexesas Chiral Hydroxide Synthons. J. Am. Chem. Soc.2007,130,46-48.
    65. Zu, L.; Wang, J.; Li, H.; Xie, H.; Jiang, W.; Wang, W. CascadeMichael Aldol Reactions Promoted by Hydrogen Bonding Mediated Catalysis. J.Am. Chem. Soc.2007,129,1036-1037.
    66. Wang, J.; Xie, H.; Li, H.; Zu, L.; Wang, W. A Highly StereoselectiveHydrogen-Bond-Mediated Michael–Michael Cascade Process through DynamicKinetic Resolution. Angew. Chem. Int. Ed.2008,47,4177-4179.
    67. Rho, H. S.; Oh, S. H.; Lee, J. W.; Lee, J. Y.; Chin, J.; Song, C. E.Bifunctional organocatalyst for methanolytic desymmetrization of cyclicanhydrides: increasing enantioselectivity by catalyst dilution. Chem. Commun.2008,1208-1210.
    68. Wang, Y.; Li, H.; Wang, Y.-Q.; Liu, Y.; Foxman, B. M.; Deng, L.Asymmetric Diels Alder Reactions of2-Pyrones with a Bifunctional OrganicCatalyst. J. Am. Chem. Soc.2007,129,6364-6365.
    69. Shinkai, S.; Yamaguchi, T.; Manabe, O.; Toda, F. Enantioselectiveoxidation of sulphides with chiral4a-hydroperoxyflavin. J. Chem. Soc., Chem.Commun.1988,1399-1401.
    70. Tohma, H.; Takizawa, S.; Watanabe, H.; Fukuoka, Y.; Maegawa, T.; Kita, Y.Hypervalent Iodine(V)-Induced Asymmetric Oxidation of Sulfides to SulfoxidesMediated by Reversed Micelles: Novel Nonmetallic Catalytic System. J. Org.Chem.1999,64,3519-3523.
    71. Bethell, D.; Bulman Page, P. C.; Vahedi, H. Catalytic AsymmetricOxidation of Sulfides to Sulfoxides Mediated by Chiral3-Substituted-1,2-benzisothiazole1,1-Dioxides. J. Org. Chem.2000,65,6756-6760.
    72. Colonna, S.; Pironti, V.; Drabowicz, J.; Brebion, F.; Fensterbank, L.;Malacria, M. Enantioselective Synthesis of Thiosulfinates and of AcyclicAlkylidenemethylene Sulfide Sulfoxides. Eur. J. Org. Chem.2005,2005,1727-1730.
    73. Khiar, N.; Mallouk, S.; Valdivia, V.; Bougrin, K.; Soufiaoui, M.; Fernández,I. Enantioselective Organocatalytic Oxidation of Functionalized StericallyHindered Disulfides. Org. Lett.2007,9,1255-1258.
    74. Mojr, V.; Herzig, V.; Budesinsky, M.; Cibulka, R.; Kraus, T.Flavin-cyclodextrin conjugates as catalysts of enantioselective sulfoxidations withhydrogen peroxide in aqueous media. Chem. Commun.2010,46,7599-7601.
    75. Golchoubian, H.; Hosseinpoor, F. Effective Oxidation of Sulfides toSulfoxides with Hydrogen Peroxide under Transition-Metal-Free Conditions.Molecules2007,12,304-311.
    76. Wei, S.; Stingl, K. A.; Wei, K. M.; Tsogoeva, S. B. Thieme ChemistryJournal Awardees-Where Are They Now? Bifunctional Organocatalysis withN-Formyl-l-Proline: A Novel Approach to Epoxide Ring Opening and SulfideOxidation. Synlett2010,707-711.
    77. Russo, A.; Lattanzi, A. Hydrogen-Bonding Catalysis: Mild and HighlyChemoselective Oxidation of Sulfides. Adv. Synth. Catal.2009,351,521-524.
    78. Firouzabadi, H.; Iranpoor, N.; Jafari, A. A.; Riazymontazer, E. Metal-FreeChemoselective Oxidation of Sulfides to Sulfoxides by Hydrogen PeroxideCatalyzed by in situ Generated Dodecyl Hydrogen Sulfate in the Absence ofOrganic Co-Solvents. Adv. Synth. Catal.2006,348,434-438.
    79. Yamanaka, M.; Itoh, J.; Fuchibe, K.; Akiyama, T. Chiral Br nsted AcidCatalyzed Enantioselective Mannich-Type Reaction. J. Am. Chem. Soc.2007,129,6756-6764.
    80. Rueping, M.; Theissmann, T.; Kuenkel, A.; Koenigs, R. M. HighlyEnantioselective Organocatalytic Carbonyl-Ene Reaction with Strongly Acidic,Chiral Br nsted Acids as Efficient Catalysts. Angew. Chem. Int. Ed.2008,47,6798-6801.
    81. Hatano, M.; Moriyama, K.; Maki, T.; Ishihara, K. Which Is the ActualCatalyst: Chiral Phosphoric Acid or Chiral Calcium Phosphate? Angew. Chem. Int.Ed.2010,49,3823-3826.
