贵金属纳米结构的设计、合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过近二十年的发展,贵金属纳米材料因其丰富的形貌、独特的物理、化学性质被广泛应用于光学、电学、磁学、催化、生物医学、环境处理及新能源领域。众所周知,贵金属纳米材料的性质往往由包括尺寸、形状、组成及结构(如实心或空心)等一系列物理参数所决定。原则上,这类性质可以通过控制上述参数中的任意一个而得到精确调控,但是其灵活性和变化范围对特定参数来说是高度敏感的。基于以上的特性,经过人为设计、合成的并且具有稳定结构且特殊性能的贵金属纳米结构材料就能够高效、且明确地在众多领域尤其是电化学催化、传感、生化检测及燃料电池等方面得到应用。例如质子交换膜燃料电池(PEMFCs)已经日渐成为解决有关环境污染和能源危机问题的重要途径,而其中贵金属铂及其合金材料是目前PEMFCs中研究、使用最为广泛的一类阳极氧化和阴极还原的电催化剂。然而由于铂催化剂面临着储存量有限,价格高昂,催化剂载量大、易失活,阴极氧气还原反应(ORR)过电位大、动力学活性低且室温操作时容易被CO毒化等问题,严重限制了基于此类催化剂的PEMFCs的商业化应用。而根据理论计算我们已经获得的基本认知是PEMFC阳极氧化及阴极还原过程中铂基催化剂可以通过有效地设计、和控制来制备催化剂,从而避免上述问题的出现。
     本文致力于发展一种简单、快速制备贵金属纳米结构的方法,并通过有目的的表面结构设计将其应用于燃料电池阳极催化氧化、阴极催化还原及电化学传感、检测等方面的研究,并探索它们在电催化和燃料电池领域的应用前景。同时考虑到当前已经广泛应用的贵金属纳米材料可能会有的生物安全性问题,我们以最简单的球形纳米金颗粒作为模型考察了其对活体细胞的生物学毒性,并对今后贵金属纳米材料的应用给出一定的指导作用。具体的研究内容如下:
     (1)基于经过改进的多元醇法(polyol process)合成得到了一系列具有不同长径比的银纳米线,并以此为模板经过一个化学镀(electroless plating)过程制得金银复合一维纳米线,随后通过浓硝酸的脱合金(dealloyed)腐蚀制备得到了具有双连续孔结构、高孔隙率的一维金银合金多孔纳米管。通过独立调控反应过程中的条件和参数(如纳米线模板的控制生长、化学镀表面修饰过程、热扩散速率以及脱合金过程),我们可以得到一系列的结构可调、功能可预设的一维多孔纳米结构。特别是化学镀过程中,表面金原子层的厚度可以从次原子层到数个原子层内得到精确调控,从而有效控制脱合金后所得纳米管的结构特征。这类管状、多孔纳米结构显示出了独特的光学特性,特别是其特征吸收波长可以从可见光区到近红外光区进行连续调制。因为其独特的开孔结构和特征的高比表面积,金银合金多孔纳米结构显示出了很强的电致化学发光信号的放大增强能力,这就使得其可以作为一类新颖的一维纳米载体用于生物医学、药物缓释及传感应用等领域。
     (2)考虑到金银合金多孔纳米管内有一定的银残留,通过银与氯铂酸根离子间的原电池置换反应(galvanic replacement),将极少量的铂修饰于多孔纳米管表面。由于金银合金多孔纳米管中原始银含量较低,且金银可以形成有效的、互溶的合金态,同时与金原子相比铂原子的扩散速率非常低,因此置换出的铂原子在金多孔纳米管表面的分布可以有效地被控制并被表面金原子分割。通过控制金银合金中残留银的含量以及参与置换反应的铂前驱体的浓度,可以得到表面铂修饰量不同的铂金复合多孔纳米管(Pt/Au Porous Nanotubes, PNTs).以铂金复合纳米管为阳极催化剂,利用CV等方法评估了不同Pt载量的Pt/Au PNTs对甲酸的电催化活性。与理论计算所得结果相似的是,实验结果发现铂原子修饰量与甲酸催化性能呈反比,即当铂原子在金表面被分割得足够开,主要以小于两个铂原子相邻的方式出现,因而对甲酸的催化主要选择直接路径或者甲酸盐路径,避免了引发催化剂中毒的CO中间产物的产生。这一简单方法制备的Pt/Au甲酸催化剂不仅在催化氧化中选择了直接路径,而且铂原子的利用率得到大大提升,同时催化剂的稳定性相较于纯铂催化剂也有较大的提升。这一方法有望成为制备其他双元金属催化剂的通用方法。
     (3)以一维银纳米线为模板,以化学镀(electroless plating)和选择性腐蚀过程成功制备了铂银复合多孔纳米管(Pt/Ag Porous Nanotubes, PNTs)。考察了不同铂前驱体用量对所得复合多孔纳米管结构的影响。发现复合多孔纳米管的管壁机械强度随铂前驱体盐使用量的增加而增强。随后以铂金复合纳米管为阳极催化剂,在碱性条件下利用CV等方法评估了Pt/Ag PNTs对乙醇的电催化氧化活性。与商业Pt/C催化剂相比,Pt/Ag PNTs有着相似的电化学行为,但是有着更强的催化活性。在酸性条件下的CO扫除实验发现,Pt/Ag PNTs的CO扫除峰电位比商业Pt/C的更负,就说明了纳米管催化剂更不易CO中毒。并用计时电流法进一步探究了催化剂的稳定性。同时在中性条件下用CV研究了Pt/Ag PNTs对双氧水的传感响应,在H2O2浓度为25μmol/L到4mmol/L范围内有着良好的线性关系,对H2O2的响应灵敏度为0.8/μmol/L。催化和传感结果显示铂银复合多孔纳米管可以作为一类出色的碱性燃料电池催化剂和电化学传感电极材料。
     (4)发展了一种大量、简便、快速的方法制备了一种可以作为非负载型PEMFC阴极氧气还原反应(ORR)催化剂的Pt/Ag中空多孔纳米球(HPNSs),这一新型催化剂有着比商业Pt/C催化剂更高的催化活性。为了制备HPNSs这一新颖结构,首先通过高温液相还原法制备Ag@Pt核壳纳米颗粒,随后用浓硝酸选择性腐蚀银核即可得到中空的HPNSs。为了得到稳定的外层壳结构,将腐蚀得到的HPNSs置于DMF溶液中在相对温和的温度(-160℃)下对其进行退火即可得到有着稳定壳层的HPNSs(a-HPNSs)。由于其超薄的外壁结构(-3纳米),多孔壳有着超高的比表面积(-65m2/g),而且形成了一种类似合金的结构(近表面合金),a-HPNSs展现出了明显高于商业Pt/C催化剂的ORR催化活性,其ORR极化曲线的半波电位约为0.896V (vs. RHE),比Pt/C的半波电位(~0.828V vs. RHE)要高出接近70mV。催化剂的稳定性测试结果显示这一非负载型铂银复合催化剂有着较好的稳定性,与商业Pt/C相比,其电化学活性面积损失速率明显要低。因此,这一方法提供了一种简单的路径制备了具有高活性的非负载的催化剂,可以作为一种潜在的燃料电池阴极催化剂替代材料。
     (5)选用形貌最为简单的球形纳米金颗粒(GNPs,直径约10纳米)和人体肺癌细胞A549作为模型体系来评价贵金属纳米材料对人体细胞的生物学毒性。当单独使用GNPs与细胞孵育时,并未对细胞的增殖产生影响。但是当使用L-丁硫氨酸-亚砜胺(BSO)来抑制A549细胞内的谷胱甘肽(GSH)的表达时,GNPs对细胞的就显现出明显的细胞毒性,一旦向细胞内引入外源性GSH, GNPs毒性立刻发生反转。而GSH在细胞内消除活性氧物种(ROS)起着重要的作用,通过监控细胞内ROS的水平,我们发现在BSO存在下GNPs会产生更多的ROS。因此,GNPs对肺癌细胞的细胞毒性可以部分归因于细胞内ROS水平的上升。这些结果表明在使用GNPs进行体内实验时应当更为小心,由于GNPs当前不仅本身在体内实验中被用作一种治疗试剂同时它也被当作其他药物或者生物大分子的载体在体内实验中使用。
During the last two decades, great attentions have been paid to noble metal nanostructures with abundant morphologies, distinct chemicophysical properties, since they could be applied in various fields, such as, optics, photonics, magnetics, catalysis, biomedicine, environment, and new energy. It was well known that the properties of noble metal nanocrystals usually depends on their physical parameters including szies, shapes, dimensions, compositions and structures (i.e. solid or hollow).In principle, one can tailor and fine-tune the properties of a metal nanocrystal by controlling any one of these parameters, but the flexibility and scope of change are highly sensitive to the specific parameter. Based on these, we could effectively pre-design and controllably synthesize noble metal nanomaterials with specific properties and stable structures, which might be applied in many potential fields with higher efficiency and defined purposes, especially electrocatalysis, sensing, biochemical dectection and fuel cells. Fox example, proton-exchange membrane fuel cells (PEMFCs) have increasingly been an important way to resolve the problems of environmental pollution and energy crisis, and among these platinum and its alloy materials have been extensively investigated and used, since they are one kind of effective electrocatalysts both in the anode and cathode of PEMFCs. However, as an electrocatalyst Pt has to face many problems, such as, low Pt storage on Earth, expensive price, higher loading amount and easily deactive, large overprotential and low kinetic activity of ORR, and readily be poisoned by CO under room temperature, which have been the major obstacles for the commerical application of PEMFCs based on such catalysts. But according to the theoretical calculations for the mechanisms of both anodic and cathodic process, one may have the ability of pre-designing and manufacturing catalysts to avoid these problems.
     Herein, we focused on the development of a simple, versatile and rapid route to fabricate noble metal nanostructure with specific properties, and via a targeted way to prepare metallic catalyst with distinctive surface-structural designing, which were used in both the anode catalytic oxidation and the cathode catalytic reduction of fuel cells, as well as electrochemical sensing and detection, especially, we explored their application prospects in both electrocatalysis and fuel cells. Meanwhile, considering the potential biosafety issues due to the extensively using of noble metal nanomaterials, the cytotoxicity investigation has also been done via a simple model of spherical gold nanoparicles (GNPs) and human lung cancer cell A549, which might provide some suggestions for the applications of noble metal nanomaterials.
     The results are as follows:
     (1) Metallic nanostructures with hollow interiors or tailored porosity represent a special class of attractive materials with intriguing chemicophysical properties. This paper presents the fabrication of a new type of metallic nanoporous nanotube structure based on a facile and effective combination of nanocrystal growth and surface modification. By controlling the individual steps involved in this process, such as nanowire growth, surface modification, thermal diffusion, and dealloying, one-dimensional (1-D) metallic nanostructures can be prepared with tailored structural features and pre-designed functionalities. These tubular and porous nanostructures show distinct optical properties, such as tunable absorption in the near-infrared region, and enhanced capability for electrochemiluminescence signal amplification, which make them particularly desirable as novel1-D nanocarriers for biomedical, drug delivery and sensing applications.
     (2) Considering the residual Ag component in the Au/Ag alloy porous nanotubes (APNTs), we fabricated a kind of Pt/Ag composite porous nantubes (PNTs) with enhanced catalytic actvity toward HCOOH electrooxidation via the simple galvanic replacement between the residual and H2PtCl6-Due to the relatively low content of Ag in the Au/Ag APNTs as well as the effective alloy between Au and Ag, we do think the reduced Pt atoms disperesed on the PNTs surface could be effectively controlled and separated by the surface Au atoms, which could be ascribed to the lower diffusion coefficient of Pt than that of Au. By tuning the amount of Pt precursor, Pt/Au PNTs with different Pt-decorated loading could be easily approached. Structural characterizations with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) reveal a novel nanoarchitecture with multimodal open porosity and excellent structural continuity and integrity. Meanwhile, as a kind of anodic catalysts, CV and other techniques demonstrated that the Pt/Au PNTs possess excellent electrocatalytic activity toward HCOOH oxidation and enhanced tolerance to CO poisoning.
     (3) Based on the one dimensional Ag nanowires synthesized via a modified polyol process, with a simple electroless plating and selective etching process we sucessfully fabricated Pt/Ag composite porous nanotubes (Pt/Ag PNTs). We have investigated the influence of different amount of Pt precursors toward the final Pt/Ag PNTs structures. It was find that the mechanical strength of the composite PNTs wall sturcture strongly depended on the dosage of H2PtCl6, which presents a positive correlation. Following, the Pt/Ag PNTs were used as an anodic catalyst under alkaline condition and sensing electrode in neutral conditon toward the electrooxidation of ethanol and detection of H2O2, respectively. As for the ethanol oxidation, campared with the commerical Pt/C catalyst, Pt/Ag PNTs possessed the similar electrochemical behaviors, but their intrinsic activity is evidently higher than that of Pt/C. CO stripping in acid sloution showed that Pt/Ag PNTs have much higher tolerance to CO poisoning than Pt/C. During the detection of H2O2, we got find that Pt/Ag PNTs exhibits sensitive respones toward the reduction of H2O2. CV study illustrated that a linear relationship for H2O2determniantion in a concentration range from25μmol/L to4mmol/L, with~0.8μmol/L response sensitivity. These two results revealed that Pt/Ag composite PNTs could be a kind of remarkable alkaline fuel cell catalysts and superior sensing electrode materials.
     (4) We developed a large scale, simple and rapid route to fabricate Pt/Ag hollow porous nanospheres (HPNSs) which can be served as a supportless ORR catalyst with higher activity than that of commercial Pt/C catalysts. To prepare the HPNSs, firstly Ag@Pt core-shell nanoparticles were fabricated via a one-pot approach of solvent-thermal process, following a selective etching process by concentrated HNO3was employed to get HPNSs. Thermal annealing under relatively moderate condition (~160℃) was adopted to obtain high quality crystalline and stable shells of HPNSs (a-HPNSs), Owing to their ultra-thin wall structure (~3nm), porous shells with high surface-area-to-volume, and their alloy structures, the α-HPNSs exhibited significant enhancement of the ORR catalytic activity over commercial Pt/C catalyst, and the half-wave potential of α-HPNSs is~0.896V (versus a reversible hydrogen electrode, RHE), which is nearly70mV higher than that of Pt/C (~0.828V vs. RHE). Durability examination adopted the same condition and the α-HPNSs showed surprisingly high activity toward ORR. Although the α-HPNSs are particle-like structure, they displayed superior connectivity and conductivity without any substrates during the electrochemical test. Consequently, this method allows simplification of the experimental procedures by avoiding the tedious mixing and optimization of catalysts with supporting materials.
