非均相Fenton反应催化剂的制备及其在难降解有机物处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的发展产生了大量有毒有机废水,但是传统的生化工艺无法处理这些污水。高级氧化技术被广泛的应用于处理此类废水,以去除工业废水中和垃圾渗滤液中难降解的有机物。均相Fenton是高级氧化技术中的一种,该技术被认为是处理此类污水最有前景的技术之一。但是该技术存在的明显的缺点限制了其应用:1反应所需pH范围较窄(2-4);2参与反应催化剂的回收比较困难,含重金属的污泥需要再处理,这增加了运行成本。为了克服这些问题,本文制备了一系列的非均相Fenton的催化剂,考查这些催化剂在常温常压下有机物去除情况。
     (1)采用不同的浸渍方法制备了2个系列含铁量不同的Fe/SBA15,并使用N2:吸附-脱附和XRD对其进行了表征。考察了该催化剂在非均相Fenton体系下的催化氧化活性。结果表明:用燃烧法制备的催化剂SBA15-acFe(NO3)-2和SBA15-acFe(NO3)-1的催化活性较高,催化剂的稳定性很好。用C10H12FeN2Na08做为铁源制备的催化剂SBA15-iFeEDTA-1和SBA15-iFeEDTA-2的活性虽然高,但是当铁的含量增加后,催化剂的稳定性明显减弱。用传统浸渍法制备的SBA15-iFe(NO3)-1和SBA15-iFe(NO3)-2虽然稳定性较高,但是当铁的含量增加后,铁的氧化物未能均匀的分布在载体上导致催化活性降低。
     (2)采用不同的浸渍法和均相共沉淀法制备了一系列含铁量相同的Fe/SBAl5,并使用N:吸附-脱附,TEM/EDX和XRD对其进行了表征,来考查各个催化剂的物理性质。应用传统的浸渍法制备的催化剂上Fe2O3颗粒的直径约为7-8nm,而用燃烧法制备的催化剂上Fe2O3颗粒的直径约为24nm且均匀的分布在载体SBAl5的孔道中。但是用不同均匀共沉淀法制备的催化剂使氧化铁的纳米颗粒物未能分布在载体的孔道内。以苯酚模拟废水为目标降解物,加入双氧水,在常温常压下考察了各个催化剂对苯酚的去除情况。结果表面各个催化剂的活性与铁的稳定性差异比较大。对于浸渍法获得的2个催化剂其活性较高,有一定量的铁滤出。而用均匀共沉淀法制备出的催化剂虽然有大的氧化铁颗粒物,但是还是展示出较高的催化活性和稳定性。
     (3)合成具有更大比表面积,孔径和孔体积的新型的γ-Al203,将Fe2O3和LaFeO3负载在γ-Al2O3,通过利用N2吸附-脱附、X射线衍射(XRD), TEM/EDX, TPR等分析方法研究了催化剂的物理和化学结构特性。同时合成已经报道具有良好催化活性的催化剂做为对比催化剂,来考查各个催化剂对苯酚的去除效率,TOC去除率和催化剂的稳定性,研究表明催化剂LaFe-Almeso在众多催化剂中活性最高,且稳定性较高。
     (4)制备新型的催化剂Al-Pillared Fe-Smectite,对其进行表征。应用该催化剂于UV-非均相Fenton体系中.在既定的试验条件下,考查该催化剂对橙黄Ⅱ的脱色,TOC去除率,催化剂稳定性和重复使用性等参数。同时通过响应面试验设计来分析各个试验参数对橙黄Ⅱ脱色的各自影响和交互影响。分析表明pH和H2O2浓度对橙黄看Ⅱ的脱色影响最大,同时对比响应面试验设计和析因子实验设计的分析结果。
Due to the inability of biological treatment processes to treat highly contaminated and toxic wastewater with organic pollutants, advanced oxidationprocesses (AOPs) are of great interest for the destruction of toxic and biorefractory organic pollutants found in industrial wastewater and in landfill leachate. Homogeneous Fenton processes are one technology of AOPs, they are considered as a series of most promising technologies for the remediation of wastewaters containing a variety of toxic substances. There are two major drawbacks that limit the industrial application of this technology:(1) the tight range of pH (e.g., pH 2-4) in which the reaction proceeds and (2) the need for recovering the precipitated catalyst after the treatment. The resulted sludge may contain organic substances, as well as heavy metals and has to be further treated, increasing thus the overall costs. However, in order to overcome the major drawbacks of the homogeneous system, heterogeneous Fenton-type systems have been prepared to catalyze the oxidation of various organic compounds in mild reaction conditions.
     (1) Two series iron-based mesoporous silica materials were prepared according to different impregnation procedures. Several complementary techniques, including XRD and nitrogen sorption isotherms were used to evaluate the final structural and textural properties of the calcined Fe/SBA-15 materials. Catalytic performances of all the materials were evaluated in the heterogeneous Fenton system. The samples SBA15-acFe (NO3)-2 and SBA15-acFe (NO3)-1, prepared by self-combustion of an iron-glycinic complex within the silica porosity, have showed their good catalytic activity and stability. The sample SBA15-iFeEDTA-1 and SBA15-iFeEDTA-2, using C10H12FeN2NaO8 as iron precursor, have good catalytic activity, but their stability was decreased when the content of iron increased. The sample SBA15-iFe (NO3)-1 and SBA15-iFe (NO3)-2, prepared by classical wet impregnation of the silica support by iron nitrate, have excellent stability, but catalytic activity of these two samples were not good.