    82. Klussmann, M.; Ratjen, L.; Hoffmann, S.; Wakchaure, V.; Goddard, R.; List,B. Synthesis of TRIP and Analysis of Phosphate Salt Impurities. Synlett2010,2189-2192.
    83. Lu, G.; Birman, V. B. Dynamic Kinetic Resolution of AzlactonesCatalyzed by Chiral Br nsted Acids. Org. Lett.2011,13,356-358.
    84. Page, P. C. B.; Slawin, A. M. Z.; Westwood, D.; Williams, D. J. Perkincommunications. Diastereoselective alkylation of ketone enolates using a1,3-dithiane1-oxide auxiliary. J. Chem. Soc., Perkin Trans.11989,185-187.
    85. Page, P. C. B.; Allin, S. M.; Collington, E. W.; Carr, R. A. E.Diastereoselective electrophilic amination of ketone enolates in2-substituted2-acyl-1,3-dithiane1-oxides. Tetrahedron Lett.1994,35,2427-2430.
    86. García Ruano, J. L.; Barros, D.; Maestro, M. C.; Slawin, A. M. Z.; Page, P.C. B. High Stereocontrol in Aldol Reaction with Ketones: EnantioselectiveSynthesis of β-Hydroxy γ-Ketoesters by Ester Enolate Aldol Reactions with2-Acyl-2-alkyl-1,3-dithiane1-Oxides. J. Org. Chem.2000,65,6027-6034.
    87. Wu, Y.; Mao, F.; Meng, F.; Li, X. Enantioselective Vanadium-CatalyzedOxidation of1,3-Dithianes from Aldehydes and Ketones using β-Amino AlcoholDerived Schiff Base Ligands. Adv. Synth. Catal.2011,353,1707-1712.
    88. Fujisaki, J.; Matsumoto, K.; Matsumoto, K.; Katsuki, T. CatalyticAsymmetric Oxidation of Cyclic Dithioacetals: Highly Diastereo-andEnantioselective Synthesis of the S-Oxides by a Chiral Aluminum(salalen)Complex. J. Am. Chem. Soc.2011,133,56-61.
    89. Samuel, O.; Ronan, B.; Kagan, H. B. Asymmetric oxidation of some1,3-dithianes in presence of chiral titanium complexes. J. Organomet. Chem.1989,370,43-50.
    90. Bulman Page, P. C.; Wilkes, R. D.; Namwindwa, E. S.; Witty, M. J.Enantioselective preparation of2-substituted-1,3-dithiane1-oxides using modifiedsharpless sulphoxidation procedures. Tetrahedron1996,52,2125-2154.
    91. Bolm, C.; Bienewald, F. Asymmetric Oxidation of Dithioacetals andDithioketals Catalyzed by a Chiral Vanadium Complex. Synlett1998,1327-1328.
    92. Watanabe, Y.; Ohno, Y.; Ueno, Y.; Toru, T. Asymmetric oxidation of1,3-dithianes to1,3-dithiane1-oxides. J. Chem. Soc., Perkin Trans.11998,1087-1094.
    93. Tanaka, T.; Saito, B.; Katsuki, T. Highly enantioselective oxidation ofcyclic dithioacetals by using a Ti(salen) and urea·hydrogen peroxide system.Tetrahedron Lett.2002,43,3259-3262.
    94. Xu, Y.; Clarkson, G. C.; Docherty, G.; North, C. L.; Woodward, G.; Wills,M. Ruthenium(II) Complexes of Monodonor Ligands: Efficient Reagents forAsymmetric Ketone Hydrogenation. J. Org. Chem.2005,70,8079-8087.
    95. Milburn, R. R.; Hussain, S. M. S.; Prien, O.; Ahmed, Z.; Snieckus, V.3,3‘-Dipyridyl BINOL Ligands. Synthesis and Application in EnantioselectiveAddition of Et2Zn to Aldehydes#. Org. Lett.2007,9,4403-4406.
    96. Yang, F.; Zhao, D.; Lan, J.; Xi, P.; Yang, L.; Xiang, S.; You, J.Self-Assembled Bifunctional Catalysis Induced by Metal Coordination Interactions:An Exceptionally Efficient Approach to Enantioselective Hydrophosphonylation.Angew. Chem. Int. Ed.2008,47,5646-5649.
    97. Stuetz, P.; Stadler, P. A.3-Alkylated and3-acylated indoles from acommon precursor:3-benzylindole and3-benzoylindole. Org. Synth.1977,56,8-14.
    98. Pitchen, P.; Dunach, E.; Deshmukh, M. N.; Kagan, H. B. An efficientasymmetric oxidation of sulfides to sulfoxides. J. Am. Chem. Soc.1984,106,8188-8193.
    99. Imboden, C.; Renaud, P. Preparation of optically active ortho-chloro-andortho-bromophenyl sulfoxides. Tetrahedron: Asymmetry1999,10,1051-1060.