     (5) Gold nanoparticles (GNPs) were used to evaluate their cytotoxicity toward human lung cancer cells A549. No cell proliferation inhibition was found when the cells were treated by GNPs independently. However, when L-buthionine-sulfoximine (BSO) was used to decrease the expression of glutathione (GSH) in A549cells, GNPs showed evident cytotoxicity to cells. Interestingly, the cytotoxicity of GNPs could be reversed after adding outside source GSH into the system. Whereas GSH plays an important role in eliminating reactive oxygen species (ROS), by monitoring the intracellular levels of ROS, GNPs were observed to generate more intracellular ROS in the presence of BSO. The cytotoxicity caused by GNPs toward lung cancer cells could therefore be partially attributed to the increase in intracellular ROS levels. These results suggest that caution should be paid in the use of GNPs for in vivo tests because GNPs can serve as therapeutic agents in their own right as well as carriers for other drugs and biomolecules.
引文
[1]B. D. Fahlman, Materials Chemistry, Vol.1, pp.282-283, Mount Pleasant: Springer,2007.
    [2]W. P. Halperin, Quantum size effects in metal particles, Rev. Mod. Phys.1986, 58,533-606.
    [3]U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, New York: Springer,1995.
    [4]http://esi-topics.com/nanocrystals/.
    [5]M. G. Bawendi, M. L. Steigerwald, L. E. Brus, The Quantum Mechanics of Larger Semiconductor Clusters ("Quantum Dots"), Annu. Rev. Phys. Chem. 1990,41,477-496.
    [6]H. Weller, Quantized Semiconductor Particles:A novel state of matter for materials science, Adv. Mater.1993,5,88-95.
    [7]A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science 1996,271,933-937.
    [8]C. B. Murray, C. R. Kagan, M. G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci.2000,30,545-610.
    [9]K. K. Likharev, Correlated discrete transfer of single electrons in ultrasmall tunnel junctions, IBMJ. Res. Dev.1988,32,144-158.
    [10]V. Maheshwari, J. Kane, R. Saraf, Self-Assembly of a Micrometers-Long One-Dimensional Network of Cemented Au Nanoparticles, Adv. Mater.2008, 20,284-287.
    [11]N. F. Mott, Metal-Insulator Transition, Rev. Mod. Phys.1968,40,677-683.
    [12]G. Markovich, C. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine, J. R. Heath, Architectonic Quantum Dot Solids, Acc. Chem. Res.1999,32,415-423.
    [13]T. Hyeon, Chemical synthesis of magnetic nanoparticles, Chem. Commun.2003, 927-934.
    [14]S. Sun, Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles, Adv. Mater.2006,18,393-403.
    [15]U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia, Superparamagnetic Colloids: Controlled Synthesis and Niche Applications, Adv. Mater.2007,19,33-60.
    [16]L. N. Lewis, Chemical catalysis by colloids and clusters, Chem. Rev.1993,93, 2693-2730.
    [17]G. A. Somorjai, Modern Surface Science and Surface Technologies:An Introduction, Chem. Rev.1996,96,1223-1236.
    [18]G. Ertl, Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim,2008.
    [19]N. M. Davey, R. J. Seymour, The Platinum Metals in Electronics, Platinum Met. Rev.1985,29,2-11.
    [20]S. Jeong, K. Woo, D. Kim, S. Lim, J. S. Kim, H. Shin, Y. Xia, J. Moon, Controlling the Thickness of the Surface Oxide Layer on Cu Nanoparticles for the Fabrication of Conductive Structures by Ink-Jet Printing, Adv. Funct. Mater. 2008,18,679-686.
    [21]J. F. Hamilton, The silver halide photographic process, Adv. Phys.1988,37, 359-441.
    [22]T. Tani, Physics of the Photographic Latent Image, Phys. Today 1989,42, 36-48.
    [23]A special issue on magnetic recording materials in MRS Bull.1990,15,12.
    [24]C. B. Murray, S. Sun, H. Doyle, T. Betley, Monodisperse 3d Transition-Metal (Co, Ni, Fe) Nanoparticles and Their Assembly into Nanoparticle Superlattices, MRS Bull.2001,26,985-991.
    [25]A. C. Templeton, W. P. Wuelfing, R. W. Murray, Monolayer-Protected Cluster Molecules, Acc. Chem. Res.2000,33,27-36.
    [26]S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pea, I. D. Walton, R. Cromer, C. D. Keating, M. J. Natan, Submicrometer Metallic Barcodes, Science 2001,294,137-141.
    [27]S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, Plasmonics-A Route to Nanoscale Optical Devices, Adv. Mater.2001, 13,1501-1505.
    [28]A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, M. A. Reed, Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires, Nano Lett.2006,6,1822-1826.
    [29]T. A. Taton, C. A. Mirkin, R. L. Letsinger, Scanometric DNA Array Detection with Nanoparticle Probes, Science 2000,289,1757-1760.
    [30]A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, D. L. Feldheim, Multifunctional Gold Nanoparticle-Peptide Complexes for Nuclear Targeting,J. Am. Chem. Soc.2003,125,4700-4701.
    [31]X. Zhang, M. A. Young, O. Lyandres, R. P. Van Duyne, Rapid Detection of an Anthrax Biomarker by Surface-Enhanced Raman Spectroscopy, J. Am. Chem. Soc.2005,127,4484-4489.
    [32]M. M.-C. Cheng, G. Cuda, Y. L. Bunimovich, M. Gaspari, J. R. Heath, H. D. Hill, C. A. Mirkin, A. J. Nijdam, R. Terracciano, T. Thundat, M. Ferrari, Nanotechnologies for biomolecular detection and medical diagnostics, Curr. Opin. Chem. Biol.2006,10,11-19.
    [33]H. Wang, D. W. Brandl, P. Nordlander, N. J. Halas, Plasmonic Nanostructures: Artificial Molecules, Ace. Chem. Res.2007,40,53-62.
    [34]J. Chen, F. Saeki, B. J.Wiley, H. Cang,M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, Gold Nanocages:Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents, Nano Lett.2005,5,473.
    [35]H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, X. Li, Gold nanocages as contrast agents for spectroscopic optical coherence tomography, Opt. Lett.2005, 30,3048-3050.
    [36]X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, L. V. Wang, Photoacoustic Tomography of a Rat Cerebral Cortex in vivo with Au Nanocages as an Optical Contrast Agent, Nano Lett.2007,7,3798.
    [37]J. L. West, N. J. Halas, Engineered nanomaterials for biophotonics applications: Improving Sensing, Imaging, and Therapeutics, Annu. Rev. Biomed. Eng.2003, 5,285-292.
    [38]P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Review Catalytic activity of Au nanoparticles, Nano Today 2007,2,18-29.
    [39]S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, Y. Xia, Gold Nanocages for Biomedical Applications, Adv. Mater.2007,19,3177-3184.
    [40]S. E. Skrabalak, L. Au, X. Lu, X. Li, Y. Xia, Nanoparticles for Cancer Diagnosis & Therapeutics, Nanomedicine 2007,2,657-668.
    [41]P. Fortina, L. J. Kricka,D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, S. A. Waldman, Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer, Trends Biotechnol.2007,25,145-152.
    [42]P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine, Acc. Chem. Res.,2008,41, 1578-1586.
    [43]L. Au, D. Zheng, F. Zhou, Z.-Y. Li, X. Li, Y. Xia, A Quantitative Study on the Photothermal Effect of Immuno Gold Nanocages Targeted to Breast Cancer Cells, ACS Nano 2008,2,1645-1652.
    [44]T. R. Jensen, L. Kelly, A. Lazarides, G. C. Schatz, Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters, J. Cluster Sci.1999,10, 295-317.
    [45]J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, Plasmon resonances of silver nanowires with a nonregular cross section, Phys. Rev. B 2001,64, 235402.
    [46]M. A. El-Sayed, Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes, Acc. Chem. Res.2001,34,257-264.
    [47]I. O. Sosa, C. Noguez, R. G. Barrera, Optical Properties of Metal Nanoparticles with Arbitrary Shapes,J. Phys. Chem. B 2003,107,6269-6275.
    [48]B. J. Wiley, S. H. Im, Z.-Y. Li, J. M. McLellan, A. Siekkinen, Y. Xia, Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis, J. Phys. Chem.B 2006,110,15666-15675.
    [49]M. Haruta, Size-and support-dependency in the catalysis of gold, Catal. Today 1997,36,153-166.
    [50]M. Valden, X. Lai, D. W. Goodman, Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties, Science 1998,281,1647-1650.
    [51]C. T. Campbell, S. C. Parker, D. E. Starr, The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering, Science 2002,298,811-814.
    [52]R. Narayanan, M. A. El-Sayed, Catalysis with Transition Metal Nanoparticles in Colloidal Solution:Nanoparticle Shape Dependence and Stability, J. Phys. Chem.B 2005,109,12663-12676.
    [53]A. Zecchina, E. Groppo, S. Bordiga, Selective Catalysis and Nanoscience:An Inseparable Pair, Chem. Eur. J.2007,13,2440-2460.
    [54]L. M. Falicov, G. A. Somorjai, Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces:Theory and experimental evidence, Proc. Natl. Acad. Sci. USA 1985, 82,2207-2211.
    [55]A.-C. Shi, R. I. Masel, The effects of gas adsorption on particle shapes in supported platinum catalysts,J. Catal.1989,120,421-431.
    [56]Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics, Angew. Chem. Int. Ed.2009, 48,60-103.
    [57]L. D. Marks, Experimental studies of small particle structures, Rep. Prog. Phys. 1994,57,603-649.
    [58]J. A. Venables, Introduction to Surface and Thin Film Processes, Cambridge University Press, Cambridge,2000, pp.9-11.
    [59]Wertime, T. A. The Beginnings of Metallurgy:A New Look-Arguments over diffusion and independent invention ignore the complex metallurgic crafts leading to iron, Science 1973,182,875-887.
    [60]Shalaev, V. M. Transforming Light, Science 2008,322,384-386.
    [61]M. L. Brongersma, V. M. Shalaev, The Case for Plasmonics, Science 2010,328, 440-441.
    [62]J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater.2010, 9,193-204.
    [63]I. Freestone, N. Meeks, M. Sax, C. Higgitt, The Lycurgus Cup-A Roman Nanotechnology, Gold Bull.2007,40,270-277.
    [64]P. P. Edwards, J. M. Thomas, Gold in a Metallic Divided State-From Faraday to Present-Day Nanoscience, Angew. Chem. Int. Ed.2007,46,5480-5486.
    [65]D. W. Oxtoby, Phase transitions:Catching crystals at birth, Nature 2000,406, 464-465.
    [66]B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-Controlled Synthesis of Metal Nanostructures:The Case of Silver, Chem. Eur. J.2005,11,454-463.
    [67]B. Wiley, Y. Sun, J. Chen, H. Cang, Z.-Y. Li, X. Li, Y. Xia, Shape-Controlled Synthesis of Silver and Gold Nanostructures, MRS Bull.2005,30,356-361.
    [68]B. Wiley, Y. Sun, Y Xia, Synthesis of Silver Nanostructures with Controlled Shapes and Properties, Acc. Chem. Res.2007,40,1067-1076.
    [69]A. R. Tao, S. Habas, P. Yang, Shape Control of Colloidal Metal Nanocrystals, Small 2008,4,310-325.
    [70]C. J. Murphy, N. R. Jana, Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires, Adv. Mater.2002,14,80-82.
    [71]C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gao, S. E. Hunyadi, T. Li, Anisotropic Metal Nanoparticles:Synthesis, Assembly, and Optical Applications,J.Phys. Chem.B 2005,109,13857.
    [72]C. J. Murphy, A. M. Gole, S. E. Hunyadi, C. J. Orendorff, One-Dimensional Colloidal Gold and Silver Nanostructures, Inorg. Chem.2006,45,7544-7554.
    [73]Y. Xiong, Y. Xia, Shape-Controlled Synthesis of Metal Nanostructures:The Case of Palladium, Adv. Mater.2007,19,3385-3391.
    [74]Y. Yin, A. P. Alivisatos, Colloidal nanocrystal synthesis and the organic-inorganic interface, Nature 2005,437,664.
    [75]T. K. Sau, A. L. Rogach, Nonspherical Noble Metal Nanoparticles: Colloid-Chemical Synthesis and Morphology Control, Adv. Mater.2010,22, 1781-1804.
    [76]G. Berhault, M. Bausach, L. Bisson, L. Becerra, C. Thomazeau, D. Uzios, Seed-Mediated Synthesis of Pd Nanocrystals:Factors Influencing a Kinetic- or Thermodynamic-Controlled Growth Regime, J. Phys. Chem. C 2007,111, 5915-5925.
    [77]D. K. Smith, B. A. Korgel, The Importance of the CTAB Surfactant on the Colloidal Seed-Mediated Synthesis of Gold Nanorods, Langmuir 2008,24, 644-649.
    [78]B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction, Science 2009,324,1302-1305.
    [79]Z. Peng, H. Yang, Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostructures,J. Am. Chem. Soc.2009,131, 7542-7543.
    [80]S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, P. Yang, Shaping binary metal nanocrystals through epitaxial seeded growth, Nat. Mater.2007,6, 692-697.
    [81]F.-R. Fan, D.-Y. Liu, Y.-F. Wu, S. Duan, Z.-X. Xie, Z.-Y. Jiang, Z.-Q. Tian, Epitaxial Growth of Heterogeneous Metal Nanocrystals:From Gold Nano-octahedra to Palladium and Silver Nanocubes,J. Am. Chem. Soc.2008, 130,6949-6951.
    [82]G. A. Somorjai, D. W. Blakely, Mechanism of catalysis of hydrocarbon reactions by platinum surfaces, Nature 1975,258,580-583.
    [83]F. W., C. Li, L.-D. Sun, H. Wu, T. Ming, J. Wang, J. C. Yu, C.-H. Yan, Heteroepitaxial Growth of High-Index-Faceted Palladium Nanoshells and Their Catalytic Performance,J. Am. Chem. Soc.2011,133,1106-1111.
    [84]Z. Quan, Y. Wang, J. Fang, High-index faceted noble metal nanocrystals, Acc. Chem. Res.2013,46,191-202.
    [85]T. Ming, W. Feng, Q. Tang, F. Wang, L. Sun, J. Wang, C. Yan, Growth of Tetrahexahedral Gold Nanocrystals with High-Index Facets,J. Am. Chem. Soc. 2009,131,16350-16351.
    [86]P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, F. Fievet, Monodisperse Ferromagnetic Particles for Microwave Applications, Adv. Mater.1998,10, 1032-1035.
    [87]F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P. Y. Silvert, K. Tekaia-Elhsissen, Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol, Nanostr. Mater.1999,11,1277-1284.