     (2) Iron-based mesoporous silica materials were prepared according to different impregnation and co-condensation procedures. Several complementary techniques, including XRD, TEM/EDX and nitrogen sorption isotherms were used to evaluate the final structural and textural properties of the calcined Fe/SBA-15 materials. While Fe2O3 isolated particles of which the size is close to the silica pore diameter (~7-8 nm)were obtained using classical wet impregnation procedure, smaller iron oxide particles(-2-4 nm) homogeneously dispersed within the hexagonal pore structure of the SBA15 host support were generated through more sophisticated impregnation route (namely selfcombustionof an impregnated iron glycinic complex). By contrast, the various cocondensation routes used in this work were less efficient to obtain iron oxide nanoparticles inside the silica mesopores. Catalytic performances of all the materials were evaluated in the case of total phenol oxidation by H2O2 in aqueous solution at ambient conditions. Large differences in terms of catalytic activity and iron species stability were observed. While the impregnated solids proved to be the most active catalysts (highest iron oxide nanoparticles dispersion), iron leaching was observed in aqueous solution, accounting for a homogeneous catalytic contribution. In contrast, the co-condensed samples exhibiting larger iron oxide clusters stabilized over the silica surface proved more efficient as active sites in Fenton catalysis.
     (3) Novelγ-Al2O3, with a large pore size and a high surface area, was prepared as support. Alumina-supported iron oxide and iron-based perovskite are synthesized. Several complementary techniques, including XRD, TEM/EDX and nitrogen sorption isotherms were used to evaluate the final structural and textural properties of the two samples.Evaluation of the nanocomposite reactivity for the oxidation of phenol indicated an improved catalytic activity for the two novel samples (iron and lanthanum-iron on alumina) than those exhibited by the corresponding bulk perovksite or optimized reference catalysts. Among all the tested samples, the novel LaFe-Almeso composite (an alumina-supported lanthanum iron mixed-oxide) presents the highest activity with excellent stability in reaction.
     (4) Al-pillared Fe-Smectite was prepared and used as heterogeneous catalysts for the photo-Fenton decolorization of azo dye C.I. Acid Orange 7 under UV irradiation. UV irradiation is found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loadings of 0.5 g/L and 13.5 mM of hydrogen peroxide yield a remarkable decolorization, accompanied by excellent catalyst stability. An experimental design based on the response surface methodology is applied to assess the individual and interaction effects of several operating parameters namely hydrogen peroxide concentration, pH and catalyst loadings on the treatment efficiency. It is that the pH and H2O2 are found to be the vital parameters affecting dye degradation. The result of the response surface methodology design and the full factorial design (FFD) were compared.
引文
[1]国家环保总局,《全国环境统计公告(2007年)》
    [2]国家环保总局, 《2008年中国环境状况公报》
    [3]陈德强。高级氧化法处理难降解有机废水研究进展.环境保护科学,2005,31(132):20-23.
    [4]沈信儒,杨明.高级氧化技术处理印染废水.净水技术,2005,24(4):25-27.
    [5]张文兵,肖贤明.过氧化氢高级氧化技术去除水中有机污染物.中国给水排水,2002,18(3):89-92.
    [6]吴慧芳,黄文宜.难降解有机废水的高级氧化技术.南京工业大学学报,25(2003)84-87.
    [7]C. Walling, A. Goosen. Mechanism of the ferric ion catalysed decomposition of hydrogen peroxide:effects of organic substrate. J. Am. Chem. Soc. 95(1973):2987-2991.
    [8]Y. Sun, J. J. Pignatello. Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV. Environ. Sci. Technol,1993(21) 304-310.
    [9]G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross, Critical review of rate constants for reaction of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution, J. Phys. Chem. Ref. Data,1988(17) 513-886.
    [10]S. S. Chou, Y. H. Huang, S. N. Lee, G. H. Huang, C. P. Huang, Treatment of high strength hexamine-containing wastewater by Electro-Fenton method. Water Res.,1999(33) 751-759.
    [11]Lin J G. M a Y S. Oxidation of 2-chlorophenol in water by ultrasound/Fenton method. J. Environ.Eng.,126(2000) 130-137.
    [12]张翼,张晖,吴峰等.超声-Fenton法处理偶氮染料橙黄Ⅱ的研究.环境污染治理技术与设备,2003(4)48-51.
    [13]Z. Hui, Z. Yi, Z. Daobin. Decolorisation an dmineralisation of CI Reactive Black 8 by Fenton an d ultrasound/Fenton method. Color Technol,123(2007) 101-105.
    [14]M anousaki E, Psillakis E, Kalogerakis N, et al. Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic iradiation. Water Res,38(2004) 3751-3759.
    [15]赵景联,韩杰.超声辐射Fenton试剂耦合法降解直链十二烷基苯磺酸钠的研究.重庆环境科学.25(2003)10-13.
    [16]郭照冰,郑正,胡文勇等.2,4-二硝基酚的超声波及协同降解研究.环境科学学报.24(2004)237-241.
    [17]G. Zhaobing, Z.Zheng, Z. Shourong,et al. Effect of various sono-oxidation parameters on the removal of aqueous 2,4-dinitrophenol.Ultrason Sonochem,12(2005)461-465.
    [18]Neppolian B, Jung H, Choi H, et al. Sonolytic degradation of methyl tert-butyl ether:the role of coupled Fenton process and persulphate ion. Water Res,36(2002)4699-4708.
    [19]Chitra S, Paramasivan K, Sinha P K, et al.Ultrasonictreatment of liquid waste containing EDTA. J.Clean Prod.,12(2004)429-435.
    [20]Z. Deming, X. Xinhua, L. Lecheng, et al. Degradation of 4-chlorophenol solution by synergetic effect of dual-frequency ultrasound with Fenton reagent, Chinese.J.Chem.Eng,.13(2005) 204-210.
    [21]Gromboni C.F, Kamogawa M., Ferreira A G. etal. Microwave-assisted photo Fenton decomposition of chlorfenvinphosmand cypermethrin in residual water(no prelo). J.. Photoch. Photobio.A.,1(2007) 32-37.