    100. Brunel, J.-M.; Diter, P.; Duetsch, M.; Kagan, H. B. Highly EnantioselectiveOxidation of Sulfides Mediated by a Chiral Titanium Complex. J. Org. Chem.1995,60,8086-8088.
    101. Legros, J.; Bolm, C. Investigations on the Iron-Catalyzed AsymmetricSulfide Oxidation. Chem. Eur. J.2005,11,1086-1092.
    102. Engel, R. Phosphonates as analogues of natural phosphates. Chem. Rev.1977,77,349-367.
    103. Schug, K. A.; Lindner, W. Noncovalent Binding between Guanidiniumand Anionic Groups: Focus on Biological-and Synthetic-BasedArginine/Guanidinium Interactions with Phosph[on]ate and Sulf[on]ate Residues.Chem. Rev.2004,105,67-114.
    104. Palacios, F.; Alonso, C.; de, l. S. J. M. β-Phosphono-andPhosphinopeptides Derived from β-Amino-Phosphonic and Phosphinic Acids. Curr.Org. Chem.2004,8,1481-1496.
    105. Ma, J.-A. Catalytic asymmetric synthesis of [small alpha]-and [smallbeta]-amino phosphonic acid derivatives. Chem. Soc. Rev.2006,35,630-636.
    106. Ordó ez, M.; Rojas-Cabrera, H.; Cativiela, C. An overview ofstereoselective synthesis of α-aminophosphonic acids and derivatives. Tetrahedron2009,65,17-49.
    107. Albrecht,.; Albrecht, A.; Krawczyk, H.; J rgensen, K. A. OrganocatalyticAsymmetric Synthesis of Organophosphorus Compounds. Chem. Eur. J.2010,16,28-48.
    108. Romanenko, V. D.; Kukhar, V. P. Fluorinated Phosphonates: Synthesisand Biomedical Application. Chem. Rev.2006,106,3868-3935.
    109. Fields, S. C. Synthesis of natural products containing a C-P bond.Tetrahedron1999,55,12237-12273.
    110. Seto, H.; Kuzuyama, T. Bioactive natural products withcarbon-phosphorus bonds and their biosynthesis. Nat. Prod. Rep.1999,16,589-596.
    111. Enders, D.; Saint-Dizier, A.; Lannou, M.-I.; Lenzen, A. ThePhospha-Michael Addition in Organic Synthesis. Eur. J. Org. Chem.2006,2006,29-49.
    112. Sadow, A. D.; Haller, I.; Fadini, L.; Togni, A. Nickel(II)-Catalyzed HighlyEnantioselective Hydrophosphination of Methacrylonitrile. J. Am. Chem. Soc.2004,126,14704-14705.
    113. Sadow, A. D.; Togni, A. Enantioselective Addition of SecondaryPhosphines to Methacrylonitrile: Catalysis and Mechanism. J. Am. Chem. Soc.2005,127,17012-17024.
    114. Zhao, D.; Wang, Y.; Mao, L.; Wang, R. Highly EnantioselectiveConjugate Additions of Phosphites to α,β-Unsaturated N-Acylpyrroles and Imines:A Practical Approach to Enantiomerically Enriched Amino Phosphonates. Chem.Eur. J.2009,15,10983-10987.
    115. Zhao, D.; Yuan, Y.; Chan, A. S. C.; Wang, R. Highly Enantioselective1,4-Addition of Diethyl Phosphite to Enones Using a Dinuclear Zn Catalyst. Chem.Eur. J.2009,15,2738-2741.
    116. Zhao, D.; Mao, L.; Wang, Y.; Yang, D.; Zhang, Q.; Wang, R. CatalyticAsymmetric Hydrophosphinylation of α,β-Unsaturated N-Acylpyrroles:Application of Dialkyl Phosphine Oxides in Enantioselective Synthesis of ChiralPhosphine Oxides or Phosphines. Org. Lett.2010,12,1880-1882.
    117. Zhao, D.; Mao, L.; Yang, D.; Wang, R. Zinc-Mediated AsymmetricAdditions of Dialkylphosphine Oxides to α,β-Unsaturated Ketones andN-Sulfinylimines. J. Org. Chem.2010,75,6756-6763.
    118. Zhao, D.; Mao, L.; Wang, L.; Yang, D.; Wang, R. Catalytic asymmetricconstruction of tetrasubstituted carbon stereocenters by conjugate addition ofdialkyl phosphine oxides to [small beta],[small beta]-disubstituted [smallalpha],[small beta]-unsaturated carbonyl compounds. Chem. Commun.2012,48,889-891.
    119. Zhao, D.; Wang, L.; Yang, D.; Zhang, Y.; Wang, R. Highly EfficientAsymmetric Michael Addition of Diaryl Phosphine Oxides to α,β-UnsaturatedN-Acylated Oxazolidin-2-ones. Chem. Asian J.2012,7,881-883.
    120. Zhao, D.; Wang, R. Recent developments in metal catalyzed asymmetricaddition of phosphorus nucleophiles. Chem. Soc. Rev.2012,41,2095-2108.