    [88]C. Ducamp-Sanguesa, R. Herrera-Urbina, M. Figlarz, Synthesis and characterization of fine and monodisperse silver particles of uniform shape, J. Solid State Chem.1992,100,272-280.
    [89]Y. Sun, Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science 2002,298,2176-2179.
    [90]M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, Y. Xia, Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications, Chem. Rev.2011,111,3669-3712.
    [91]F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Platonic Gold Nanocrystals, Angew. Chem. Int. Ed.2004,43,3673-3677.
    [92]X. Gu, L. Xu, F. Tian, Y. Ding, Au-Ag Alloy Nanoporous Nanotubes, Nano Res. 2009,2,386-393.
    [93]M. Wirtz, M. Parker, Y. Kobayashi, C. R. Martin, Template-Synthesized Nanotubes for Chemical Separations and Analysis, Chem. Eur. J.2002,8, 3572-3578.
    [94]M. Lahav, T. Sehayek, A. Vaskevich, I. Rubinstein, Nanoparticle Nanotubes, Angew. Chem. Int. Ed.2003,42,5576-5579.
    [95]D. O. Yener, J. Sindel, C. A. Randall, J. H. Adair, Synthesis of nanosized silver platelets in octylamine-waterbilayer systems, Langmuir 2002,18,8692-8699.
    [96]G. Wei, H. Zhou, Z. Liu, Y. Song, L. Wang, L. Sun, Z. Li, One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network, J. Phys. Chem.B 2005,109,8738-8743.
    [97]J. Zhang, H. Liu, Z. Wang, N. Ming, Shape-Selective Synthesis of Gold Nanoparticles with Controlled Sizes, Shapes, and Plasmon Resonances, Adv. Funct. Mater.2007,17,3295-3303.
    [98]L. M. Huang, H. T. Wang, Z. B. Wang, A. Mitra, K. N. Bozhilov, Y. S. Yan, Nanowire Arrays Electrodeposited from Liquid Crystalline Phases, Adv. Mater. 2002,14,61-64.
    [99]L. Wang, X. Chen, J. Zhan, Y. Chai, C. Yang, L. Xu, W. Zhuang, B. Jing, Synthesis of Gold Nano-and Microplates in Hexagonal Liquid Crystals, J. Phys. Chem. B 2005,109,3189-3194.
    [100]S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, Y. Xia, Gold Nanocages:Synthesis, Properties, and Applications, Acc. Chem. Res.,2008,41, 1587-1595.
    [101]M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, Y. Xia, Gold nanocages covered by smart polymers for controlled release with near-infrared light, Nat. Mater. 2009,8,935-938.
    [102]J.-S. Yu, J. Y. Kim, S. Lee, J. K. N. Mbindyo, B. R. Martin, T. E. Mallouk, Template synthesis of polymer-insulated colloidal gold nanowires with reactive ends, Chem. Commun.2000,2445-2446.
    [103]E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, C. A. Mirkin, Multipole Plasmon Resonances in Gold Nanorods, J. Phys. Chem. B 2006,110, 2150-2154.
    [104]J. Wang, Barcoded metal nanowires,J. Mater. Chem.2008,18,4017-4020.
    [105]J.-G. Wang, M.-L. Tian, T. E. Mallouk, M. H. W. Chan, Microstructure and interdiffusion of template-synthesized Au/Sn/Au junction nanowires, Nano Lett. 2004,4,1313-1318.
    [106]R. Laocharoensuk, S. Sattayasamitsathit, J. Burdick, P. Kanatharana, P. Thavarungkul, J. Wang, Shape-Tailored Porous Gold Nanowires:From Nano Barbells to Nano Step-Cones, ACS Nano 2007,1,403-408.
    [107]T.-Y. Shin, S.-H. Yoo, S. Park, Gold Nanotubes with a Nanoporous Wall:Their Ultrathin Platinum Coating and Superior Elcctrocatalytic Activity toward Methanol Oxidation, Chem. Mater.2008,20,5682-5686.
    [108]S. J. Lee, J. M. Baik, M. Moskovits, Polarization-Dependent Surface-Enhanced Raman Scattering from a Silver-Nanoparticle-Decorated Single Silver Nanowire, Nano Lett.2008,8,3244-3247.
    [109]N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z. L. Wang, Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity, Science 2007,316,732-735.
    [110]Z.-Y. Zhou, N. Tian, Z.-Z. Huang, D.-J. Chen, S.-G. Sun, Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method, Faraday Discuss.2008,140,81-92.
    [111]Z.-Y. Zhou, Z.-Z. Huang, D.-J. Chen, Q. Wang, N. Tian, S.-G. Sun, High-Index Faceted Platinum Nanocrystals Supported on Carbon Black as Highly Efficient Catalysts for Ethanol Electrooxidation, Angew. Chem. Int. Ed.2010,49, 411-414.
    [112]N. S. Lewis, D. G. Nocera, Powering the planet:Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. USA 2006,103,15729-15735.
    [113]Q. Schiermeier, J. Tollefson, T. Scully, A. Witze, O. Morton, Electricity without carbon, Nature 2008,454,816-823.
    [114]詹姆斯·拉米尼,安德鲁·迪克斯.燃料电池系统-原理·设计·应用.北京:科学出版社,2005.
    [115]C. Rice, S. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, Direct formic acid fuel cells, J. Power Sources 2002,111,83-89.
    [116]K. J. Jeong, C. M. Miesse, J. H. Choi, J. Lee, J. Hanb, S. P. Yoon, S. W. Namb, T. H. Limb, T. G. Lee, Fuel crossover in direct formic acid fuel cells, J. Power Sources,2007,168,119-125.
    [117]R. Parsons, T. J. VanderNoot, The oxidation of small organic molecules:A survey of recent fuel cell related research, J. Electroanal. Chem.,1988,257, 9-45.
    [118]M. Neurock, M. Janikb, A. Wieckowski, A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt, Faraday Disscus.2008,140,363-378.
    [119]G. Samjesk, M. Osawa, Current oscillations during formic acid oxidation on a Pt electrode:insight into the mechanism by time-resolved IR spectroscopy, Angew. Chem. Int. Ed.,2005,44,5694-5698.
    [120]Y. X. Chen, M. Heinen, Z. Jusys, R. J. Behm, Kinetics and mechanism of the electrooxidation of formic acid-spectroelectrochemical studies in a flow cell, Angew. Chem. Int. Ed.,2006,45,981-985.
    [1][121] J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying, Nature 2001,410,450-453.
    [122]R. Wang, C. Wang, W. B. Cai, Y. Ding, Ultralow Platinum Loading High Performance Nanoporous Electrocatalysts with Nanoengineered Surface Structures, Adv. Mater.2010,22,1845-1848.
    [123]N. M. Markovic, H. A. Gasteiger, B. N. Grgur, P. N. Ross, Oxygen reduction reaction on Pt(111):effects of bromide, J. Electroanal. Chem.1999,467, 157-163
    [124]V. Stamenkovic, T. J. Schmidt, P. N. Ross, N. M. Markovic, Surface segregation effects in electrocatalysis:kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces. J. Electroanal. Chem.2003,554-555, 191-199.
    [125]张云河.质子交换膜燃料电池阴极催化剂及电极过程动力学研究.(博士论文)中南大学,2004.
    [126]H. J. Parab, C. Jung, J. H. Lee, H. G. Park, Biosens. Bioelectron.2010,26, 667-673.
    [127]M. Cai, F. Li, Y. Zhang, Q. Wang, One-Pot Polymerase Chain Reaction with Gold Nanoparticles for Rapid and Ultrasensitive DNA Detection, Nano Res 2010,3,557-563.
    [128]D. Kim, Y. Y. Jeong, S. Jon, A Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer, ACS Nano 2010,4,3689-3696.
    [129]S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, S. Emelianov, Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer, Nano Lett.2009,9, 2825-2831.
    [130]J. Yang, K. Eom, E. Lim, J. Park, Y. Kang, D. Yoon, S. Na, E. Koh, J. Suh, Y. Huh, In situ detection of live cancer cells by using bioprobes based on Au nanoparticles, Langmuir 2008,24,12112-12115.
    [131]Y. Lu, Y. Zhao, L. Yu, L. Dong, C. Shi, M. J. Hu, Y. J. Xu, L. P. Wen, S.-H. Yu. Hydrophilic Co@Au Yolk/Shell Nanospheres:Synthesis, Assembly, and Application to Gene Delivery, Adv. Mater.2010,22,1407-1411.
    [132]C. Hu, Q. Peng, F. Chen, Z. Zhong, R. Zhuo, Low Molecular Weight Polyethylenimine Conjugated Gold Nanoparticles as Efficient Gene Vectors, Bioconjug. Chem.2010,21,836-843.
    [133]M. Song, X. Wang, J. Li, R. Zhang, B. Chen, D. Fu, Effect of surface chemistry modification of functional gold nanoparticles on the drug accumulation of cancer cells,J. Biomed. Mater. Res. A 2008,86,942-946.
    [134]S. Agasti, A. Chompoosor, C. You, P. Ghosh, C. Kim, V. Rotello, Photoregulated Release of Caged Anticancer Drugs from Gold Nanoparticles,J. Am. Chem. Soc.2009,131,5728-5729.
    [135]R. K. Visaria, R. J. Griffin, B. W. Williams, E. S. Ebbini, G. F. Paciotti, C. W. Song, J. C. Bischof, Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery, Mol. Cancer Ther. 2006,5,1014-1020.
    [136]L. Ren, X. Huang, B. Zhang, L. Sun, Q. Zhang, M. Tan, G. Chow, Cisplatin-loaded Au-Au2S nanoparticles for potential cancer therapy: Cytotoxicity, in vitro carcinogenicity, and cellular uptake, J. Biomed. Mater. Res. A 2008,85,787-796.
    [137]B. Kim, G. Han, B. Toley, C. Kim, V. Rotello, N. Forbes, Tuning payload delivery in tumour cylindroids using gold nanoparticles, Nat. Nanotechnol. 2010,5,465-472.
    [138]X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells with the Use of Immunotargeted Gold Nanoparticles, Photochem. Photobiol.2006,82,412-417.
    [139]M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olson, J. Z. Zhang, C. Li, In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy, Mol. Cancer Ther.2008,7,1730-1739.
    [140]L. Au, Y. C. Chen, F. Zhou, P. H. C. Camargo, B. Lim, Z. Y. Li, D. S. Ginger, Y. Xia, Synthesis and Optical Properties of Cubic Gold Nanoframes, Nano Res. 2008,1,441-449.
    [141]P. Yang, J. Ebbert, Z. Sun, R. Weinshilboum, Role of the Glutathione Metabolic Pathway in Lung Cancer Treatment and Prognosis:A Review, J. Clin. Oncol. 2006,24,1761-1769.
    [142]H. H. W. Chen, M. T. Kuo, Role of Glutathione in the Regulation of Cisplatin Resistance in Cancer Chemotherapy, Met. Based Drugs 2010, DOI:10.1155/2010/430939
    [143]N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, Plasmons in Strongly Coupled Metallic Nanostructures, Chem. Rev.2011,111,3913-3961.
    [144]L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, J. L. West, A Whole Blood Immunoassay Using Gold Nanoshells, Anal. Chem.2003,75,2377-2381.
    [145]L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Pro. Natl. Acad. Sci. USA 2003,100,13549-13554.
    [146]N. L. Rosi, C. A. Mirkin, Nanostructures in Biodiagnostics, Chem. Rev.2005, 105,1547-1562.
    [147]A. M. Alkilany, C. J. Murphy, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res.2010,12,2313-2333.
    [148]N. Khlebtsov, L. Dykman, Biodistribution and toxicity of engineered gold nanoparticles:a review of in vitro and in vivo studies, Chem. Soc. Rev.2011,40, 1647-1671.
    [149]E. Cho, L. Au, Q. Zhang, Y. Xia, The Effects of Size, Shape, and Surface Functional Group of Gold Nanostructures on Their Adsorption and Internalization by Cells, Small 2010,6,517-522.
    [150]A. Chompoosor, K. Saha, P. Ghosh, D. Macarthy, O. Miranda, Z. Zhu, K. Arcaro, V. Rotello, The Role of Surface Functionality on Acute Cytotoxicity, ROS Generation and DNA Damage by Cationic Gold Nanoparticles, Small 2010,6,2246-2249.
    [151]Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, C. Chen, Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods, Biomaterials 2010,31,7606-7619.
    [152]Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, W. Jahnen-Dechent, Size-Dependent Cytotoxicity of Gold Nanoparticles, Small 2007,3,1941-1949.
    [153]M. Liang, I. Lin, M. Whittaker, R. Minchin, M. Monteiro, I. Toth, Cellular Uptake of Densely Packed Polymer Coatings on Gold Nanoparticles, ACS Nano 2009,4,403-413.
    [154]E. Connor, J. Mwamuka, A. Gole, C. Murphy, M. Wyatt, Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity, Small 2005,1,325-327.
    [155]Q. Zhang, V. Hitchins, A. Schrand, S. Hussain, P. Goering, Uptake of gold nanoparticles in murine macrophage cells without cytotoxicity or production of pro-inflammatory mediators, Nanotoxicology,20115,284-295.
    [156]J. Li, D. Hartono, C. Ong, B. Bay, L. Yung, Autophagy and oxidative stress associated with gold nanoparticles, Biomaterials 2010,31,5996-6003.
    [157]B. Kang, M. Mackey, M. El-Sayed, Nuclear Targeting of Gold Nanoparticles in Cancer Cells Induces DNA Damage, Causing Cytokinesis Arrest and Apoptosis, J. Am. Chem. Soc.2010,132,1517-1519.
    [158]M. M. Richter, Electrochemiluminescence Chem. Rev.2004,104,3003-3036.
    [159]Z. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, B. A. Korgel, A. J. Bard, Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots, Science 2002,296,1293-1297.
    [160]X. Zhou, D. Xing, D. Zhu, L. Jia, Magnetic Bead and Nanoparticle Based Electrochemiluminescence Amplification Assay for Direct and Sensitive Measuring of Telomerase Activity, Anal. Chem.2009,81,255-261.
    [161]J. L. Delaney, C. F. Hogan, J. Tian, W. Shen, Electrogenerated Chemiluminescence Detection in Paper-Based Microfluidic Sensors, Anal. Chem.2011,83,1300-1306.
    [162]Y. Shen, M. Trauble, G. Wittstock, Detection of Hydrogen Peroxide Produced during Electrochemical Oxygen Reduction Using Scanning Electrochemical Microscopy, Anal. Chem.2008,80,750-759.
    [163]G. Liu, Y. Lin, Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes, Electrochem. Commun.2006,8,251-256.