    [22]严莲荷,王剑虹,潘爱芹,等.微波催化氧化法处理甲基橙废水.化工环保.24(2004)38-40.
    [23]陶长元,向赞,刘仁龙,等.微波和微波Fenton组合法处理渗滤液的对比.辽宁石油化工大学学报.26(2006)18-20.
    [24]赵录庆,姜聚慧,郭强等.UV/Fenton试剂法处理含偶氮蓝染料模拟废水的研究.河南师范大学学报.30(2002)57-58.
    [25]雷乐成.光助Fenton氧化处理PVA退浆废水的研究.环境科学学报. 20(2002)139-144
    [26]李太友,刘琼玉.UV/H2O2傅酸铁络合物光降解水中氯仿的研究.环境科学.19(1999)526-528
    [27]黄君礼,张乃东.UV/Fe(C2O4)/H2O2法处理水中苯胺的研究.哈尔滨建筑大学学报.32(1999)48-51.
    [28]Carlos M S, Eduardo E, Juan C, et al. Goethite as a more effective iron dosage source for mineralization of organic pollutants by electro-Fenton process. Electro. Commun.,9(2007)19-24.
    [29]Meinero S, Zerbinati O. Oxidative and energetic efficiency of different electrochemical oxidation processes for chloroanilines abatement in aqueous medium. Chemosphere,64(2006)386-392.
    [30]方建章,李浩,雷恒毅.电生成Fenton试剂处理染料废水.化工环保.24(2004)284-287.
    [31]徐桦,黄海云.改进电Fanton法处理印染废水.常熟高专学报.18(2004)45-47.
    [32]郑曦,陈日耀,兰瑞芳,等.电生成Fenton试剂及其对染料降解脱色的研究.电化学.9(2003)98-103.
    [33]Fernandez J, Bandara J, Lopez A, et al. Eficient photo-assisted Fenton catalysis mediated by Fe ions on Nation membranes active in the "abatement of non-biodegradable azo-dye. Chem Commun,1998(14) 1493-1494.
    [34]Dhananjeyan R, Kiwi J, Albers P, et al. Photo-assisted immobilized Fenton degradation up to pH 8 dye orange Ⅱ mediated by Fe/Nation/glass fibers. Heir Chim Acta,84(2001)3433-3445.
    [35]Sabhi S, Kiwi J. Degradation of 2,4-dichlorphenol by immobilized iron catalysts. Wat Res,35(2001)1994-2002.
    [36]Parra S, Guasaquillo I, Enea O, et al, Abatement of all azo dye on structured C-Nafion/Fe-ion surfaces by photo-fenton reactions leading to carboxylate intermediates with a remarkable biodegradability increase ofthe treated solution. J Phys. Chem., B,107(2003)7026-7035.
    [37]J.Fernandez, V.Nadtochenko. Testing and performance of immobilized Fenton photoreaetions via membranes. mats and modified copolymers, J. International Journal of Photoenergy,5(2003)107-113.
    [38]S.Parra, V.Nadtochenko, P.Albers, et al, Discoloration of azo-dyes at biocompatible pH-values through an Fe-histidine complex Immobilized on Nafion via Fenton-like Processes, J. Phys. Chem. B,108(2004),4439-4448.
    [39]A. Sorokin, J.-L. Seris and B. Meunier, Efficient oxidative dechlorination and aromatic ring cleavage of chlorinated phenols catalyzed by iron sulfophthalocyanine, Science,268(1995) 1163-1166.
    [40]A. Sorokin and B. Meunier, Efficient H2O2 oxidation of chlorinated phenols catalysed by supported iron phthalocyanines. J. Chem. Soc., Chem. Commun., 1994,1799-1780.
    [41]R. F. Parton, I. F. J. Vankelecom, M. J. A. Casselman, C. P.Bezoukhanova and J. B. Uytterhoever, An efficient mimic of cytochrome P-450 from a zeolite-encaged iron complex in a polymer membrane.Nature,370(1994), 541-544.
    [42]W.H. Ma, Y.P. Huang, J. Li, M.M. Cheng, W.J. Song, J.C. Zhao, An efficient approach for the photodegradation of organic pollutants by immobilized iron ions at neutral pHs, Chem. Commun.(2003) 1582-1583
    [43]Feng J Y, Hu X J, Yue P L. Degradation of salicylic acid by photo-assisted Fenton reaction using Fe ions on strongly acidic ion exchange resin as catalyst. Chem. Eng. J.,100(2004)159-165.
    [44]Fernandez J, Kiwi J.et al. Evidence for Fenton photoasslsted processes mediated by encapsulated Fe ions at biocompatible pH value. J. Phys. Chem. B,104(2000)5298-5301.
    [45]龙明策,等.可见光/H202/海藻酸铁非均相催化降解吖啶橙的研究.环境污染治理技术与设备.6(2005)49-52.
    [46]K. Lazar, G. Calleja, J.A. Melero, F. Martinez, R. Molina, Influence of synthesis routes on the state of Fe-species in SBA-15 mesoporous materials, Stud. Surf. Sci. Catal.154 (2004) 805-812.
    [47]G. Calleja, J.A. Melero, F. Martinez, R. Molina, Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol, Water Res.39 (2005) 1741.
    [48]F. Martinez, G. Calleja, J.A. Melero, R. Molina, Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst, Appl. Catal. B 60 (2005) 181.
    [49]R. Molina, F. Martinez, Juan Antonio Melero,David H. Bremner b, Anand G.Chakinala,Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H2O2 process:Multivariate study by factorial design of experiments, Appl. Cat. B:Environ.66 (2006) 198-207
    [50]J.A. Melero, G. Calleja, F. Martinez, R. Molina, Nanocomposite of crystalline Fe2O3 and CuO particles and mesostructured SBA-15 silica as an active catalyst for wet peroxide oxidation processes, Catal. Commun.7 (2006) 478-483
    [51]J.A. Melero, G. Calleja, F. Martinez, R. Molina, M.I. Pariente, Nanocomposite Fe2O3/SBA-15:An efficient and stable catalyst for thecatalytic wet peroxidation of phenolic aqueous solutions, Chem. Eng. J.,131 (2007) 245-246.