    121. Feng, J.-J.; Chen, X.-F.; Shi, M.; Duan, W.-L. Palladium-CatalyzedAsymmetric Addition of Diarylphosphines to Enones toward the Synthesis ofChiral Phosphines. J. Am. Chem. Soc.2010,132,5562-5563.
    122. Chen, Y.-R.; Duan, W.-L. Palladium-Catalyzed1,4-Addition ofDiarylphosphines to α,β-Unsaturated Aldehydes. Org. Lett.2011,13,5824-5826.
    123. Du, D.; Duan, W.-L. Palladium-catalyzed1,4-addition ofdiarylphosphines to [small alpha],[small beta]-unsaturated N-acylpyrroles. Chem.Commun.2011,47,11101-11103.
    124. Feng, J.-J.; Huang, M.; Lin, Z.-Q.; Duan, W.-L. Palladium-CatalyzedAsymmetric1,4-Addition of Diarylphosphines to Nitroalkenes for the Synthesis ofChiral P,N-Compounds. Adv. Synth. Catal.2012,354,3122-3126.
    125. Bartoli, G.; Bosco, M.; Carlone, A.; Locatelli, M.; Mazzanti, A.; Sambri, L.;Melchiorre, P. Organocatalytic asymmetric hydrophosphination of nitroalkenes.Chem. Commun.2007,722-724.
    126. Carlone, A.; Bartoli, G.; Bosco, M.; Sambri, L.; Melchiorre, P.Organocatalytic Asymmetric Hydrophosphination of α,β-Unsaturated Aldehydes.Angew. Chem. Int. Ed.2007,46,4504-4506.
    127. Ibrahem, I.; Rios, R.; Vesely, J.; Hammar, P.; Eriksson, L.; Himo, F.;Córdova, A. Enantioselective Organocatalytic Hydrophosphination ofα,β-Unsaturated Aldehydes. Angew. Chem. Int. Ed.2007,46,4507-4510.
    128. Maerten, E.; Cabrera, S.; J rgensen, K. A. Organocatalytic AsymmetricDirect Phosphonylation of α,β-Unsaturated Aldehydes: Mechanism, Scope, andApplication in Synthesis. J. Org. Chem.2007,72,8893-8903.
    129. Terada, M.; Ikehara, T.; Ube, H. Enantioselective1,4-Addition Reactionsof Diphenyl Phosphite to Nitroalkenes Catalyzed by an Axially Chiral Guanidine. J.Am. Chem. Soc.2007,129,14112-14113.
    130. Fu, X.; Jiang, Z.; Tan, C.-H. Bicyclic guanidine-catalyzed enantioselectivephospha-Michael reaction: synthesis of chiral [small beta]-aminophosphine oxidesand [small beta]-aminophosphines. Chem. Commun.2007,5058-5060.
    131. Wang, J.; Heikkinen, L. D.; Li, H.; Zu, L.; Jiang, W.; Xie, H.; Wang, W.Quinine-Catalyzed Enantioselective Michael Addition of Diphenyl Phosphite toNitroolefins: Synthesis of Chiral Precursors of α-Substitutedβ-Aminophosphonates. Adv. Synth. Catal.2007,349,1052-1056.
    132. Ibrahem, I.; Hammar, P.; Vesely, J.; Rios, R.; Eriksson, L.; Córdova, A.Organocatalytic Asymmetric Hydrophosphination of α,β-Unsaturated Aldehydes:Development, Mechanism and DFT Calculations. Adv. Synth. Catal.2008,350,1875-1884.
    133. Russo, A.; Lattanzi, A. Asymmetric Organocatalytic Conjugate Additionof Diarylphosphane Oxides to Chalcones. Eur. J. Org. Chem.2010,2010,6736-6739.
    134. Wen, S.; Li, P.; Wu, H.; Yu, F.; Liang, X.; Ye, J. Enantioselectiveorganocatalytic phospha-Michael reaction of [small alpha],[smallbeta]-unsaturated ketones. Chem. Commun.2010,46,4806-4808.
    135. Zhu, Y.; Malerich, J. P.; Rawal, V. H. Squaramide-CatalyzedEnantioselective Michael Addition of Diphenyl Phosphite to Nitroalkenes. Angew.Chem. Int. Ed.2010,49,153-156.
    136. Abbaraju, S.; Bhanushali, M.; Zhao, C.-G. Quinidine thiourea-catalyzedenantioselective synthesis of β-nitrophosphonates: beneficial effects of molecularsieves. Tetrahedron2011,67,7479-7484.
    137. Alcaine, A.; Marques-Lopez, E.; Merino, P.; Tejero, T.; Herrera, R. P.Thiourea catalyzed organocatalytic enantioselective Michael addition of diphenylphosphite to nitroalkenes. Org. Biomol. Chem.2011,9,2777-2783.
    138. Luo, X.; Zhou, Z.; Li, X.; Liang, X.; Ye, J. Enantioselectiveorganocatalytic phospha-Michael reaction of [small alpha],[smallbeta]-unsaturated aldehydes. RSC Adv.2011,1,698-705.