    [164]M. Delvauxa, A. Walcariusb, S. Demoustier-Champagne, Electrocatalytic H2O2 amperometric detection using gold nanotube electrode ensembles, Anal. Chim. Acta 2004,525,221-230.
    [1]C. R. Martin, Nanomaterials-A Membrane-Based Synthetic Approach. Science 1994,266,1961-1966.
    [2]M. Wirtz, M. Parker, Y. Kobayashi, C. R. Martin, Template-Synthesized Nanotubes for Chemical Separations and Analysis. Chem. Eur.J.2002,8, 3572-3578.
    [3]Y. Ding, J. Erlebacher, Nanoporous metals with controlled multimodal pore size distribution.J.Am. Chem. Soc.2003,125,7772-7773.
    [4]Y. Ding, Y. J. Kim, J. Erlebacher, Nanoporous gold leaf:"Ancient technology"/advanced material". Adv. Mater.2004,16,1897-1900.
    [5]Z. Chen, M. Waje, W. Li, Y. Yan, Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. Int. Ed.2007,46, 4060-4063.
    [6]Y. Bi, G. Lu, Facile Synthesis of Platinum Nanofiber/Nanotube Junction Structures at Room Temperature. Chem. Mater.2008,20,1224-1226.
    [7]J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, Y. Xia, Gold nanocages:Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett.2005,5,473-477.
    [8]C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas, Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett.2005, 5,1569-1574.
    [9]L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 2003,100,13549-13554.
    [10]G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J. Am. Chem. Soc.2008,130,8175-8177.
    [11]C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, T. Li, Anisotropic Metal Nanoparticles:Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B.2005,109,13857-13870.
    [12]Y. Xia, P. Yang, Y Sun, Y Wu, B. Mayers, B. Gates, Y Yin, F. Kim, H. Yan, One-Dimensional Nanostructures:Synthesis, Characterization, and Applications. Adv. Mater.2003,15,353-389.
    [13]W. Gao, X. H. Xia, J. J. Xu, H. Y Chen, Three dimensionally ordered macroporous gold structure as an efficient matrix for solid-state electrochemiluminescence of Ru(bpy)32+/TPA system with high sensitivity. J. Phys. Chem. C.2007,111,12213-12219.
    [14]Y P. Dong, H. Cui, C. M. Wang, Electrogenerated chemiluminescence of luminol on a gold-nanorodmodified gold electrode. J. Phys. Chem. B.2006,110, 18408-18414.
    [15]X. B. Yin, B. Qi, X. Sun, X. Yang, E. Wang,4-(dimethylamino)butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification. Anal. Chem.2005,77, 3525-3530.
    [16]C. Kim, W. Gu, M. Briceno, I. M. Robertson, H. Choi, K. Kim, Copper Nanowires with a Five-Twinned Structure Grown by Chemical Vapor Deposition. Adv. Mater.2008,20,1859-1863.
    [17]O. Vazquez-Mena, G. Villanueva, V. Savu, K. Sidler, M. A. F. van den Boogaart, J. Brugger, Metallic Nanowires by Full Wafer Stencil Lithography. Nano Lett. 2008,8,3675-3682.
    [18]T. Bhuvana, G. U. Kulkarni, Highly Conducting Patterned Pd Nanowires by Direct-Write Electron Beam Lithography. ACS Nano 2008,2,457-462.
    [19]Y Chang, M. L. Lye, H. C. Zeng, Large-Scale Synthesis of High-Quality Ultralong Copper Nanowires. Langmuir 2005,21,3746-3748.
    [20]X. Sun, Y. Li, Cylindrical Silver Nanowires:Preparation, Structure, and Optical Properties. Adv. Mater.2005,17,2626-2630.
    [21]Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, Uniform Silver Nanowires Can Be Synthesized by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(vinyl pyrrolidone). Chem. Mater.2002,14,4736-4745.
    [22]T. Kijima, T. Yoshimura, M. Uota, T. Ikeda, D. Fujikawa, S. Mouri, S. Uoyama, Noble-Metal Nanotubes (Pt, Pd, Ag) from Lyotropic Mixed-Surfactant Liquid-Crystal Templates. Angew. Chem. Int. Ed.2004,43,228-232.
    [23]Y. Sun, Y. Xia, Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process. Adv. Mater.2002,14,833-837.
    [24]R. Laocharoensuk, S. Sattayasamitsathit, J. Burdick, P. Kanatharana, P. Thavarungkul, J. Wang, Shapetailored porous gold nanowires:From nano barbells to nano step-cones. ACS Nano 2007,1,403-408.
    [25]T. Y. Shin, S. H. Yoo, S. Park, Gold nanotubes with a nanoporous wall:Their ultrathin platinum coating and superior electrocatalytic activity toward methanol oxidation. Chem. Mater.2008,20,5682-5686.
    [26]C. Ji, P. C. Searson, Synthesis of nanoporous gold nanowires.J. Phys. Chem. B 2003,107,4494-4499.
    [27]M. Lahav, T. Sehayek, A. Vaskevich, I. Rubinstein, Nanoparticle nanotubes. Angew. Chem. Int. Ed.2003,42,5576-5579.
    [28]T. Sehayek, M. Lahav, R. Popovitz-Biro, A. Vaskevich, I. Rubinstein, Template synthesis of nanotubes by roomtemperaturc coalescence of metal nanoparticles. Chem. Mater.2005,17,3743-3748.
    [29]Y. Sun, Y. Xia, Multiple-walled nanotubes made of metals. Adv. Mater.2004,16, 264-268.
    [30]Y. Sun, Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium.J. Am. Chem. Soc.2004, 126,3892-3901.
    [31]Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 2002,298,2176-2179.
    [32]C. J. Murphy, T. K. Sau, A. Gole, C. J. Orendorff, Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. MRS Bull.2005,30,349-355.
    [33]T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman Ⅱ, J. D. Gezelter, Size-dependent spontaneous alloying of Au-Ag nanoparticles.J. Am. Chem. Soc. 2002,124,11989-11996.
    [34]F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Platonic gold nanocrystals. Angew. Chem. Int. Ed.2004,43,3673-3677.
    [35]D. Seo, J. C. Park, H. Song, Polyhedral gold nanocrystals with Oh symmetry: From octahedra to cubes. J. Am. Chem. Soc.2006,128,14863-14870.
    [36]C. A. Volkert, E. T. Lilleodden, D. Kramer, J. Weissmuller, Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett.2006,89,061920 061920-3.
    [37]K. A. Fahnrich, M. Pravda, G. G. Guilbault, Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 2001,54, 531-559.
    [38]X. H. Xu, A. J. Bard, Electrogenerated chemiluminescence.55. Emission from adsorbed Ru(bpy)32+ on graphite, platinum, and gold. Langmuir 1994,10, 2409-2414.
    [39]Z. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, B. A. Korgel, A. J. Bard, Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 2002,296,1293-1297.
    [1]J. Jia, L. Cao, Z. Wang, Platinum-Coated Gold Nanoporous Film Surface: Electrodeposition and Enhanced Electrocatalytic Activity for Methanol Oxidation. Langmuir 2008,24,5932-5936.
    [2]U. B. Demirci, Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J. Power Sources 2007,173, 11-18.
    [3]X. Yu, P. G. Pickup, Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources 2008,182,124-132.
    [4]N. Kristian, Y. Yu, P. Gunawan, R. Xu, W. Deng, X. Liu, X. Wang, Controlled synthesis of Pt-decorated Au nanostructure and its promoted activity toward formic acid electro-oxidation. Electrochim. Acta 2009,54,4916-4924.
    [5]I.-S. Park, K.-S. Lee, J.-H. Choi, H.-Y. Park, Y.-E. Sung, Surface Structure of Pt-Modified Au Nanoparticles and Electrocatalytic Activity in Formic Acid Electro-Oxidation. J. Phys. Chem. C 2007,111,19126-19133.
    [6]Z. Chen, M. Waje, W. Li, Y. Yan, Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions. Angew. Chem. Int. Ed.2007, 46,4060-4063.
    [7]J. Huang, H. Hou, T. You, Electrochem. Highly efficient electrocatalytic oxidation of formic acid by electrospun carbon nanofiber-supported PtxAu100-x bimetallic electrocatalyst. Chem. Commun.2009,11,1281-1284.
    [8]Y. H. Lin, X. L. Cui, C. Yen, C. M. Wai, Platinum/Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid as Electrocatalysts for Low-Temperature Fuel Cells, J. Phys. Chem.B 2005,109,14410-14416.
    [9]M. C. Gutierrez, M. J. Hortiguela, J. M. Amarilla, R. Jimenez, M. L. Ferrer, F. del Monte, Macroporous 3D Architectures of Self-Assembled MWCNT Surface Decorated with Pt Nanoparticles as Anodes for a Direct Methanol Fuel Cell. J. Phys. Chem. C 2007,111,5557-5560.
    [10]S.-F. Zheng, J.-S. Hu, L.-S. Zhong, L.-J. Wan, W.-G. Song, In Situ One-Step Method for Preparing Carbon Nanotubes and Pt Composite Catalysts and Their Performance for Methanol Oxidation. J. Phys. Chem. C 2007,111,11174-11179.
    [11]L. Li, Y. Xing, Pt-Ru Nanoparticles Supported on Carbon Nanotubes as Methanol Fuel Cell Catalysts. J. Phys. Chem. C 2007,111,2803-2808.
    [12]Y. Lou, M. M. Maye, L. Han, J. Luo, C.-J. Zhong, Gold-platinum alloy nanoparticle assembly as catalyst for methanol electrooxidation. Chem. Commun. 2001,0,473-474.
    [13]B. C. Du, Y. Y. Tong, A Coverage-Dependent Study of Pt Spontaneously Deposited onto Au and Ru Surfaces:Direct Experimental Evidence of the Ensemble Effect for Methanol Electro-Oxidation on Pt,J. Phys. Chem. B 2005, 109,17775-17780.
    [14]S. Kumar, S. Zou, Electrooxidation of Carbon Monoxide and Methanol on Platinum-Overlayer-Coated Gold Nanoparticles:Effects of Film Thickness. Langmuir 2007,23,7365-7371.
    [15]J.-H. Choi, K.-J. Jeong, Y. Dong, J. Han, T.-H. Lim, J.-S. Lee, Y.-E. Sung, Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells. J. Power Sources 2006,163,71-75.
    [16]X. Ge, R. Wang, S. Cui, F. Tian, L. Xu, Y. Ding, Structure dependent electrooxidation of small organic molecules on Pt-decorated nanoporous gold membrane catalysts. Electrochem. Commun.2008,10,1494-1497.
    [17]Z. Peng, H. Yang, PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res.2009,2,406-415.
    [18]S. Wang, N. Kristian, S. Jiang, X. Wang, Controlled deposition of Pt on Au nanorods and their catalytic activity towards formic acid oxidation. Electrochem. Commun.2008,10,961-964.
    [19]X. Ge, R. Wang, P. Liu, Y. Ding, Platinum-Decorated Nanoporous Gold Leaf for Methanol Electrooxidation. Chem. Mater.2007,19,5827-5829.
    [20]T.-Y. Shin, S.-H. Yoo, S. Park, Gold Nanotubes with a Nanoporous Wall:Their Ultrathin Platinum Coating and Superior Electrocatalytic Activity toward Methanol Oxidation. Chem. Mater.2008,20,5682-5686.
    [21]J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science 2007,315, 220-222.
    [22]X. Gu, L. Xu, F. Tian, Y. Ding, Au-Ag alloy nanoporous nanotubes. Nano Res. 2009,2,386-393.
    [23]J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying. Nature 2001,410,450-453.
    [24]R. Laocharoensuk, S. Sattayasamitsathit, J. Burdick, P. Kanatharana, P. Thavarungkul, J. Wang, Shape-Tailored Porous Gold Nanowires:From Nano Barbells to Nano Step-Cones. ACS Nano 2007,1,403-408.
    [25]C. Ji, P. C. Searson, Synthesis and Characterization of Nanoporous Gold Nanowires. J. Phys. Chem. B 2003,107,4494-4499.
    [26]Y. Sun, Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 2002,298,2176-2179.
    [27]Y. Sun, Y. Xia, Multiple-Walled Nanotubes Made of Metals. Adv. Mater.2004,16, 264-268.
    [28]I. O. Sosa, C. Noguez, R. G. Barrera, Optical Properties of Metal Nanoparticles with Arbitrary Shapes. J. Phys. Chem. B 2003,107,6269-6275.
    [29]B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-controlled synthesis of metal nanostructures:The case of silver. Chem. Eur. J.2005,11,454-463.
    [30]A. R. Tao, S. Habas, P. Yang, Shape Control of Colloidal Metal Nanocrystals, Small 2008,4,310-325.
    [31]R. Parsons, T. Vander Noot, The oxidation of small organic molecules:A survey of recent fuel cell related research. J. Electroanal. Chem.1988,257,9-45.
    [32]K. J. J. Mayrhofer, D. Strmcnik, B. B. Blizanac, V. Stamenkovic, M. Arenz, N. M. Markovic, Measurement of oxygen reduction activities via the rotating disc electrode method:From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 2008,53,3181-3188.
    [33]S. Kumar, S. Zou, Research Article Electrooxidation of Carbon Monoxide and Methanol on Platinum-Overlayer-Coated Gold Nanoparticles:Effects of Film Thickness. Langmuir 2007,23,7365-7371.
    [34]A. Ruban, B. Hammer, P. Stolze, H. L. Skriver, J. K. N(?)skov, J. Mol. Surface electronic structure and reactivity of transition and noble metals. Catal. A 1997, 115,421-429.
    [35]G. Samjesk, M. Osawa, Current Oscillations during Formic Acid Oxidation on a Pt Electrode:Insight into the Mechanism by Time-Resolved IR Spectroscopy. Angew. Chem. Int. Ed.2005,44,5694-5698.
    [36]C. Xu, R. Wang, M. Chen, Y. Zhang, Y. Ding, Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen reduction reaction. Phys. Chem. Chem. Phys.2010, 12,239-246.
    [37]R. Wang, C. Wang, W.-B. Cai, Y. Ding, Ultralow-Platinum-Loading High-Performance Nanoporous Electrocatalysts with Nanoengineered Surface Structures. Adv. Mater.2010,22,1845-1848.
    [38]M. Neurock, M. Janik, A. Wieckowski, A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss.2009,140,363-378.
    [39]V. Bansal, A. P. O'Mullane, S. K. Bhargava, Galvanic replacement mediated synthesis of hollow Pt nanocatalysts:Significance of residual Ag for the H2 evolution reaction. Electrochem. Commun.2009,11,1639-1642.