    [52]Gokulakrishnan N, Pandurangan A, Sinha PK, Catalytic Wet Peroxide Oxidation Technique for the Removal of Decontaminating Agents Ethylenediaminetetraacetic Acid and Oxalic Acid from Aqueous Solution Using Efficient Fenton Type Fe-MCM-41 Mesoporous Materials.Ind. Eng. Chem. Res.,48 (2009) 1556-1561
    [53]Frank L.Y. Lam, Xijun Hu, A high performance bimetallic catalyst for photo-Fenton oxidation of Orange Ⅱ over a wide pH range, Catal. Commun.8 (2007) 2125-2129
    [54]M.B. Kasiri, H. Aleboyeh, A. Aleboyeh, Degradation of acid blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst, Appl. Cat. B: Environ.84 (2008) 9-15.
    [55]A. Chen, X. Ma, H. Sun, Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites, J. Hazard. Mater.156 (2008) 568-575.
    [56]Ivana Grcic, Marko Mu ic, Dinko Vujevic Natalija Koprivanac, Evaluation of atrazine degradation in UV/FeZSM-5/H2O2 system using factorial experimental design, Chem. Eng. J., xxx (2009) xxx-xxx.
    [57]刘颖,李益民,温丽华,李海洋.铁柱撑膨润土及染料橙二的光催化降解,功能材料.2005(36)136-141
    [58]Feng J.Y., Hu X.J., Yue P.L., et al. Degradation of Azo-dye orange Ⅱ by a photoassisted fenton reaction using a novel composite of iron oxide and silicate nanopartieles as a catalyst. Ind. Eng. Chem. Res.,2003(42)2058-2066.
    [59]Feng J.Y., Hu X.J., Yue P.L., et al. Discoloration and mineralization of reactive red He-3B by heterogeneous photo-Fenton reaction. Water Res., 37(2003) 3776-3784
    [60]Feng J.Y., Hu X.J, Yue P.L, et al. Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of orange Ⅱ. Environ. Sci. Technol.,38(2004) 269-275
    [61]Mishra T, Parida K.. Appl Catal A:Gen,174 (1998)91-98
    [62]J. Barrault, M. Abdellaoui, C. Bouchoule, A. Majeste, J.M. Tatibouet, A. Louloudi,N. Papayannakos, N.H. Gangas,Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays, Appl. Cat. B:Environ.27 (2000) L225-L230.
    [63]E. Guelou, J. Barrault, J. Fournier, J. Tatibouet, Active iron species in the catalytic wet peroxide oxidation ofphenol over pillared clays containing iron, Appl. Cat. B:Environ.44 (2003) 1-8
    [64]J.G. Carriazoa, E. Gueloub, J. Barraultb, J.M. Tatibouetb, S. Morenoa,Catalytic wet peroxide oxidation of phenol over Al-Cu or Al-Fe modified clays, Applied Clay Science 2003 (22) 303-308.
    [65]J. Carriazo, E. Guelou, J. Barrault, J.M. Tatibouet,R. Molina, S. Moreno,Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite:Characterization and catalytic activity, Catal. Today 107-108 (2005) 126-132
    [66]Gumyb D. Malatoa S. Kiwi J. Supported Fe/C anti Fe/Nafion/Ccatalysts for the photo-Fenton degradation of orange Ⅱ under solar irradiation, Catal. Today,101(2005):375-382.
    [67]Li D, Yuranova T, Albers P, et al. Accelerated photobleaching of Orange Ⅱ on novel(H5W12O40Fe.10H2O)/silica structured fables, Wat Res,38(2004) 3541-3550.
    [68]J.A. Zazo, J.A. Casas, A.F. Mohedano, J.J. Rodriguez,Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst, Appl. Cat. B:Environ.65 (2006)261-268.
    [69]J.H. Ramirez, F.J. Maldonado-Hodar, A.F. Perez-Cadenas,C. Moreno-Castilla, C.A. Costa, L.M. Madeira, Azo-dye Orange Ⅱ degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts, Appl. Cat. B:Environ.75 (2007) 312-323.
    [70]N. Al-Hayek, M. Dore, Oxydation des phenols par le peroxyde d'hydrogene en milieu aqueux en presence de fer supporte sur alumine, Water Res.24 (1990) 973.
    [71]M. Inbasekaran, S. Meenakshisundaram, Photoassisted Fenton mineralisation of Acid Violet 7 by heterogeneous Fe(Ⅲ)-Al2O3 catalyst, Catal. Commun.,8(2007)981-986
    [72]M. Inbasekaran, S. Meenakshisundaram, Highly solar active Fe(Ⅲ) immobilised alumina for the degradation of Acid Violet 7, Sol. Energ. Mat. Sol. C.92(2008)857-863
    [73]Hassan Hosseini Monfared, Zahra Amouei, Hydrogen peroxide oxidation of aromatic hydrocarbons by immobilized iron(Ⅲ), J. Mol. Catal. A:Chem.,217 (2004) 161-164
    [74]H. Sueh, Y.H. Huang, C.Y. Chen, Novel activated alumina-supported iron oxide-composite as a heterogeneous catalyst for photooxidative degradation of reactive black 5, J. Hazard. Mater. B 129 (2006) 228-233.
    [75]Ming-Chun Lu,Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite, Chemosphere 40 (2000) 125-130
    [76]Mazellier P., Sulzberger B. Diuron degradation in irradiated heterogeneous iron/oxalate systems:The rate determining step Environ. Sci. Technol.,35(2001)3314-3320
    [77]Lu M. C., Chen J. N., Huang H. H., et al. Role of goethite dissolution in the oxidation of 2-ehlorophenol with hydrogen peroxide. Chemospere,46(2002) 131-136.