    139. Sohtome, Y.; Horitsugi, N.; Takagi, R.; Nagasawa, K. EnantioselectivePhospha-Michael Reaction of Diphenyl Phosphonate with Nitroolefins UtilizingConformationally Flexible Guanidinium/Bisthiourea Organocatalyst:Assembly-State Tunability in Asymmetric Organocatalysis. Adv. Synth. Catal.2011,353,2631-2636.
    140. Hong, L.; Wang, R. Recent Advances in Asymmetric OrganocatalyticConstruction of3,3′-Spirocyclic Oxindoles. Adv. Synth. Catal.2013,355,1023-1052.
    141. Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Recent advances inorganocatalytic methods for the synthesis of disubstituted2-and3-indolinones.Chem. Soc. Rev.2012,41,7247-7290.
    142. Zhou, F.; Liu, Y.-L.; Zhou, J. Catalytic asymmetric synthesis of oxindolesbearing a tetrasubstituted stereocenter at the C-3position. Adv. Synth. Catal.2010,352,1381-1407.
    143. Galliford, C. V.; Scheidt, K. A. Pyrrolidinyl-Spirooxindole NaturalProducts as Inspirations for the Development of Potential Therapeutic Agents.Angew. Chem. Int. Ed.2007,46,8748-8758.
    144. Trost, B. M.; Brennan, M. K. Asymmetric Syntheses of Oxindole andIndole Spirocyclic Alkaloid Natural Products. Synthesis2009,2009,3003,3025.
    145. Rios, R. Enantioselective methodologies for the synthesis of spirocompounds. Chem. Soc. Rev.2012,41,1060-1074.
    146. Ball-Jones, N. R.; Badillo, J. J.; Franz, A. K. Strategies for theenantioselective synthesis of spirooxindoles. Org. Biomol. Chem.2012,10,5165-5181.
    147. Singh, G. S.; Desta, Z. Y. Isatins As Privileged Molecules in Design andSynthesis of Spiro-Fused Cyclic Frameworks. Chem. Rev.2012,112,6104-6155.
    148. Hara, N.; Nakamura, S.; Shibata, N.; Toru, T. First EnantioselectiveSynthesis of (R)-Convolutamydine B and E withN-(Heteroarenesulfonyl)prolinamides. Chem. Eur. J.2009,15,6790-6793.
    149. Luppi, G.; Cozzi, P. G.; Monari, M.; Kaptein, B.; Broxterman, Q. B.;Tomasini, C. Dipeptide-Catalyzed Asymmetric Aldol Condensation of Acetone with(N-Alkylated) Isatins. J. Org. Chem.2005,70,7418-7421.
    150. Bui, T.; Candeias, N. R.; Barbas, C. F. Dimeric Quinidine-CatalyzedEnantioselective Aminooxygenation of Oxindoles: An Organocatalytic Approachto3-Hydroxyoxindole Derivatives. J. Am. Chem. Soc.2010,132,5574-5575.
    151. Liu, Y.-L.; Wang, B.-L.; Cao, J.-J.; Chen, L.; Zhang, Y.-X.; Wang, C.; Zhou,J. Organocatalytic Asymmetric Synthesis of Substituted3-Hydroxy-2-oxindoles viaMorita Baylis Hillman Reaction. J. Am. Chem. Soc.2010,132,15176-15178.
    152. Cassani, C.; Melchiorre, P. Direct Catalytic Enantioselective VinylogousAldol Reaction of α-Branched Enals with Isatins. Org. Lett.2012,14,5590-5593.
    153. Sano, D.; Nagata, K.; Itoh, T. Catalytic Asymmetric Hydroxylation ofOxindoles by Molecular Oxygen Using a Phase-Transfer Catalyst. Org. Lett.2008,10,1593-1595.
    154. Zhong, F.; Yao, W.; Dou, X.; Lu, Y. Enantioselective Construction of3-Hydroxy Oxindoles via Decarboxylative Addition of β-Ketoacids to Isatins. Org.Lett.2012,14,4018-4021.
    155. Liu, Y.-L.; Zhou, J. Organocatalytic asymmetric cyanation of isatinderived N-Boc ketoimines. Chem. Commun.2013,49,4421-4423.
    156. Yan, W.; Wang, D.; Feng, J.; Li, P.; Zhao, D.; Wang, R. Synthesis ofN-Alkoxycarbonyl Ketimines Derived from Isatins and Their Application inEnantioselective Synthesis of3-Aminooxindoles. Org. Lett.2012,14,2512-2515.
    157. Guo, Q.-X.; Liu, Y.-W.; Li, X.-C.; Zhong, L.-Z.; Peng, Y.-G.Enantioselective and Solvent-Controlled Diastereoselective Mannich Reaction ofIsatin Imines with Hydroxyacetone: Synthesis of3-Substituted3-Aminooxindoles.J. Org. Chem.2012,77,3589-3594.
    158. Feng, J.; Yan, W.; Wang, D.; Li, P.; Sun, Q.; Wang, R. The highlyenantioselective addition of indoles and pyrroles to isatins-derived N-Boc ketiminescatalyzed by chiral phosphoric acids. Chem. Commun.2012,48,8003-8005.