    [1]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, B. Gates, Y. Yin, F. Kim, H. Yan, One-Dimensional Nanostructures:Synthesis, Characterization, and Applications, Adv. Mater.2003,15,353-389.
    [2]A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, M. A. Reed, Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires, Nano Lett.2006,6,1822-1826.
    [3]A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, L. Dalton, Integration of photonic and silver nanowire plasmonic waveguides, Nat. Nanotechnol.2008,3,660-665.
    [4]Y. Sun, Z. Tao, J. Chen, T.Herricks, Y. Xia, Ag nanowires coated with Ag/Pd alloy sheaths and their use as substrates for reversible absorption and desorption of hydrogen, J. Am. Chem. Soc.2004,126,5940-5941.
    [5]Z. Chen, M. Waje, W. Li, Y. Yan, Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions, Angew. Chem. Int. Ed.2007,46, 4060-4063.
    [6]T.-Y. Shin, S.-H. Yoo, S. Park, Gold Nanotubes with a Nanoporous Wall:Their Ultrathin Platinum Coating and Superior Electrocatalytic Activity toward Methanol Oxidation, Chem. Mater.2008,20,5682-5686.
    [7]Yi. Bi, G. Lu, Facile synthesis of platinum nanofiber/nanotube junction structures at room temperature, Chem. Mater.2008,20,1224-1226.
    [8]X. Zhang, W. Lu, J. Da, H. Wang, D. Zhao, P. A. Webley, Porous platinum nanowire arrays for direct ethanol fuel cell applications, Chem. Commun.2009, 195-197.
    [9]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y Yin, F. Kim, H. Yan, One-dimensional nanostructures:Synthesis, characterization, and applications, Adv. Mater.2003,15,353-389.
    [10]Y. Bai, Y. Sun, C. Sun, Pt-Pb nanowires array electrode for enzyme-free glucose detection, Biosens. Bioelecton.2008,24,579-585.
    [11]L. Deng, Y. Wang, L. Shang, D. Wen, F. Wang, S. Dong, A Sensitive NADH and Gluocose biosensor tuned by visible light based on thionine bridged carbon nanotubes and gold nanoparticles multilayer, Biosnes. Bioelectron.2008,24, 957-963.
    [12]F. Jia, C. Shan, F. Li, L. Niu, Carbon nanotube/gold nanoparticles/polyethylenimine-functionalized ionic liquid thin film composites for glucose biosensing, Biosens. Bioelecton.2008,24,951-956.
    [13]U. Yogeswaran, S. Thiagarajan, S.-M. Chen, Nanocomposite of functionalized multiwall carbon nanotubes with nafion, nano platinum, and nano gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid, Anal. Biochem.2007,365,122-131.
    [14]S. M. Alia, G. Zhang, D. Kisailus, D. Li, S. Gu, K. Jensen, Y. Yan, Porous Platinum Nanotubes for Oxygen Reduction and Methanol Oxidation Reactions, Adv. Funct. Mater.2010,20,3742-3746
    [15]X. Gu, L. Xu, F. Tian, Y. Ding, Au-Ag alloy nanoporous nanotubes, Nano Res. 2009,2,386-393
    [16]X. Gu, X. Cong, Y. Ding, Platinum-decorated Au porous nanotubes as highly efficient catalysts for formic acid electro-oxidation, ChemPhysChem 2010,11, 841-846
    [17]A. Wieckowski, Interfacial Electrochemistry, New York:Marcel Dekker,1999.
    [18].1. Lipkowski, P. N. Ross, Electrocatalysis, New York:Wiley-VCH,1998.
    [19]S. Park, A. Wieckowski, M. J. Weaver, Electrochemical Infrared Characterization of CO Domains on Ruthenium-Decorated Platinum Nanoparticles, J. Am. Chem. Soc.2003,125,2282-2290.
    [20]L. Carrette, K. A. Friedrich, U. Stimming, Fuel Cells:Principles, Types, Fuels, and Applications, ChemPhysChem 2000,1,162-193.
    [21]Y. Y. Tong, H. S. Kim, P. K. Babu, P. Waszczuk, A. Wieckowski, E. Oldfield, An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst,J. Am. Chem. Soc.2002,124,468.
    [22]S. L. Horswell, I. A. O'Neil, D. J. Schiffrin, Potential modulated infrared reflectance spectroscopy of Pt-diisocyanide nanostructured electrodes,J. Phys. Chem.B 2001,105,941-947.
    [23]S. Park, S. Wasileski, M. J. Weaver, Electrochemical Infrared Characterization of Carbon-Supported Platinum Nanoparticles:A Benchmark Structural Comparison with Single-Crystal Electrodes and High-Nuclearity Carbonyl Clusters,J. Phys. Chem. B 2001,105,9719.
    [24]S. Mukerjee, J. McBreen, Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts:an in situ XAS investigation,J. Electroanal. Chem.1998,4482,163-171.
    [25]R. Ganesan, J. S. Lee, Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation, Angew. Chem. Int. Ed.2005,44, 6557-6560.
    [26]R. V. Hull, L.Li, Y. Xing, C. C. Chusuei, Pt Nanoparticle Binding on Functionalized Multiwalled Carbon Nanotube, Chem. Mater.2006,18, 1780-1788.
    [27]J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters, Science 2007,315 220-222.
    [28]R. M. Darling, J. P. Meyers, Kinetic Model of Platinum Dissolution in PEMFCs, J. Electrochem. Soc.2003,150, A1523-A1527.
    [29]Y.-S. Hu, Y.-G. Guo, W. Sigle, S. Hore, P. Balaya, J. Maier, Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity, Nat. Mater.2006,5,713-717.
    [30]Y. Ding, J. Erlebacher, Nanoporous metals with controlled multimodal pore size distribution,J. Am. Chem. Soc.2003,125,7772-7773.
    [31]M. Lahav, T. Sehayek, A. Vaskevich, I. Rubinstein, Nanoparticle nanotubes, Angew.Chem. Int. Ed.2003,42,5575-5579.
    [32]A. Salimi, R. Hallaj, S. Soltanian, H. Mamkhezri, Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles, Anal. Chim. Acta 2007,594,24-31.
    [33]Y. Usui, K. Sato, M. Tanaka, Catalytic Dihydroxylation of Olefins with Hydrogen Peroxide:An Organic-Solvent- and Metal-Free System, Angew. Chem. Int. Ed.2003,42,5623-5625.
    [34]S. Chakraborty, C. R. Raj, Pt Nanoparticle-based highly sensitive platform for the enzyme-free ampermetric sensing of H2O2, Biosens. Bioelectron.2009,24, 3264-3268.
    [35]D. Shan, M. Zhu, H. Xue, S. Cosnier, Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix:Calcium carbonate nanoparticles, Biosens. Bioelectron.2007,22,1612-1617.
    [36]Y. Zou, C. Xiang, L.-X. Sun, F. Xu, Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel, Biosens. Bioelectron.2008,23, 1010-1016.
    [37]Y. Shen, M. Trauble, G. Wittstock, Detection of Hydrogen Peroxide Produced during Electrochemical Oxygen Reduction Using Scanning Electrochemical Microscopy, Anal. Chem.2008,80,750-759.
    [38]G. Liu, Y. Lin, Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes, Electrochem. Commun.2006,8,251-256.
    [39]M. Delvauxa, A. Walcariusb, D.-C. Sophie, Electrocatalytic H2O2 amperometric detection using gold nanotube electrode ensembles, Anal. Chim. Acta 2004,525, 221-230.
    [40]Y. Sun, Y. Xia, Multiple-Walled Nanotubes Made of Metals, Adv. Mater.2004,16, 264-268.
    [41]Y. Sun, Y. Xia, Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium,J. Am. Chem. Soc. 2004,126,3892-3901.
    [42]F.-R. Fan, D.-Y. Liu, Y.-F. Wu, S. Duan, Z.-X. Xie, Z.-Y. Jiang, Z.-Q. Tian, Epitaxial Growth of Heterogeneous Metal Nanocrystals:From Gold Nano-octahedra to Palladium and Silver Nanocubes,J. Am. Chem. Soc.2008, 130,6949-6951.
    [43]S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, P. Yang, Shaping binary metal nanocrystals through epitaxial seeded growth, Nat. Mater.2007,6, 692-697.
    [44]J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying, Nature 2001,410,450.
    [45]J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z.-Y. Li, Y. Xia, Optical Properties of Pd-Ag and Pt-Ag Nanoboxes Synthesized via Galvanic Replacement Reactions, Nano Lett.2005,5,2058-2062.
    [46]M. R. Tarasevich, Z. R. Karichev, V. A. Bogdanovskaya, E. N. Lubnin, A. V. Kapustin, Kinetics of ethanol electrooxidation at RuNi catalysts, Electrochem. Commun.2005,7,141-146.
    [47]J. Hernandez, J. Solla-Gullon, E. Herrero, A. Aldaz, J. M. Feliu, Methanol oxidation on gold nanoparticles in alkaline media:Unusual electrocatalytic activity, Electrochim. Acta 2006,52,1662-1669.
    [48]I.-S. Park, K.-S. Lee, J.-H. Choi, H.-Y. Park, Y.-E. Sung, Surface Structure of Pt-Modified Au Nanoparticles and Electrocatalytic Activity in Formic Acid Electro-Oxidation, J. Phys. Chem. C 2007,111,19126-19133.
    [49]R. Wang, C. Xu, X. Bi, Y. Ding, Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts, Energy Environ. Sci.2012,5, 5281-5286.
    [50]J. W. Long, R. M. Stroud, K. E. Swider-Lyons, D. R. Rolison, How To Make Electrocatalysts More Active for Direct Methanol Oxidation-Avoid PtRu Bimetallic Alloys, J. Phys. Chem. B 2000,104,9772-9776.
    [51]E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin, T. E. Mallouk, Combinatorial electrochemistry:a highly parallel, optical screening method for discovery of better electrocatalysts, Science 1998, 280,1735-1737.
    [52]N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z. L. Wang, Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity, Science 2007,316,732-735.
    [53]S.-M. Chen, C.-C. Tseng, Comparison of the direct electrochemistry of myoglobin and hemoglobin films and their bioelectrocatalytic properties, J. Electroanal. Chem.2005,575,147-160.
    [54]W. Sun, D. Wang, R. Gao, K. Jiao, Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a BMIMPF6modified carbon paste electrode, Electrochem. Commun.2007,9,1159-1164.
    [1]Z. M. Peng, H. Yang, Designer platinum nanoparticles:Control of shape, composition in alloy, nanostructure and electrocatalytic property, Nano Today 2009,4,143-164.
    [2]C.-L. Lee, C.-M. Tseng, Ag-Pt Nanoplates:Galvanic Displacement Preparation and Their Applications As Electrocatalysts, J. Phys. Chem. C 2008,112, 13342-13345.
    [3]Z. Chen, M. Waje, W. Li, Y. Yan, Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions, Angew. Chem. Int. Ed.2007, 46,4060-4063.
    [4]X. Gu, X. Cong, Y. Ding, Platinum-Decorated Au Porous Nanotubes as Highly Efficient Catalysts for Formic Acid Electro-Oxidation, ChemPhysChem 2010,11, 841-846.
    [5]R. Wang, C. Wang, W.-B. Cai, Y. Ding, Ultralow Platinum Loading High Performance Nanoporous Electrocatalysts with Nanoengineered Surface Structures,Adv. Mater.2010,22,1845-1848.
    [6]B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction, Science 2009,324,1302-1305.
    [7]Y. Y. Shao, G. P. Yin, Y. Z. Gao, Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell, J. Power Sources 2007,171, 558-566.
    [8]X. W., Yu, S. Y. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC:Part Ⅰ. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst, J.Power Sources 2007,172,133-144.
    [9]K. Sasaki, H. Naohara, Y. Cai, Y. M. Choi, P. Liu, M. B. Vukmirovic, J. X. Wang, R. R. Adzic, Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes, Angew. Chem. Int. Ed.2010,49, 8602-8607
    [10]J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters, Science 2007,315, 220-222.
    [11]J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansenl, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. N(?)rskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts, Nat. Chem.2009, 1,552-556.
    [12]J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, J. K. N(?)rskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater.2006,5,909-913.
    [13]J. K. N(?)rskov, T. bligaard, J. rossmeisl, C. H. Christensen, Towards the computational design of solid catalysts, Nat. Chem.2009,1,37-46.
    [14]J. W. Long, R. M. Stroud, K. E. Swider-Lyons, D. R. Rolison, How To Make Electrocatalysts More Active for Direct Methanol OxidationAvoid PtRu Bimetallic Alloys, J. Phys. Chem.B 2000,104,9772-9776.
    [15]Z. Liu, G. S. Jackson, B. W. Eichhorn, PtSn Intermetallic, Core-Shell, and Alloy Nanoparticles as CO-Tolerant Electrocatalysts for H2 Oxidation, Angew. Chem. Int. Ed. 2010,49,3173-3176.
    [16]H. Lee, S. E. Habas, G. A. Somorjai, P. Yang, Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostructures, J. Am. Chem. Soc.2008,130,5406-5407.
    [17]C. Wang, M. Chi, G.g Wang, D. van der Vliet, D. Li, K. More, H.-H. Wang, J. A. Schlueter, N. M. Markovic, V. R. Stamenkovic, Correlation Between Surface Chemistry and Electrocatalytic Properties of Monodisperse PtxNi1-x Nanoparticles, Adv. Funct. Mater.2011,21,147-152.
    [18]V. R. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, Effect of Surface Composition on Electronic Structure, Stability, and Electrocatalytic Properties of Pt-Transition Metal Alloys:Pt-Skin versus Pt-Skeleton Surfaces,J. Am. Chem. Soc.2006,128,8813-8819.
    [19]V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nat. Mater.2007,6,241-247.
    [20]D. Xu, S. Bliznakov, Z. Liu, J. Fang, N. Dimitrov, Composition-Dependent Electrocatalytic Activity of Pt-Cu Nanocube Catalysts for Formic Acid Oxidation, Angew. Chem. Int. Ed.2010,49,1282-1285.
    [21]S. Kang, J. Lee, J. K. Lee, S.-Y. Chung, Y. Tak, Influence of Bi modification of Pt anode catalyst in direct formic acid fuel cells,J. Phys. Chem. B 2006,110, 7270-7274.
    [22]X. Ji, K. T. Lee, R. Holden, L. Zhang, J. Zhang, G. A. Botton, M. Couillard, L. F. Nazar, Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes, Nat. Chem.2010,2,286-293.
    [23]X. Ge, R. Wang, P. Liu, Y. Ding, Platinum-Decorated Nanoporous Gold Leaf for Methanol Electrooxidation, Chem. Mater.2007,19,5827-5829.