    [78]Roberto A., Antonio D., Raffaele M. Oxidation of aromatic substrates in water/goethite slurry by means of hydrogen peroxide. Water Res.,36(2002) 4691-4698
    [79]H.Zhang, H. Fu, D. Zhang, Degradation of C.I. Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process, J. Hazard. Mater. xxx (2009) xxx-xxx.
    [80]He J., Ma W. H., He J. J., et al. Photo-oxidation of azodye in aqueous dispersions of H2O2/a-FOOH. Appl. Cat. B:Environ., 39(2002):211-220
    [81]B. Neppolian, Jong-Sup Park, Heechul Choi, Effect of Fenton-like oxidation on enhanced oxidative degradation of para-chlorobenzoic acid by ultrasonic irradiation, Ultrason.Sonochem.,11(2004)273-279.
    [82]Manickavachagam Muruganandham, Jing-Shen Yang, Jerry J. Wu, Effect of Ultrasonic Irradiation on the Catalytic Activity and Stability of Goethite Catalyst in the Presence of H2O2 at Acidic Medium, Ind. Eng. Chem. Res. 2007(46) 691-698.
    [83]J.J. Wu, M. Muruganandham, J.S. Yang, S.S. Lin,Oxidation of DMSO on goethite catalyst in the presence of H2O2 at neutral pH, Catal. Commun.7 (2006) 901-906.
    [84]S. Chou,C. Huang, Application of a supported iron oxyhydroxide catalyst in oxidation of benzoic acid by hydrogen preoxide, Chemosphere, 38(1999)2719-2731.
    [85]S. Chou, C. Huang, Y. Huang, Heterogeneous and homogeneous catalytic oxidation by supported γ-FeOOH in a fluidized-bed reactor:kinetic approach, Environ. Sci. Technol.,35(2001) 1247-1251.
    [86]龙明策,林金清,许庆清,非均相Fenton反应技术研究进展.环境污染治理技术与设备.6(2005)14-18.
    [87]David H. Bremner, Arthur E. Burgess, Didier Houllemare, Kyu-Cheol Namkung, Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide, Appl. Cat. B:Environ.63 (2006) 15-19.
    [88]John A. Bergendahla, Timothy P. Thies, Fenton's oxidation of MTBE with zero-valent iron, Water Res.38 (2004) 327-334.
    [89]M. Kallel, C. Belaida, R. Boussahel, M. Ksibi, A. Montiel, B. Elleuch, Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide, J. Hazard. Mater.,163 (2009) 550-554.
    [90]H. Shu, M. Chang, C. Chang, Integration of nanosized zero-valent iron particles addition with UV/H2O2 process for purification of azo dye Acid Black 24 solution, J. Hazard. Mater., xxx (2009) xxx-xxx.
    [91]J. Liang, S. Komarov, N. Hayashi, et al. Improvement in sonochemical degradation of 4-chlorophenol by combined use of Fenton-like reagents. Ultrason.Sonochem.,14(2007) 201-207.
    [92]H. Zhang, J. Zhang, C. Zhang, F.Liu, D.Zhang, Degradation of C.I. Acid Orange 7 by the advanced Fenton process in combination with ultrasonic irradiation, Ultrason.Sonochem.16 (2009) 325-330.
    [93]Yolanda Flores, Roberto Flores, Alberto Alvarez Gallegos, Heterogeneous catalysis in the Fenton-type system reactive black 5/H2O2, J. Mol. Catal. A: Chem.,281 (2008) 1-2.
    [94]R. Mecozzi, L. Di Palma, D. Pilone, L. Cerboni, Use of EAF dust as heterogeneous catalyst in Fenton oxidation of PCP contaminated wastewaters, J. Hazard. Mater. B,137 (2006) 886-892.
    [95]J. Leea, J. Kima, Y. Changb, Y. Changa,Steel dust catalysis for Fenton-like oxidation of polychlorinated dibenzo-p-dioxins, J. Hazard. Mater.163 (2009) 222-230.
    [96]郑展望,雷乐成,等.非均相UV/Fe-Cu-Mn-Y/H2O2反应催化降解4BS染料发水.环境科学学报.24(2004)1032-1038
    [97]Teresa Valdes-Solis, Patricia Valle-Vigon, Sonia A lvarez, Gregorio Marban,Antonio B. Fuertes, Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst, Catal. Commun. 8(2007) 2037-2042
    [98]Petr Baldrian, Vera Merhautova, JiriGabriel, Frantisek Nerud,Pavel Stopka, Martin Hruby, Milan J. Benes, Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides, Appl. Cat. B: Environ.66 (2006) 258-264.
    [99]Yu Zhang, Xiaomin Dou, Jian Liu, Min Yang, Liping Zhang, Yoichi Kamagata, Decolorization of reactive brilliant red X-3B by heterogeneous photo-Fenton reaction using an Fe-Ce bimetal catalyst, Catal. Today 126 (2007)387-393
    [100]魏国等.光助非均相Fenton体系用于活性艳红X-3B脱色的研究.环境 污染治理技术设备。6(2005)6-11.
    [101]何莼,奚红霞,张娇,等.沸石和活性炭为载体的Fe3+和CH2型催化剂催化氧化苯酚的比较.离子交换与吸附.19(2003)289-296.
    [102]Z.M Qiu, He.YB, et al. Catalytic oxidation of the dye wastewater with hydrogen peroxide. Chem. Eng. Pro.,2005(44) 1013-1017.
    [103]V. K. Maduna, K. Andrea; T. Vesna, Z. Stanka, Characterization and activity of Cu/ZSM5 catalysts for the oxidation of phenol with hydrogen peroxide, Chem. Eng. J.31 (2008) 398-403.