    159. Bui, T.; Hernández-Torres, G.; Milite, C.; Barbas, C. F. HighlyEnantioselective Organocatalytic α-Amination Reactions of Aryl Oxindoles:Developing Designer Multifunctional Alkaloid Catalysts. Org. Lett.2010,12,5696-5699.
    160. Qian, Z.-Q.; Zhou, F.; Du, T.-P.; Wang, B.-L.; Ding, M.; Zhao, X.-L.; Zhou,J. Asymmetric construction of quaternary stereocenters by direct organocatalyticamination of3-substituted oxindoles. Chem. Commun.2009,6753-6755.
    161. Bui, T.; Borregan, M.; Barbas, C. F. Expanding the Scope of CinchonaAlkaloid-Catalyzed Enantioselective α-Aminations of Oxindoles: A VersatileApproach to Optically Active3-Amino-2-oxindole Derivatives. J. Org. Chem.2009,74,8935-8938.
    162. Zhao, M.-X.; Dai, T.-L.; Liu, R.; Wei, D.-K.; Zhou, H.; Ji, F.-H.; Shi, M.Enantioselective Michael addition of3-aryloxindoles to a vinyl bisphosphonateester catalyzed by a cinchona alkaloid derived thiourea catalyst. Org. Biomol. Chem.2012,10,7970-7979.
    163. Zhao, M.-X.; Tang, W.-H.; Chen, M.-X.; Wei, D.-K.; Dai, T.-L.; Shi, M.Highly Enantioselective Michael Addition of3-Aryloxindoles to Phenyl VinylSulfone Catalyzed by Cinchona Alkaloid-Derived Bifunctional Amine–ThioureaCatalysts Bearing Sulfonamide as Multiple Hydrogen-Bonding Donors. Eur. J. Org.Chem.2011,2011,6078-6084.
    164. Ding, M.; Zhou, F.; Liu, Y.-L.; Wang, C.-H.; Zhao, X.-L.; Zhou, J.Cinchona alkaloid-based phosphoramide catalyzed highly enantioselective Michaeladdition of unprotected3-substituted oxindoles to nitroolefins. Chem. Sci.2011,2,2035-2039.
    165. He, R.; Ding, C.; Maruoka, K. Phosphonium Salts as ChiralPhase-Transfer Catalysts: Asymmetric Michael and Mannich Reactions of3-Aryloxindoles. Angew. Chem. Int. Ed.2009,48,4559-4561.
    166. Tian, X.; Jiang, K.; Peng, J.; Du, W.; Chen, Y.-C. OrganocatalyticStereoselective Mannich Reaction of3-Substituted Oxindoles. Org. Lett.2008,10,3583-3586.
    167. Li, J.; Du, T.; Zhang, G.; Peng, Y.3-Bromooxindoles as nucleophiles inasymmetric organocatalytic Mannich reactions with N-Ts-imines. Chem. Commun.2013,49,1330-1332.
    168. Noole, A.; J rving, I.; Werner, F.; Lopp, M.; Malkov, A.; Kanger, T.Organocatalytic Asymmetric Synthesis of3-Chlorooxindoles Bearing AdjacentQuaternary–Tertiary Centers. Org. Lett.2012,14,4922-4925.
    169. Zoute, L.; Audouard, C.; Plaquevent, J.-C.; Cahard, D. Enantioselectivesynthesis of BMS-204352(MaxiPost[trade mark sign]) using N-fluoroammoniumsalts of cinchona alkaloids (F-CA-BF4). Org. Biomol. Chem.2003,1,1833-1834.
    170. Shibata, N.; Suzuki, E.; Asahi, T.; Shiro, M. Enantioselective FluorinationMediated by Cinchona Alkaloid Derivatives/Selectfluor Combinations: ReactionScope and Structural Information for N-Fluorocinchona Alkaloids. J. Am. Chem.Soc.2001,123,7001-7009.
    171. Wang, C.; Yang, X.; Loh, C. C. J.; Raabe, G.; Enders, D. Organocatalytic,Asymmetric Synthesis of3-Sulfenylated N-Boc-Protected Oxindoles. Chem. Eur. J.2012,18,11531-11535.
    172. Li, X.; Liu, C.; Xue, X.-S.; Cheng, J.-P. Enantioselective OrganocatalyzedSulfenylation of3-Substituted Oxindoles. Org. Lett.2012,14,4374-4377.
    173. Han, Z.; Chen, W.; Dong, S.; Yang, C.; Liu, H.; Pan, Y.; Yan, L.; Jiang, Z.Highly Enantioselective Organocatalytic Sulfenylation of3-Aryloxindoles. Org. Lett.2012,14,4670-4673.
    174. Zhang, Y.; Wang, W. Recent advances in organocatalytic asymmetricMichael reactions. Catal. Sci. Technol.2012,2,42-53.