    [24]C. Zhou, H. Wang, F. Peng, J. Liang, H. Yu, J. Yang, MnO2/CNT Supported Pt and PtRu Nanocatalysts for Direct Methanol Fuel Cells, Langmuir 2009,25, 7711-7717.
    [25]P. Liu, X. Ge, R. Wang, H. Ma, Y. Ding, Facile Fabrication of Ultrathin Pt Overlayers onto Nanoporous Metal Membranes via Repeated Cu UPD and in Situ Redox Replacement Reaction, Langmuir 2009,25,561-567.
    [26]E. Casado-Rivera, Z. Gal, A. C. D. Angelo, C. Lind, F. J. DiSalvo, H. D. Abruna, Electrocatalytic Oxidation of Formic Acid at an Ordered Intermetallic PtBi Surface, ChemPhysChem 2003,4,193-199.
    [27]S. Zhang, Y. Shao, G. Yin, Y. Lin, Electrostatic Self-Assembly of a Pt-around-Au Nanocomposite with High Activity towards Formic Acid Oxidation, Angew. Chem. Int. Ed.2010,49,2211-2214.
    [28]X. Yu, P. G. Pickup, Recent advances in direct formic acid fuel cells (DFAFC), J. Power Sources 2008,182,124-132.
    [29]S. M. Alia, G. Zhang, D. Kisailus, D. Li, S. Gu, K. Jensen, Y. Yan, Porous Platinum Nanotubes for Oxygen Reduction and Methanol Oxidation Reactions, Adv. Funct. Mater.2010,20,3742-3746.
    [30]R. M. Darling, J. P. Meyers, Kinetic Model of Platinum Dissolution in PEMFCs, J. Electrochem. Soc.2003,150, A1523-A1527.
    [31]S. Chen, P. J. Ferreira, W. Sheng, N. Yabuuchi, L. F. Allard, Y. Shao-Horn, Enhanced Activity for Oxygen Reduction Reaction on "Pt3Co" Nanoparticles: Direct Evidence of Percolated and Sandwich-Segregation Structures, J. Am. Chem. Soc.2008,130,13818-13819.
    [32]T.-Y. Jeon, S. J. Yoo, Y.-H. Cho, S. H. Kang, Y.-E. Sung, Effect of de-alloying of Pt-Ni bimetallic nanoparticles on the oxygen reduction reaction, Electrochem. Commun.2010,12,1796-1799.
    [33]J. Yang, W. Zhou, C. H. Cheng, J. Y. Lee, Z. Liu, ACS Appl. Mater. Inter. Pt-Decorated PdFe Nanoparticles as Methanol-Tolerant Oxygen Reduction Electrocatalyst,2010,2,119-126.
    [34]Y. Kang, C. B. Murray, Synthesis and Electrocatalytic Properties of Cubic Mn-Pt Nanocrystals (Nanocubes), J. Am. Chem. Soc.2010,132,7568-7569.
    [35]R. Yang, J. Leisch, P. Strasser, M. F. Toney, Structure of Dealloyed PtCu3 Thin Films and Catalytic Activity for Oxygen Reduction, Chem. Mater.2010,22, 4712-4720.
    [36]W. Wang, Q. Huang, J. Liu, Z. Zou, Z. Li, H. Yang, One-step synthesis of carbon-supported Pd-Pt alloy electrocatalysts for methanol tolerant oxygen reduction, Electrochem. Commun.2008,10,1396-1399.
    [37]A. Maljusch, T. C. Nagaiah, S. Schwamborn, M. Bron, W. Schuhmann, Pt-Ag catalysts as cathode material for oxygen-depolarized electrodes in hydrochloric acid electrolysis, Anal. Chem.2010,82,1890-1896
    [38]C.-W. Liu, Y.-C. Wei, K.-W. Wang, Promotion of ceria-modified Pt-Au/C cathode catalysts for oxygen reduction reaction by H2-induced surface segregation, Chem. Commun.2010,46,2483-2485.
    [39]L. J. Bregoli, The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid, Electrochim. Acta 1978,23,489-492.
    [40]M. L. Sattler, P. N. Ross, The surface structure of Pt crystallites supported on carbon black, Ultramicroscopy 1986,20,21-28.
    [41]K. Kinoshita, Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes, J. Electrochem. Soc.1990,137,845-848.
    [42]Y. Takasu, N. Ohashi, X. G. Zhang, Y. Murakami, H. Minagawa, S. Sato, K. Yahikozawa, Size effects of platinum particles on the electroreduction of oxygen, Electrochim. Acta 1996,41,2595-2600.
    [43]Y. Sun, Y. Xia, Alloying and Dealloying Processes Involved in the Preparation of Metal Nanoshells through a Galvanic Replacement Reaction, Nano Lett.2003, 3,1569-1572.
    [44]R. Ferrando, J. Jellinek, R. L. Johnston, Nanoalloys:From Theory to Applications of Alloy Clusters and Nanoparticles, Chem. Rev.2008,108, 846-910.
    [45]J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z.-Y. Li, Y. Xia, Optical Properties of Pd-Ag and Pt-Ag Nanoboxes Synthesized via Galvanic Replacement Reactions, Nano Lett.2005,5,2058-2062.
    [46]X. Gu, L. Xu, F. Tian, Y. Ding, Au-Ag Alloy Nanoporous Nanotubes, Nano Res. 2009,2,386-393.
    [47]C. X. Xu, Y. Zhang, L. Q. Wang, L. Q. Xu, X. F. Bian, H. Y. Ma, Y. Ding, Nanotubular Mesoporous PdCu Bimetallic Electrocatalysts toward Oxygen Reduction Reaction, Chem. Mater.2009,21,3110-3116.
    [48]J. Zhang, Y. Mo, M. B. Vukmirovic, R. Klie, K. Sasaki, R. R. Adzic, Platinum Monolayer Electrocatalysts for O2 Reduction:Pt Monolayer on Pd(111) and on Carbon-Supported Pd Nanoparticles,J. Phys. Chem.B 2004,108,10955-10964.
    [1]C. Minelli, S. B. Lowe, M. M. Stevens, Engineering Nanocomposite Materials for Cancer Therapy, Small 2010,6,2336-2357.
    [2]Y. Liu, M. Solomon, S. Achilefu, Perspectives and potential applications of nanomedicine in breast and prostate cancer, Med. Res. Rev.2013,33,3-32.
    [3]D. Napierska, L. C. Thomassen, D. Lison, J. A. Martens, P. H. Hoet, The nanosilica hazard:another variable entity, Part. Fibre Toxicol.2010,7,39.
    [4]A. M. Alkilany, C. J. Murphy, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far,J. Nanopart. Res.2010,12,2313-2333.
    [5]N. Khlebtsov, L. Dykman, Biodistribution and toxicity of engineered gold nanoparticles:a review of in vitro and in vivo studies, Chem. Soc.Rev.2011,40, 1647-1671.
    [6]H. J. Parab, C. Jung, J. H. Lee, H. G. Park, A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens, Biosens. Bioelectron.2010,26, 667-673.
    [7]M. Cai, F. Li, Y. Zhang, Q. Wang, One-Pot Polymerase Chain Reaction with Gold Nanoparticles for Rapid and Ultrasensitive DNA Detection, Nano Res. 2010, J,557-563.
    [8]D. Kim, Y. Y. Jeong, S. Jon, A Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer, ACS Nano 2010,4,3689-3696.
    [9]S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, S. Emelianov, Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer, Nano Lett.2009,9, 2825-2831.
    [10]J. Yang, K. Eom, E. Lim, J. Park, Y. Kang, D. Yoon, S. Na, E. Koh, J. Suh, Y. Huh, In situ detection of live cancer cells by using bioprobes based on Au nanoparticles, Langmuir 2008,24,12112-12115.
    [11]Y. Lu, Y. Zhao, L. Yu, L. Dong, C. Shi, M. J. Hu, Y. J. Xu, L. P. Wen, S.-H. Yu, Hydrophilic Co@Au Yolk/Shell Nanospheres:Synthesis, Assembly, and Application to Gene Delivery, Adv. Mater.2010,22,1407-1411.
    [12]C. Hu, Q. Peng, F. Chen, Z. Zhong, R. Zhuo, Low molecular weight polyethylenimine conjugated gold nanoparticles as efficient gene vectors, Bioconjug. Chem.2010,21,836-843.
    [13]M. Yavuz, Y. Cheng, J. Chen, C. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. Song, A. Schwartz, L. V. Wang, Y. Xia, Gold nanocages covered by smart polymers for controlled release with near-infrared light, Nat. Mater.2009,8, 935-939.
    [14]M. Song, X. Wang, J. Li, R. Zhang, B. Chen, D. Fu, Effect of surface chemistry modification of functional gold nanoparticles on the drug accumulation of cancer cells, J. Biomed. Mater. Res. A 2008,86,942-946.
    [15]S. Agasti, A. Chompoosor, C. You, P. Ghosh, C. Kim, V. Rotello, Photoregulated Release of Caged Anticancer Drugs from Gold Nanoparticles, J. Am. Chem. Soc. 2009,131,5728-5729.
    [16]R. K. Visaria, R. J. Griffin, B. W. Williams, E. S. Ebbini, G. F. Paciotti, C. W. Song, J. C. Bischof, Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery, Mol. Cancer Then 2006,5,1014-1020.
    [17]L. Ren, X. Huang, B. Zhang, L. Sun, Q. Zhang, M. Tan, G. Chow, Cisplatin-loaded Au-Au2S nanoparticles for potential cancer therapy: Cytotoxicity, in vitro carcinogenicity, and cellular uptake, J. Biomed. Mater. Res. A 2008,85,787-796.
    [18]B. Kim, G. Han, B. Toley, C. Kim, V. Rotello, N. Forbes, Tuning payload delivery in tumour cylindroids using gold nanoparticles, Nat. Nanotechnol.2010, 5,465-472.
    [19]X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells with the Use of Immunotargeted Gold Nanoparticles, Photochem. Photobiol.2006,82,412-417.
    [20]M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olson, J. Z. Zhang, C. Li, In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy, Mol. Cancer Ther. 2008,7,1730-1739.
    [21]L. Au, Y. C. Chen, F. Zhou, P. H. C. Camargo, B. Lim, Z. Y. Li, D. S. Ginger, Y. Xia, Synthesis and Optical Properties of Cubic Gold Nanoframes, Nano Res. 2008,1,441-449.
    [22]E. Cho, L. Au, Q. Zhang, Y. Xia, The Effects of Size, Shape, and Surface Functional Group of Gold Nanostructures on Their Adsorption and Internalization by Cells, Small 2010,6,517-522.
    [23]A. Chompoosor, K. Saha, P. Ghosh, D. Macarthy, O. Miranda, Z. Zhu, K. Arcaro, V. Rotello, The Role of Surface Functionality on Acute Cytotoxicity, ROS Generation and DNA Damage by Cationic Gold Nanoparticles, Small 2010,6, 2246-2249.
    [24]Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, C. Chen, Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods, Biomaterials 2010,31,7606-7619.
    [25]Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, W. Jahnen-Dechent, Size-Dependent Cytotoxicity of Gold Nanoparticles, Small 2007,3,1941-1949.
    [26]M. Liang, I. Lin, M. Whittaker, R. Minchin, M. Monteiro, I. Toth, Cellular Uptake of Densely Packed Polymer Coatings on Gold Nanoparticles, ACS Nano 2009,4,403-413.
    [27]E. Connor, J. Mwamuka, A. Gole, C. Murphy, M. Wyatt, Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity, Small 2005,1, 325-327.
    [28]Q. Zhang, V. Hitchins, A. Schrand, S. Hussain, P. Goering, Uptake of gold nanoparticles in murine macrophage cells without cytotoxicity or production of pro-inflammatory mediators, Nanotoxicology,2011 5,284-295.
    [29]J. Li, D. Hartono, C. Ong, B. Bay, L. Yung, Autophagy and oxidative stress associated with gold nanoparticles, Biomaterials 2010,31,5996-6003.
    [30]B. Kang, M. Mackey, M. El-Sayed, Nuclear Targeting of Gold Nanoparticles in Cancer Cells Induces DNA Damage, Causing Cytokinesis Arrest and Apoptosis, J. Am. Chem. Soc.2010,132,1517-1519.
    [31]M. S. Han, A. K. R. Lytton-Jean, C. A. Mirkin, A Gold Nanoparticle Based Approach for Screening Triplex DNA Binders, J. Am. Chem. Soc.2006,128, 4954-4955.
    [32]Y. Pan, A. Leifert, D. Ruau, S. Neuss, J. Bornemann, G. Schmid, W. Brandau, U. Simon, W. Jahnen-Dechent, Gold Nanoparticles of Diameter 1.4 nm Trigger Necrosis by Oxidative Stress and Mitochondrial Damage, Small 2009,5, 2067-2076.
    [33]S. Liu, M. Han, Synthesis, Functionalization, and Bioconjugation of Monodisperse, Silica-Coated Gold Nanoparticles:Robust Bioprobes, Adv. Funct. Mater.2005,15,961-967.
    [34]I. Rahman, A. Kode, S. Biswas, Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method, Nat. Protoc.2006,1,3159-3165.
    [35]H. Wang, J. Joseph, Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader, Free Radic. Biol. Med.1999,27,612-616.
    [36]R. T. Liu, L. B. Zou, Q. J. Lii, Liquiritigenin inhibits A(325-35-induced neurotoxicity and secretion of Aβ1-40 in rat hippocampal neurons Acta Pharmacol. Sin.2009,30,899-906.
    [37]P. Yang, J. Ebbert, Z. Sun, R. Weinshilboum, Role of the Glutathione Metabolic Pathway in Lung Cancer Treatment and Prognosis:A Review, J. Clin. Oncol. 2006,24,1761-1769.
    [38]H. H. W. Chen, M. T. Kuo, Role of Glutathione in the Regulation of Cisplatin Resistance in Cancer Chemotherapy, Met. Based Drugs 2010, DOI:10.1155/2010/430939
    [39]M. Diehn, R. Cho, N. Lobo, T. Kalisky, M. Dorie, A. Kulp, D. Qian, J. Lam, L. Ailles, M. Wong, Association of reactive oxygen species levels and radioresistance in cancer stem cells, Nature 2009,458,780-783.
    [40]M. Renschler, The emerging role of reactive oxygen species in cancer therapy, Eur. J. Cancer 2004,40,1934-1940.
    [41]D.-W. Zhang, J. Shao, J. Lin, N. Zhang, B. J. Lu, S. C. Lin, M. Q. Dong, J. Han, RIP3, an Energy Metabolism Regulator That Switches TNF-Induced Cell Death from Apoptosis to Necrosis, Science 2009,325,332-336.