    [104]Drijvers D, Van Langenhove H, Beckers M. Decomposition of phenol and trichloroethylene by the ultrasound/H2O2/CuO process. Water Res., 33(1999) 1187-1194.
    [1]J.Roggenbuck, G. Koch, M. Tiemann, Synthesis of mesoporous magnesium oxide by CMK-3 carbon structure replication, Chem. Mater.18 (2006) 4151-4156.
    [2]R. Pechini, US Patent 3330697 (1967).
    [3]M. Bonne, N. Bion, F. Pailloux, S. Valange, S. Royer, J.-M. Tatibouet, D.Duprez, Improved oxygen mobility in nanosized mixed-oxide particlessynthesized using a simple nanocasting route, Chem. Commun. (2008) 4504.
    [4]S. Valange, A. Charmot, J. Barrault, A. Louati, Z. Gabelica, Insertion of Fe2O3 nanoparticles in SBA-15 mesopores and evaluation of their textural and redox characteristics,Stud. Surf. Sci. Catal.170 (2007) 531-538.
    [5]F. Martinez, Y. Jhan, G. Stucky, J.L. Sotelo, G. Ovejero, J.A. Melero, Synthesis and characterisation of iron-containing SBA-15 mesoporous silica, Stud. Surf. Sci. Catal.142 (2002) 1109-1116.
    [6]Z. Gabelica, A. Charmot, R. Vataj, R. Soulimane, J. Barrault, S. Valange, Thermal degradation of iron chelate complexes adsorbed onmesoporous silica and alumina, J. Thermal Anal. Calorim.95 (2009) 445-454.
    [1]G. Centi, S. Perathoner, T. Torre, M.G. Verduna, Catalytic wet oxidation with H2O2 of carboxylic acids on homogeneous and heterogeneous Fenton-type catalysts, Catal. Today 55 (2000)61-69.
    [2]G. Centi, S. Perathoner, G. Romeo,31-O-03-Fe/MFI as a new heterogeneous Fenton-type catalyst in the treatment of wastewater from agroindustrial processes, Stud. Surf. Sci. Catal.135 (2001)181.
    [3]K. Fajerwerg, H. Debellefontaine, Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5:a promising catalyst, Appl. Catal. B:Environ. 10 (1996)L229-L235;
    [4]F. Larachi, S. Levesque, A. Sayari,47th Canadian Conference on Chemical Engineering, Edmonton, Alberta, Wet oxidation of acetic acid by H2O2 catalyzed by transition metal-exchanged NaY zeolites, J. Chem. Technol. Biotechnol.73 (1998) 127-130.
    [5]M.B. Kasiri, H. Aleboyeh, A. Aleboyeh, Degradation of acid blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst, Appl. Cat. B:Environ. 84 (2008) 9-15.
    [6]M. Tekbas, H.C. Yatmaz, N. Bektas, Heterogeneous photo-Fenton oxidation of reactive azo dye solutions using iron exchanged zeolite as a catalyst, Micropor. Mesopor. Mat.115 (2008) 594-602.
    [7]V. K. Maduna, K. Andrea; T. Vesna, Z. Stanka, Characterization and activity of Cu/ZSM5 catalysts for the oxidation of phenol with hydrogen peroxide, Chem. Eng. J.31 (2008) 398-403.
    [8]A. Chen, X. Ma, H. Sun, Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites, J. Hazard. Mater.156 (2008) 568-575.
    [9]S. Parra, V. Nadtotechenko, P. Albers, J. Kiwi, Discoloration of Azo-Dyes at Biocompatible pH-Values through an Fe-Histidine Complex Immobilized on Nafion via Fenton-like Processes, J. Phys. Chem. B,108 (2004) 4439.
    [10]N. Al-Hayek, M. Dore, Oxydation des phenols par le peroxyde d'hydrogene en milieu aqueux en presence de fer supporte sur alumine, Water Res.24 (1990) 973.
    [11]H. Sueh, Y.H. Huang, C.Y. Chen, Novel activated alumina-supported iron oxide-composite as a heterogeneous catalyst for photooxidative degradation of reactive black 5, J. Hazard. Mater. B 129 (2006) 228-233.
    [12]M. Inbasekaran, S. Meenakshisundaram, Photoassisted Fenton mineralisation of Acid Violet 7 by heterogeneous Fe(Ⅲ)-Al2O3 catalyst, Catal. Commun.,8(2007)981-986
    [13]M. Inbasekaran, S. Meenakshisundaram, Highly solar active Fe(Ⅲ) immobilised alumina for the degradation of Acid Violet 7, Sol. Energ. Mat. Sol. C.92 (2008)857-863
    [14]J.A. Zazo, J.A. Casas, A.F. Mohedano, J.J. Rodriguez, Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst, Appl. Cat. B:Environ.65 (2006) 261.
    [15]J.H. Ramirez, F.J. Maldonado-Hodar, A.F. Perez-Cadenas, C. Moreno-Castilla, C.A. Costa, L.M. Madeira, Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts, Appl. Cat. B:Environ.75 (2007) 312.
    [16]A. Rey, M. Faraldos, J.A. Casas, J.A. Zazo, A. Bahamonde'and J.J. Rodriguez, Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts:Influence of iron precursor and activated carbon surface, Appl. Cat. B:Environ.86(2009) 69-77
    [17]R.M. Liou, S.H. Chen, M.Y. Hung, C.S. Hsu, J.Y. Lai, Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution, Chemosphere 59(2005) 117-125.
    [18]J. Fernandez, M.R. Dhananjeyan, J. Kiwi, Evidence for Fenton photoassisted processes mediated by encapsulated Fe ions at biocompatible pH values, J. Phys. Chem.:B 104(2000) 5298.