    175. Maltsev, O. V.; Beletskaya, I. P.; Zlotin, S. G. Organocatalytic Michaeland Friedel–Crafts reactions in enantioselective synthesis of biologically activecompounds. Russ. Chem. Rev.2011,80,1067.
    176. Vicario, J. L.; Badía, D.; Carrillo, L. Organocatalytic EnantioselectiveMichael and Hetero-Michael Reactions. Synthesis2007,2007,2065-2092.
    177. Tsogoeva, S. B. Recent Advances in Asymmetric Organocatalytic1,4-Conjugate Additions. Eur. J. Org. Chem.2007,2007,1701-1716.
    178. Alma i, D.; Alonso, D. A.; Nájera, C. Organocatalytic asymmetricconjugate additions. Tetrahedron: Asymmetry2007,18,299-365.
    179. Hosseini-Sarvari, M.; Tavakolian, M. P-C bond formation via direct andthree-component conjugate addition catalyzed by ZnO nano-rods for the synthesisof2-oxindolin-3-yl-phosphonates under solvent-free conditions. New J. Chem.2012,36,1014-1021.
    180. Imani Shakibaei, G.; Feiz, A.; Ghahremanzadeh, R.; Bazgir, A.Three-Component Synthesis of2-Oxoindolin-3-ylphosphonates. Chem. Pharm. Bull.2010,58,896-900.
    181. Shakibaei, G. I.; Samadi, S.; Ghahremanzadeh, R.; Bazgir, A. Simple andCatalyst-Free Synthesis of Oxoindolin-3-yl Phosphonates. J. Comb. Chem.2010,12,295-297.
    182. Palacio, C.; Connon, S. J. A New Class of Urea-Substituted CinchonaAlkaloids Promote Highly Enantioselective Nitroaldol reactions ofTrifluoromethylketones. Org. Lett.2011,13,1298-1301.
    183. McCooey, S. H.; Connon, S. J. Readily Accessible9-epi-amino CinchonaAlkaloid Derivatives Promote Efficient, Highly Enantioselective Additions ofAldehydes and Ketones to Nitroolefins. Org. Lett.2007,9,599-602.
    184. Kaik, M.; Gawroński, J. Facile monoprotection oftrans-1,2-diaminocyclohexane. Tetrahedron: Asymmetry2003,14,1559-1563.
    185. Close, J.; Grimm, J.; Heidebrecht, R. W., Jr.; Kattar, S.; Miller, T. A.; Otte,K. M.; Peterson, S.; Siliphaivanh, P.; Tempest, P.; Wilson, K. J.; Witter, D. J.Preparation of phosphorus derivatives as histone deacetylase inhibitors.WO2008010985A2,2008.
    186. Takano, S.; Tomita, S.; rsquo; ichi; Takahashi, M.; Ogasawara, K. EfficientRoute to γ, δ-Unsaturated Carbonyl Compounds from Allyl Sulfides andα-Diazocarbonyls Using a Rhodium Catalyst. Chem. Lett.1987,16,1569-1570.
    187. Takano, S.; Ogasawara, K.; Takahashi, M. Preparation of phenylthiogroup-containing γ,δ-unsaturated carbonyl compounds as drugs. JP01026549A,
    1989.
    188. Abdou, W. M.; Barghash, R. F.; Bekheit, M. S. Carbodiimides in theSynthesis of Enamino-and α-Aminophosphonates as Peptidomimetics ofAnalgesic/Antiinflammatory and Anticancer Agents. Arch. Pharm.2012,345,884-895.
    189. F rster, S.; Tverskoy, O.; Helmchen, G. Malononitrile as AcylanionEquivalent. Synlett2008,2008,2803-2806.
    190. Arai, T.; Oka, I.; Morihata, T.; Awata, A.; Masu, H. A Neutral, Chiral,Bis(imidazolidine)-Derived NCN-Type Palladium Pincer Complex with CatalyticActivity. Chem. Eur. J.2013,19,1554-1557.
    191. Ma, C.; Jia, Z.-J.; Liu, J.-X.; Zhou, Q.-Q.; Dong, L.; Chen, Y.-C. A ConciseAssembly of Electron-Deficient2,4-Dienes and2,4-Dienals: Regio-andStereoselective exo-Diels–Alder and Redox Reactions through Sequential Amineand Carbene Catalysis. Angew. Chem. Int. Ed.2013,52,948-951.
    192. Xiong, X.-F.; Jia, Z.-J.; Du, W.; Jiang, K.; Liu, T.-Y.; Chen, Y.-C. Mergingchiral organocatalysts: enantio-and diastereoselective direct vinylogous Mannichreaction of alkylimines. Chem. Commun.2009,6994-6996.
    193. Perry, R. J.; O’Brien, M. J. Amino Disiloxanes for CO2Capture. EnergFuel2011,25,1906-1918.
    194. Rayat, S.; Qian, M.; Glaser, R. Nitrosative Cytosine Deamination. AnExploration of the Chemistry Emanating from Deamination with PyrimidineRing-Opening. Chem. Res. Toxicol.2005,18,1211-1218.