    [42]H. E. Seifried, D. E. Anderson, E. I. Fisher, J. A. Milner, A review of the interaction among dietary antioxidants and reactive oxygen species,J. Nutr. Biochem.2007,18,567-579.
    [43]H. Steinbrenner, H. Sies, Protection against reactive oxygen species by selenoproteins, Biochim. Biophys. Acta 2009,1790,1478-1485.
    [44]F. Zhang, S. Lau, T. Monks, The Cytoprotective Effect of N-acetyl-L-cysteine against ROS-Induced Cytotoxicity Is Independent of Its Ability to Enhance Glutathione Synthesis, Toxicol. Sci.2011,120,87-97.
    [45]R.-Z. Lin, T.-P. Wang, R.-J. Hung, Y.-J. Chuang, C.-C. M. Chien, H.-Y. Chang, Tumor-induced endothelial cell apoptosis:Roles of NAD(P)H oxidase-derived reactive oxygen species, J. Cell. Physiol.2011,226,1750-1762.
    [46]A. Nel, T. Xia, L. Madler, N. Li, Toxic Potential of Materials at the Nanolevel, Science 2006,311,622-627.
    [47]M. B. Heaton, M. Paiva, K. Siler-Marsiglio, Ethanol influences on Bax translocation, mitochondrial membrane potential, and reactive oxygen species generation are modulated by vitamin E and brain-derived neurotrophic factor, Alcohol. Clin. Exp. Res.2011,35,1122-1133.
    [48]M. D. Massich, D. A. Giljohann, A. L. Schmuckcr, P. C. Patel, C. A. Mirkin, Cellular response of polyvalent oligonucleotide-gold nanoparticle conjugates, ACS Nano 2010,4,5641-5646.
    [49]M. Liang, I. C. Lin, M. R. Whittaker, R. F. Minchin, M. J. Monteiro, I. Toth, Cellular Uptake of Densely Packed Polymer Coatings on Gold Nanoparticles, ACS Nano 2010,4,403-413.
    [50]S. Powell, R. Bindra, Targeting the DNA damage response for cancer therapy, DNA Repair 2009,8,1153-1165.
    [1]C. R. Martin, Nanomaterials-A membrane-based synthetic approach, Science 1994,266,1961-1966.
    [2]M. Wirtz, M. Parker, Y. Kobayashi, C. R. Martin, Template-synthesized nanotubes for chemical separations and analysis, Chem. Eur. J.2002,8, 3572-3578.
    [3]Y. Ding, J. Erlebacher, Nanoporous metals with controlled multimodal pore size distribution. J. Am. Chem. Soc.2003,125,1112-1113.
    [4]Y. Ding, Y. J. Kim, J. Erlebacher, Nanoporous gold leaf:"Ancient technology"/ advanced material". Adv. Mater.2004,16,1897-1900.
    [5]Z. Chen, M. Waje, W. Li, Y. Yan, Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions, Angew. Chem. Int. Ed.2007,46, 4060-4063.
    [6]J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, Y. Xia, Gold nanocages:Bioconjugation and their potential use as optical imaging contrast agents, Nano Lett.2005,5,473-477.
    [7]C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas, Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates, Nano Lett.2005, 5,1569-1574.
    [8]L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 2003,100,13549-13554.
    [9]G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells, J. Am. Chem. Soc.2008,130,8175-8177.
    [10]W. Gao, X. H. Xia, J. J. Xu, H. Y. Chen, Three-dimensionally ordered macroporous gold structure as an efficient matrix for solid-state electrochemiluminescence of Ru(bpy)32+/TPA system with high sensitivity,J. Phys. Chem. C 2007,111,12213-12219.
    [11]Y. P. Dong, H. Cui, C. M. Wang, Electrogenerated chemiluminescence of luminol on a gold-nanorod-modified gold electrode.J. Phys. Chem. B 2006,110, 18408-18414.
    [12]X. B. Yin, B. Qi, X. Sun, X. Yang, E. Wang,4-(dimethylamino)butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification. Anal. Chem.2005,77, 3525-3530.
    [13]R. Laocharoensuk, S. Sattayasamitsathit, J. Burdick, P. Kanatharana, P. Thavarungkul, J. Wang, Shape-tailored porous gold nanowires:From nano barbells to nano step-cones, ACS Nano 2007,1,403-408.
    [14]T. Y. Shin, S. H. Yoo, S. Park, Gold nanotubes with a nanoporous wall:Their ultrathin platinum coating and superior electrocatalytic activity toward methanol oxidation, Chem. Mater.2008,20,5682-5686.
    [15]C. Ji, P. C. Searson, Synthesis of nanoporous gold nanowires. J. Phys. Chem. B 2003,707,4494-4499.
    [16]M. Lahav, T. Sehayek, A. Vaskevich, I. Rubinstein, Nanoparticle nanotubes. Angew. Chem. Int. Ed. 2003,42,5576-5579.
    [17]T. Sehayek, M. Lahav, R. Popovitz-Biro, A. Vaskevich, I. Rubinstein, Template synthesis of nanotubes by room-temperature coalescence of metal nanoparticles, Chem. Mater.2005,17,3743-3748.
    [18]Y. Sun, Y. Xia, Multiple-walled nanotubes made of metals, Adv. Mater.2004,16, 264-268.
    [19]Y. Sun, Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium, J. Am. Chem. Soc.2004, 126,3892-3901.
    [20]Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 2002,298,2176-2179.
    [21]C. J. Murphy, T. K. Sau, A. Gole, C. J. Orendorff, Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures, MRS Bull.2005,30,349-355.
    [22]T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman Ⅱ, J. D. Gezelter, Size-dependent spontaneous alloying of Au-Ag nanoparticles, J. Am. Chem. Soc. 2002,124,11989-11996.
    [23]F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Platonic gold nanocrystals. Angew. Chem. Int. Ed.2004,43,3673-3677.
    [24]D. Seo, J. C. Park, H. Song, Polyhedral gold nanocrystals with Oh symmetry: From octahedra to cubes, J. Am. Chem. Soc.2006,128,14863-14870.
    [25]I. O. Sosa, C. Noguez, R. G. Barrera, Optical properties of metal nanoparticles with arbitrary shapes,J. Phys. Chem. B 2003,107,6269-6275.
    [26]C. A. Volkert, E. T. Lilleodden, D. Kramer, J. Weissmuller, Approaching the theoretical strength in nanoporous Au, Appl. Phys. Lett.2006,89,061920.
    [27]K. A. Fahnrich, M. Pravda, G. G. Guilbault, Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta 2001,54, 531-559.
    [28]X. H. Xu, A. J. Bard, Electrogenerated chemiluminescence.55. Emission from adsorbed Ru(bpy)32+ on graphite, platinum, and gold, Langmuir 1994,10, 2409-2414.
    [29]Z. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, B. A. Korgel, A. J. Bard, Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots, Science 2002,296,1293-1297.
    [1]J. Jia, L. Cao, Z. Wang, Platinum-Coated Gold Nanoporous Film Surface: Electrodeposition and Enhanced Electrocatalytic Activity for Methanol Oxidation. Langmuir 2008,24,5932-5936.
    [2]U. B. Demirci, Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells.J. Power Sources 2007,173, 11-18.
    [3]X. Yu, P. G. Pickup, Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources 2008,182,124-132.
    [4]N. Kristian, Y. Yu, P. Gunawan, R. Xu, W. Deng, X. Liu, X. Wang, Controlled synthesis of Pt-decorated Au nanostructure and its promoted activity toward formic acid electro-oxidation. Electrochim. Acta 2009,54,4916-4924.
    [5]I.-S. Park, K.-S. Lee, J.-H. Choi, H.-Y. Park, Y.-E. Sung, Surface Structure of Pt-Modified Au Nanoparticles and Electrocatalytic Activity in Formic Acid Electro-Oxidation. J. Phys. Chem. C2007,111,19126-19133.
    [6]Z. Chen, M. Waje, W. Li, Y. Yan, Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions. Angew. Chem. Int. Ed.2007, 46,4060-4063.
    [7]J. Huang, H. Hou, T. You, Electrochem. Highly efficient electrocatalytic oxidation of formic acid by electrospun carbon nanofiber-supported PtxAu100-x bimetallic electrocatalyst. Chem. Commun.2009,11,1281-1284.
    [8]Y. H. Lin, X. L. Cui, C. Yen, C. M. Wai, Platinum/Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid as Electrocatalysts for Low-Temperature Fuel Cells,J. Phys. Chem.B 2005,109,14410-14416.
    [9]M. C. Gutierrez, M. J. Hortiguela, J. M. Amarilla, R. Jimenez, M. L. Ferrer, F. del Monte, Macroporous 3D Architectures of Self-Assembled MWCNT Surface Decorated with Pt Nanoparticles as Anodes for a Direct Methanol Fuel Cell. J. Phys. Chem. C 2007,111,5557-5560.
    [10]S.-F. Zheng, J.-S. Hu, L.-S. Zhong, L.-J. Wan, W.-G. Song, In Situ One-Step Method for Preparing Carbon Nanotubes and Pt Composite Catalysts and Their Performance for Methanol Oxidation. J. Phys. Chem. C 2007,111,11174-11179.
    [11]L. Li, Y. Xing, Pt-Ru Nanoparticles Supported on Carbon Nanotubes as Methanol Fuel Cell Catalysts. J. Phys. Chem. C 2007,111,2803-2808.
    [1][12] Y. Lou, M. M. Maye, L. Han, J. Luo, C.-J. Zhong, Gold-platinum alloy nanoparticle assembly as catalyst for methanol electrooxidation. Chem. Commun. 2001,0,473-474.
    [13]B. C. Du, Y. Y. Tong, A Coverage-Dependent Study of Pt Spontaneously Deposited onto Au and Ru Surfaces:Direct Experimental Evidence of the Ensemble Effect for Methanol Electro-Oxidation on Pt, J. Phys. Chem. B 2005, 109,17775-17780.
    [14]S. Kumar, S. Zou, Electrooxidation of Carbon Monoxide and Methanol on Platinum-Overlayer-Coated Gold Nanoparticles:Effects of Film Thickness. Langmuir 2007,23,7365-7371.
    [15]J.-H. Choi, K.-J. Jeong, Y. Dong, J. Han, T.-H. Lim, J.-S. Lee, Y.-E. Sung, Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells. J. Power Sources 2006,163,71-75.
    [16]X. Ge, R. Wang, S. Cui, F. Tian, L. Xu, Y. Ding, Structure dependent electrooxidation of small organic molecules on Pt-decorated nanoporous gold membrane catalysts. Electrochem. Commun.2008,10,1494-1497.
    [17]Z. Peng, H. Yang, PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res.2009,2,406-415.
    [18]S. Wang, N. Kristian, S. Jiang, X. Wang, Controlled deposition of Pt on Au nanorods and their catalytic activity towards formic acid oxidation. Electrochem. Commun.2008,10,961-964.
    [19]X. Ge, R. Wang, P. Liu, Y. Ding, Platinum-Decorated Nanoporous Gold Leaf for Methanol Electrooxidation. Chem. Mater.2007,19,5827-5829.
    [20]T.-Y. Shin, S.-H. Yoo, S. Park, Gold Nanotubes with a Nanoporous Wall:Their Ultrathin Platinum Coating and Superior Electrocatalytic Activity toward Methanol Oxidation. Chem. Mater.2008,20,5682-5686.
    [21]J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science 2007,315, 220-222.
    [22]X. Gu, L. Xu, F. Tian, Y. Ding, Au-Ag alloy nanoporous nanotubes. Nano Res. 2009,2,386-393.
    [23]J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying. Nature 2001,410,450-453.
    [24]R. Laocharoensuk, S. Sattayasamitsathit, J. Burdick, P. Kanatharana, P. Thavarungkul, J. Wang, Shape-Tailored Porous Gold Nanowires:From Nano Barbells to Nano Step-Cones. ACS Nano 2007,1,403-408.
    [25]C. Ji, P. C. Searson, Synthesis and Characterization of Nanoporous Gold Nanowires. J. Phys. Chem. B 2003,107,4494-4499.
    [26]Y. Sun, Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 2002,298,2176-2179.
    [27]Y. Sun, Y. Xia, Multiple-Walled Nanotubes Made of Metals. Adv. Mater.2004,16, 264-268.
    [28]I. O. Sosa, C. Noguez, R. G. Barrera, Optical Properties of Metal Nanoparticles with Arbitrary Shapes. J. Phys. Chem. B 2003,107,6269-6275.
    [29]B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-controlled synthesis of metal nanostructures:The case of silver. Chem. Eur. J.2005,11,454-463.
    [30]A. R. Tao, S. Habas, P. Yang, Shape Control of Colloidal Metal Nanocrystals, Small 2008,4,310-325.
    [31]R. Parsons, T. Vander Noot, The oxidation of small organic molecules:A survey of recent fuel cell related research. J. Electroanal. Chem.1988,257,9-45.
    [32]K. J. J. Mayrhofer, D. Strmcnik, B. B. Blizanac, V. Stamenkovic, M. Arenz, N. M. Markovic, Measurement of oxygen reduction activities via the rotating disc electrode method:From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 2008,53,3181-3188.
    [33]S. Kumar, S. Zou, Research Article Electrooxidation of Carbon Monoxide and Methanol on Platinum-Overlayer-Coated Gold Nanoparticles:Effects of Film Thickness. Langmuir 2007,23,7365-7371.
    [34]A. Ruban, B. Hammer, P. Stolze, H. L. Skriver, J. K. Noskov, J. Mol. Surface electronic structure and reactivity of transition and noble metals. Catal. A 1997, 115,421-429.
    [35]G. Samjesk_, M. Osawa, Current Oscillations during Formic Acid Oxidation on a Pt Electrode:Insight into the Mechanism by Time-Resolved IR Spectroscopy. Angew. Chem. Int. Ed.2005,44,5694-5698.
    [36]C. Xu, R. Wang, M. Chen, Y. Zhang, Y. Ding, Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen reduction reaction. Phys. Chem. Chem. Phys.2010, 12,239-246.
    [37]R. Wang, C. Wang, W.-B. Cai, Y. Ding, Ultralow Platinum Loading High Performance Nanoporous Electrocatalysts with Nanoengineered Surface Structures. Adv. Mater.2010,22,1845-1848.
    [38]M. Neurock, M. Janik, A. Wieckowski, A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss.2009, 140,363-378.
    [39]V. Bansal, A. P. O'Mullane, S. K. Bhargava, Galvanic replacement mediated synthesis of hollow Pt nanocatalysts:Significance of residual Ag for the H2 evolution reaction. Electrochem. Commun.2009, 11,1639-1642.