    [19]J. Barrault, C. Bouchoule, J.-M. Tatibouet, M. Abdellaoui, A. Majeste, I. Louloudi, N. Papayannakos, N.H. Gangas, Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays, Stud. Surf. Sci. Catal.130 (2000) 749-754.
    [20]J. Barrault, M. Abdellaoui, C. Bouchoule, A. Majeste, J. M. Tatibouet, A. Louloudi, N. Papayannakos, N. H. Gangas, Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays, Appl. Cat. B:Environ.27 (2000) 225.
    [21]E. Guelou, J. Barrault, J. Fournier, J.-M. Tatibouet, Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron, Appl. Cat. B:Environ.44 (2003) 1-8.
    [22]C.B. Molina, J.A. Casas, J.A. Zazo, J.J. Rodriguez, A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation, Chem. Eng. J.118 (2006) 29-35.
    [23]N.R. Sanabria, M.A. Centeno, R. Molina, S. Moreno, Pillared clays with Al-Fe and Al-Ce-Fe in concentrated medium:Synthesis and catalytic activity, Appl. Catal. A 356 (2009) 243-249.
    [24]K. Lazar, G. Calleja, J.A. Melero, F. Martinez, R. Molina, Influence of synthesis routes on the state of Fe-species in SBA-15 mesoporous materials, Stud. Surf. Sci. Catal. 154(2004)805-812.
    [25]G. Calleja, J.A. Melero, F. Martinez, R. Molina, Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol, Water Res.39 (2005) 1741.
    [26]F. Martinez, G. Calleja, J.A. Melero, R. Molina, Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst, Appl. Catal. B 60 (2005) 181.
    [27]J.A. Melero, G. Calleja, F. Martinez, R. Molina, Nanocomposite of crystalline Fe2O3 and CuO particles and mesostructured SBA-15 silica as an active catalyst for wet peroxide oxidation processes, Catal. Commun.7 (2006) 478-483
    [28]J.A. Melero, G. Calleja, F. Martinez, R. Molina, M.I. Pariente, Nanocomposite Fe2O3/SBA-15:An efficient and stable catalyst for thecatalytic wet peroxidation of phenolic aqueous solutions, Chem. Eng. J.131 (2007) 245-246.
    [29]N. Gokulakrishnan, A. Pandurangan, P. K. Sinha, Catalytic wet peroxide oxidation technique for the removal of decontaminating agents ethylenediaminetetraacetic acid and oxalic acid from aqueous solution using efficient Fenton type Fe-MCM-41 mesoporous materials, Ind. Eng. Chem. Res. 48 (2009)1556-1561.
    [30]J. Roggenbuck, G. Koch, M. Tiemann, Synthesis of mesoporous magnesium oxide by CMK-3 carbon structure replication, Chem. Mater.18 (2006) 4151-4156.
    [31]R. Pechini, US Patent 3,330,697 (1967).
    [32]M. Bonne, N. Bion, F. Pailloux, S. Valange, S. Royer, J.-M. Tatibouet, D. Duprez, Improved oxygen mobility in nanosized mixed-oxide particles synthesized using a simple nanocasting route, Chem. Commun. (2008) 4504.
    [33]F. Martinez, Y. Jhan, G. Stucky, J.L. Sotelo, G. Ovejero, J.A. Melero, Synthesis and characterisation of iron-containing SBA-15 mesoporous silica, Stud. Surf. Sci. Catal.142(2002)1109-1116.
    [34]J. Carriazo, E. Guelou, J. Barrault, J.-M. Tatibouet, R. Molina, S. Moreno, Catalytic wet peroxide oxidation of phenol by pillared clays containing Al-Ce-Fe,Water.Res.39 (2005) 3891-3899.
    [35]S. Valange, A. Charmot, J. Barrault, A. Louati, Z. Gabelica, Insertion of Fe2O3 nanoparticles in SBA-15 mesopores and evaluation of their textural and redoxcharacteristics, Stud. Surf. Sci. Catal.170A (2007) 531-538.
    [36]Z. Gabelica, A. Charmot, R. Vataj, R. Soulimane, J. Barrault, S. Valange, Thermal degradation of iron chelate complexes adsorbed onmesoporous silica and alumina, J. Thermal Anal. Calorim.95 (2009) 445-454.
    [1]W. F. Libby, Promising catalyst for auto exhaust, Science,171(1971),499; R. J. H. Voorhoeve, J. P. Jr. Remeika, P. E. Freeland, B. T. Mathias, Rare-earth oxides of manganese and cobalt rival platinum for the treatment of carbon monoxide in auto exhaust,Science,1972.
    [2]L. G. Tejuca, J. L. G. Fierro, "Properties and Applications of LnFeO3-Type Oxide", Academic Press, New York,1993.
    [3]K. Urasaki, K. Tokunaga, Y. Sekine, M. Matsukata, E. Kikuchi, Production of hydrogen by steam reforming of ethanol over cobalt and nickel catalysts supported on perovskite-type oxides,Catal. Commun.,9(2008),600; G. Sierra Gallego, C. Batiot-Dupeyrat, J. Barrault, E. Florez, F. Mondragon, Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor-Characterization of carbon deposition Catal. Today,133-135(2008),209.
    [4]C. Guo, X. Zhang, J. Zhang, Y. Wang, Preparation of La2NiO4 catalyst and catalytic performance for partial oxidation of methane J. Molec. Catal. A:Chem., 2007,269,254; G. C. de Araujo, S. Lima, M. do Carmo Rangel, V. La Parola, M. A. Pena, J. L. G. Fierro, Characterization of precursors and reactivity of LaNi1-xCoxO3 for the partial oxidation of methane Catal. Today,107-108(2005), 906.
    [5]R. Zhang, H. Alamdari, S. Kaliaguine, Fe-based perovskites substituted by copper and palladium for NO+CO reaction, J. Catal.,2006,242,241; J.P. Dacquin, C. Dujardin, P. Granger, Surface reconstruction of supported Pd on LaCoO3: Consequences on the catalytic properties in the decomposition of N2O,J. Catal., 253(2008),37.