    195. Neumann, N.; Boldt, P. Die Hydrierung substituierter1,1-Cyclopropandicarbonitrile. Chem. Ber.1984,117,1935-1939.
    196. Berova, N.; Bari, L. D.; Pescitelli, G. Application of electronic circulardichroism in configurational and conformational analysis of organic compounds.Chem. Soc. Rev.2007,36,914-931.
    197. Pescitelli, G.; Di Bari, L.; Berova, N. Conformational aspects in thestudies of organic compounds by electronic circular dichroism. Chem. Soc. Rev.2011,40,4603-4625.
    198. Alba, A.-N. R.; Zea, A.; Valero, G.; Calbet, T.; Font-Bardía, M.; Mazzanti,A.; Moyano, A.; Rios, R. Highly Stereoselective Synthesis of Spiropyrazolones. Eur.J. Org. Chem.2011,2011,1318-1325.
    199. Deiana, L.; Zhao, G.-L.; Lin, S.; Dziedzic, P.; Zhang, Q.; Leijonmarck, H.;Córdova, A. Organocatalytic Enantioselective Aziridination of α-Substitutedα,β-Unsaturated Aldehydes: Asymmetric Synthesis of Terminal Aziridines. Adv.Synth. Catal.2010,352,3201-3207.
    200. Penon, O.; Carlone, A.; Mazzanti, A.; Locatelli, M.; Sambri, L.; Bartoli, G.;Melchiorre, P. Quaternary Stereogenic Carbon Atoms in Complex Molecules by anAsymmetric, Organocatalytic, Triple-Cascade Reaction. Chem. Eur. J.2008,14,4788-4791.
    201. Zea, A.; Alba, A.-N. R.; Mazzanti, A.; Moyano, A.; Rios, R. Highlyenantioselective cascade synthesis of spiropyrazolones. Org. Biomol. Chem.2011,9,6519-6523.
    202. Wang, Z.; Luo, S.; Zhang, S.; Yang, W.-L.; Liu, Y.-Z.; Li, H.; Luo, X.;Deng, W.-P. Catalytic Asymmetric Construction of Quaternary α-Amino AcidContaining Pyrrolidines through1,3-Dipolar Cycloaddition of Azomethine Ylidesto α-Aminoacrylates. Chem. Eur. J.2013, n/a-n/a.
    203. Liu, T.-Y.; Long, J.; Li, B.-J.; Jiang, L.; Li, R.; Wu, Y.; Ding, L.-S.; Chen,Y.-C. Enantioselective construction of quaternary carbon centre catalysed bybifunctional organocatalyst. Org. Biomol. Chem.2006,4,2097-2099.
    204. Cook, H. G.; McCombie, H.; Saunders, B. C. Esters containingphosphorus. II. Journal of the Chemical Society (Resumed)1945,873-874.
    205. Konishi, H.; Lam, T. Y.; Malerich, J. P.; Rawal, V. H. Enantioselectiveα-Amination of1,3-Dicarbonyl Compounds Using Squaramide Derivatives asHydrogen Bonding Catalysts. Org. Lett.2010,12,2028-2031.
    206. Yang, W.; Du, D.-M. Highly Enantioselective Michael Addition ofNitroalkanes to Chalcones Using Chiral Squaramides as Hydrogen BondingOrganocatalysts. Org. Lett.2010,12,5450-5453.
    207. Dai, L.; Wang, S.-X.; Chen, F.-E. A Bifunctional CinchonaAlkaloid-Squaramide Catalyst for the Highly Enantioselective Conjugate Additionof Thiols to trans-Chalcones. Adv. Synth. Catal.2010,352,2137-2141.
    208. Bae, H. Y.; Some, S.; Lee, J. H.; Kim, J.-Y.; Song, M. J.; Lee, S.; Zhang, Y.J.; Song, C. E. Organocatalytic Enantioselective Michael-Addition of Malonic AcidHalf-Thioesters to β-Nitroolefins: From Mimicry of Polyketide Synthases toScalable Synthesis of γ-Amino Acids. Adv. Synth. Catal.2011,353,3196-3202.
    209. Woong Lee, J.; Hi Ryu, T.; Suk Oh, J.; Yong Bae, H.; Bin Jang, H.; EuiSong, C. Self-association-free dimeric cinchona alkaloid organocatalysts:unprecedented catalytic activity, enantioselectivity and catalyst recyclability indynamic kinetic resolution of racemic azlactones. Chem. Commun.2009,7224-7226.
    210. Alemán, J.; Parra, A.; Jiang, H.; J rgensen, K. A. Squaramides: Bridgingfrom Molecular Recognition to Bifunctional Organocatalysis. Chem. Eur. J.2011,17,6890-6899.
    211. Ian Storer, R.; Aciro, C.; Jones, L. H. Squaramides: physical properties,synthesis and applications. Chem. Soc. Rev.2011,40,2330-2346.
    212. Malerich, J. P.; Hagihara, K.; Rawal, V. H. Chiral Squaramide Derivativesare Excellent Hydrogen Bond Donor Catalysts. J. Am. Chem. Soc.2008,130,14416-14417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700