    [1](a) Z. Chen, M. Waje, W. Li, Y. Yan, Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions, Angew. Chem. Int. Ed.2007,46, 4060-4063; (b) Yi. Bi, G. Lu, Facile synthesis of platinum nanofiber/nanotube junction structures at room temperature, Chem. Mater.2008,20,1224-1226; (c) J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z.-Y. Li, Y. Xia, Optical Properties of Pd-Ag and Pt-Ag Nanoboxes Synthesized via Galvanic Replacement Reactions, Nano Lett.2005,5,2058-2062.
    [2](a) X. Zhang, W. Lu, J. Da, H. Wang, D. Zhao, P. A. Webley, Porous platinum nanowire arrays for direct ethanol fuel cell applications, Chem. Commun.2009, 195-197; (b) Y.-G. Guo, J.-S. Hu, H.-M. Zhang, H.-P. Liang, L.-J. Wan, C.-L. Bai, Tin/Platinum Bimetallic Nanotube Array and its Electrocatalytic Activity for Methanol Oxidation, Adv. Mater.2005,17,746-750.
    [3](a) M. Wirtz, M. Parker, Y. Kobayashi, C. R. Martin, Template-Synthesized Nanotubes for Chemical Separations and Analysis, Chem. Eur. J.2002,8, 3573-3578; (b) M. Lahav, T. Sehayek, A. Vaskevich, I. Rubinstein, Nanoparticle Nanotubes, Angew. Chem. Int. Ed.2003,42,5575-5579; (c) Y. Sun, Y. Xia, Multiple-Walled Nanotubes Made of Metals, Adv. Mater.2004,16,264-268.
    [4]X. Gu, L. Xu, F. Tian, Y. Ding, Au-Ag Alloy Nanoporous Nanotubes, Nano Res. 2009,2,386-393.
    [5](a) B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-Controlled Synthesis of Metal Nanostructures:The Case of Silver, Chem. Eur. J.2005,11,454-463; (b) C.-L. Lee, C.-M. Tseng, Ag-Pt Nanoplates:Galvanic Displacement Preparation and Their Applications As Electrocatalysts,J. Phys. Chem. C 2008,112, 13342-13345.
    [6]Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science 2002,298,2176-2179.
    [7]F.-R. Fan, D.-Y. Liu, Y.-F. Wu, S. Duan, Z.-X. Xie, Z.-Y. Jiang, Z.-Q. Tian, Epitaxial Growth of Heterogeneous Metal Nanocrystals:From Gold Nano-octahedra to Palladium and Silver Nanocubes,J. Am. Chem. Soc.2008, 130,6949-6951.
    [8]J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying, Nature 2001,410,450-453.
    [9]I. O. Sosa, C. Noguez, R. G. Barrera, Optical Properties of Metal Nanoparticles with Arbitrary Shapes,J. Phys. Chem.B 2003,107,6269-6275.
    [10]M. R. Tarasevich, Z. R. Karichev, V. A. Bogdanovskaya, E. N. Lubnin, A. V. Kapustin, Kinetics of ethanol electrooxidation at RuNi catalysts, Electrochem. Commun.2005,7,141-146.
    [11]J. Hernandez, J. Solla-Gullon, E. Herrero, A. Aldaz, J. M. Feliu, Methanol oxidation on gold nanoparticles in alkaline media:Unusual electrocatalytic activity, Electrochim. Acta 2006,52,1662-1669.
    [12]I.-S. Park, K.-S. Lee, J.-H. Choi, H.-Y. Park, Y.-E. Sung, Surface Structure of Pt-Modified Au Nanoparticles and Electrocatalytic Activity in Formic Acid Electro-Oxidation, J:Phys. Chem. C 2007,111,19126-19133.
    [13](a) J. W. Long, R. M. Stroud, K. E. Swider-Lyons, D. R. Rolison, How to make electrecatalysts more active for direct methanol oxidation-avoid PtRu bimetallic alloys, J. Phys. Chem. B 2000,104,9772-9776; (b) E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin and T. E. Mallouk, Combinatorial Electrochemistry:A Highly Parallel, Optical Screening Method for Discovery of Better Electrocatalysts, Science 1998,280,1735-1737.
    [14]H. Liu, P. He, Z. Li, J. Li, High surface area nanoporous platinum:facile fabrication and electrocatalytic activity, Nanotechnology 2006,17,2167-2173.
    [15]N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z. L. Wang, Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity, Science 2007,316,732-735.
    [1]Z. M. Peng, H. Yang, Designer platinum nanoparticles:Control of shape, composition in alloy, nanostructure and electrocatalytic property, Nano Today 2009,4,143-164.
    [2]C.-L. Lee, C.-M. Tseng, Ag-Pt Nanoplates:Galvanic Displacement Preparation and Their Applications As Electrocatalysts, J. Phys. Chem. C 2008,112, 13342-13345.
    [3]Z. Chen, M. Waje, W. Li, Y. Yan, Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions, Angew. Chem. Int. Ed.2007, 46,4060-4063.
    [4]X. Gu, X. Cong, Y. Ding, Platinum-Decorated Au Porous Nanotubes as Highly Efficient Catalysts for Formic Acid Electro-Oxidation, ChemPhysChem 2010,11, 841-846.
    [5]R. Wang, C. Wang, W.-B. Cai, Y. Ding, Ultralow Platinum Loading High-Performance Nanoporous Electrocatalysts with Nanoengineered Surface Structures, Adv. Mater.2010,22,1845-1848.
    [6]B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction, Science 2009,324,1302-1305.
    [7]Y. Y. Shao, G. P. Yin, Y. Z. Gao, Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell, J. Power Sources 2007,171, 558-566.
    [8]X. W., Yu, S. Y. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC:Part Ⅰ. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst, J. Power Sources 2007,172,133-144.
    [9]K. Sasaki, H. Naohara, Y. Cai, Y M. Choi, P. Liu, M. B. Vukmirovic, J. X. Wang, R. R. Adzic, Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes, Angew. Chem. Int. Ed.2010,49, 8602-8607
    [10]J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters, Science 2007,315, 220-222.
    [11]J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen1, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Norskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts, Nat. Chem.2009, 1,552-556.
    [12]J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, J. K. N(?)rskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater.2006,5,909-913.
    [13]J. K. N(?)rskov, T. bligaard, J. rossmeisl, C. H. Christensen, Towards the computational design of solid catalysts, Nat. Chem.2009,1,37-46.
    [14]J. W. Long, R. M. Stroud, K. E. Swider-Lyons, D. R. Rolison, How To Make Electrocatalysts More Active for Direct Methanol OxidationAvoid PtRu Bimetallic Alloys,J. Phys. Chem. B 2000,104,9772-9776.
    [15]Z. Liu, G. S. Jackson, B. W. Eichhorn, PtSn Intermetallic, Core-Shell, and Alloy Nanoparticles as CO-Tolerant Electrocatalysts for H2 Oxidation, Angew. Chem. Int. Ed.2010, 49,3173-3176.
    [16]H. Lee, S. E. Habas, G. A. Somorjai, P. Yang, Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostructures,J. Am. Chem. Soc.2008,130,5406-5407.
    [17]C. Wang, M. Chi, G.g Wang, D. van der Vliet, D. Li, K. More, H.-H. Wang, J. A. Schlueter, N. M. Markovic, V. R. Stamenkovic, Correlation Between Surface Chemistry and Electrocatalytic Properties of Monodisperse PtxNi1-x Nanoparticles,Adv. Funct. Mater.2011,21,147-152.
    [18]V. R. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, Effect of Surface Composition on Electronic Structure, Stability, and Electrocatalytic Properties of Pt-Transition Metal Alloys:Pt-Skin versus Pt-Skeleton Surfaces,J. Am. Chem. Soc.2006,128,8813-8819.
    [19]V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces Nat. Mater.2007,6,241-247.
    [20]D. Xu, S. Bliznakov, Z. Liu, J. Fang, N. Dimitrov, Composition-Dependent Electrocatalytic Activity of Pt-Cu Nanocube Catalysts for Formic Acid Oxidation, Angew. Chem. Int. Ed.2010,49,1282-1285.
    [21]S. Kang, J. Lee, J. K. Lee, S.-Y. Chung, Y. Tak, Influence of Bi modification of Pt anode catalyst in direct formic acid fuel cells, J. Phys. Chem. B 2006,110, 7270-7274.
    [22]X. Ji, K. T. Lee, R. Holden, L. Zhang, J. Zhang, G. A. Botton, M. Couillard, L. F. Nazar, Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes, Nat. Chem.2010,2,286-293.
    [23]X. Ge, R. Wang, P. Liu, Y. Ding, Platinum-Decorated Nanoporous Gold Leaf for Methanol Electrooxidation, Chem. Mater.2007,19,5827-5829.
    [24]C. Zhou, H. Wang, F. Peng, J. Liang, H. Yu, J. Yang, MnO2/CNT Supported Pt and PtRu Nanocatalysts for Direct Methanol Fuel Cells, Langmuir 2009,25, 7711-7717.
    [25]P. Liu, X. Ge, R. Wang, H. Ma, Y. Ding, Facile Fabrication of Ultrathin Pt Overlayers onto Nanoporous Metal Membranes via Repeated Cu UPD and in Situ Redox Replacement Reaction, Langmuir 2009,25,561-567.
    [26]E. Casado-Rivera, Z. Gal, A. C. D. Angelo, C. Lind, F. J. DiSalvo, H. D. Abruna, Electrocatalytic Oxidation of Formic Acid at an Ordered Intermetallic PtBi Surface, ChemPhysChem 2003,4,193-199.
    [27]S. Zhang, Y. Shao, G. Yin, Y. Lin, Electrostatic Self-Assembly of a Pt-around-Au Nanocomposite with High Activity towards Formic Acid Oxidation, Angew. Chem. Int. Ed.2010,49,2211-2214.
    [28]X. Yu, P. G. Pickup, Recent advances in direct formic acid fuel cells (DFAFC), J. Power Sources 2008,182,124-132.
    [29]S. M. Alia, G. Zhang, D. Kisailus, D. Li, S. Gu, K. Jensen, Y. Yan, Porous Platinum Nanotubes for Oxygen Reduction and Methanol Oxidation Reactions, Adv. Funct. Mater.2010,20,3742-3746.
    [30]R. M. Darling, J. P. Meyers, Kinetic Model of Platinum Dissolution in PEMFCs, J. Electrochem. Soc.2003,150, A1523-A1527.
    [31]S. Chen, P. J. Ferreira, W. Sheng, N. Yabuuchi, L. F. Allard, Y. Shao-Horn, Enhanced Activity for Oxygen Reduction Reaction on "Pt3Co" Nanoparticles: Direct Evidence of Percolated and Sandwich-Segregation Structures, J. Am. Chem. Soc.2008,130,13818-13819.
    [32]T.-Y. Jeon, S. J. Yoo, Y.-H. Cho, S. H. Kang, Y.-E. Sung, Effect of de-alloying of Pt-Ni bimetallic nanoparticles on the oxygen reduction reaction, Electrochem. Commun.2010,12,1796-1799.
    [33]J. Yang, W. Zhou, C. H. Cheng, J. Y. Lee, Z. Liu, ACS Appl. Mater. Inter. Pt-Decorated PdFe Nanoparticles as Methanol-Tolerant Oxygen Reduction Electrocatalyst,2010,2,119-126.
    [34]Y. Kang, C. B. Murray, Synthesis and Electrocatalytic Properties of Cubic Mn-Pt Nanocrystals (Nanocubes),J. Am. Chem. Soc.2010,132,7568-7569.
    [35]R. Yang, J. Leisch, P. Strasser, M. F. Toney, Structure of Dealloyed PtCu3 Thin Films and Catalytic Activity for Oxygen Reduction, Chem. Mater.2010,22, 4712-4720.
    [36]W. Wang, Q. Huang, J. Liu, Z. Zou, Z. Li, H. Yang, One-step synthesis of carbon-supported Pd-Pt alloy electrocatalysts for methanol tolerant oxygen reduction, Electrochem. Commun.2008,10,1396-1399.
    [37]A. Maljusch, T. C. Nagaiah, S. Schwamborn, M. Bron, W. Schuhmann, Pt-Ag catalysts as cathode material for oxygen-depolarized electrodes in hydrochloric acid electrolysis, Anal. Chem.2010,82,1890-1896
    [38]C.-W. Liu, Y.-C. Wei, K.-W. Wang, Promotion of ceria-modified Pt-Au/C cathode catalysts for oxygen reduction reaction by H2-induced surface segregation, Chem. Commun.2010,46,2483-2485.
    [39]L. J. Bregoli, The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid, Eleclrochim. Acta 1978,23,489-492.
    [40]M. L. Sattler, P. N. Ross, The surface structure of Pt crystallites supported on carbon black, Ultramicroscopy 1986,20,21-28.
    [41]K. Kinoshita, Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes,J. Electrochem. Soc.1990,137,845-848.
    [42]Y. Takasu, N. Ohashi, X. G. Zhang, Y. Murakami, H. Minagawa, S. Sato, K. Yahikozawa, Size effects of platinum particles on the electroreduction of oxygen, Electrochim. Acta 1996,41,2595-2600.
    [43]Y. Sun, Y. Xia, Alloying and Dealloying Processes Involved in the Preparation of Metal Nanoshells through a Galvanic Replacement Reaction, Nano Lett.2003, 3,1569-1572.
    [44]R. Ferrando, J. Jellinek, R. L. Johnston, Nanoalloys:From Theory to Applications of Alloy Clusters and Nanoparticles, Chem. Rev.2008,108, 846-910.
    [45]J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z.-Y. Li, Y. Xia, Optical Properties of Pd-Ag and Pt-Ag Nanoboxes Synthesized via Galvanic Replacement Reactions, Nano Lett.2005,5,2058-2062.
    [46]X. Gu, L. Xu, F. Tian, Y. Ding, Au-Ag Alloy Nanoporous Nanotubes, Nano Res. 2009,2,386-393.
    [47]C. X. Xu, Y. Zhang, L. Q. Wang, L. Q. Xu, X. F. Bian, H. Y. Ma, Y. Ding, Nanotubular Mesoporous PdCu Bimetallic Electrocatalysts toward Oxygen Reduction Reaction, Chem. Mater.2009,21,3110-3116.
    [48]J. Zhang, Y. Mo, M. B. Vukmirovic, R. Klie, K. Sasaki, R. R. Adzic, Platinum Monolayer Electrocatalysts for O2 Reduction:Pt Monolayer on Pd(111) and on Carbon-Supported Pd Nanoparticles, J. Phys. Chem.B 2004,108,10955-10964.
    [49]S. Powell, R. Bindra, Targeting the DNA damage response for cancer therapy, DNA Repair 2009,8,1153-1165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700