    [6](a) S. Royer, B. Levasseur, H. Alamdari, J. Barbier Jr., D. Duprez, S. Kaliaguine, Mechanism of stearic acid oxidation over nanocrystalline La1-xA'xBO3 (A'=Sr, Ce; B=Co, Mn):The role of oxygen mobility Appl. Catal. B,80(2008),51; (b) J. Faye, Ph.D. Thesis, Universite de Poitiers,2007.
    [7]R. Leanza, I. Rossetti, L. Fabbrini, C. Oliva, L. Forni, Perovskite catalysts for the catalytic flameless combustion of methane:Preparation by flame-hydrolysis and characterisation by TPD-TPR-MS and EPR Appl. Catal. B,2000,28,55.
    [8]A. E. Giannakas, A. A. Leontiou, A. K. Ladavos, P. J. Pomonis, Characterization and catalytic investigation of NO+CO reaction on perovskites of the general formula LaxM1-xFeO3 (M=Sr and/or Ce) prepared via a reverse micelles microemulsion route,Appl. Catal. A,309(2006),254.
    [9]S. Royer, A. Van Neste, R. Davidson, S. McIntyre, S. Kaliaguine; Methane oxidation over nanocrystalline LaCo1-xFexO3:Resistance to SO2 poisoning,Ind. Eng. Chem. Res.,2004,43,5670; S. Royer, F. Berube, S. Kaliaguine, Appl. Catal. A,2005,282,273; G. L. Chiarello, I. Rossetti, L. Forni, Flame-spray pyrolysis preparation of perovskites for methane catalytic combustion,J. Catal.,236(2005), 251.
    [10]S. Royer, D. Duprez, S. Kaliaguine, Role of bulk and grain boundary oxygen mobility in the catalytic oxidation activity of LaCo1-xFexO3 J. Catal.,234(2005), 364.
    [11]M. Bonne, N. Bion, F. Pailloux, S. Valange, S. Royer, J.-M. Tatibouet, D. Duprez, Improved oxygen mobility in nanosized mixed-oxide particlessynthesized using a simple nanocasting route, Chem. Commun., (2008) 4504
    [12]H. C. Lee, H. J. Kim, C. H. Rhee, K. H. Lee, J. S. Lee, S. H. Chung, Synthesis of nanostructured r-alumina with a cationic surfactant and controlled amounts of water.Micro. Meso. Mater.,79(2005),61.
    [13]J. Barrault, M. Abdellaoui, C. Bouchoule, A. Majeste, J. M. Tatibouet, A.Louloudi, N. Papayannakos, N. H. Gangas, Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays, Appl. Catal. B 27 (2000) 225.
    [14]G. Calleja, J.A. Melero, F. Martinez, R. Molina, Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol, Water Res.39 (2005) 1741
    [15]H. Lim, J. Lee, S. Jin, J. Kim, J. Yoon, T. Hyeon, Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica, Chem. Commun.,2006,463.
    [1]Naim MM, El Abd YM, Removal and recovery of dyestuffs from dyeingwastewaters, Sep. Purif. Methods.31 (2002) 171-228.
    [2]J. Barrault, C. Bouchoule, J.-M. Tatibouet, M. Abdellaoui, A. Majeste, I. Louloudi, N. Papayannakos, N.H. Gangas, Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays, Stud. Surf. Sci. Catal.130 (2000) 749-754.
    [3]J. Barrault, M. Abdellaoui, C. Bouchoule, A. Majeste, J. M. Tatibouet, A. Louloudi, N. Papayannakos, N. H. Gangas, Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays, Appl. Catal. B 27 (2000) 225.
    [4]E. Guelou, J. Barrault, J. Fournier, J.-M. Tatibouet, Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron, Appl. Catal. B 44 (2003) 1-8.
    [5]C.B. Molina, J.A. Casas, J.A. Zazo, J.J. Rodriguez, A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation, Chem. Eng. J.118 (2006) 29-35.
    [6]N.R. Sanabria, M.A. Centeno, R. Molina, S. Moreno, Pillared clays with Al-Fe and Al-Ce-Fe in concentrated medium:Synthesis and catalytic activity, Appl. Catal. A 356 (2009) 243-249.
    [7]J.Y. Feng, X.J. Hu, P.L. Yue, Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of orange Ⅱ, Environ. Sci. Technol.38(2004) 269-275.
    [8]O.S. N. Suma, J.Y. Feng, X.J. Hub, P. L. Yue, Photo-assisted Fenton mineralization of an azo-dye acid black 1 using a modified laponite clay-based Fe nanocomposite as a heterogeneous catalyst, Top. Catal.33(2005) 233-243.
    [9]D.Alain, P.Sabine, M. Francois, F. Francois, V. Philippe, J. Emmanuel, Hydrothermal synthesis, between 75 and 150℃, of high-charge, ferric nontronites, Clays Clay Miner.56(2008) 322-337.
    [10]M.V. Sivaiah, S. Petit, J. Brendle, P. Patrier, Rapid synthesis of aluminium polycations by microwave assisted hydrolysis of aluminium via decomposition of urea and preparation of Al-pillared montmorillonite, manuscript to be communicated to Appl. Clay Sci..
    [11]S. L. Shu, M. Gurol, Catalytic Decomposition of hydrogen peroxide on iron oxide:kinetics, mechanism, and implications, Environ. Sci. Technol. 32(1998)1417-1423
    [12]H. Zhang, J.H. Zhang, C.Y. Zhang, F. Liu, D.B. Zhang, Degradation of C.I. acid orange 7 by the advanced Fenton process in combination with ultrasonic irradiation, Ultrason. Sonochem.16 (2009) 325-330.
    [13]J. Herney-Ramirez, M. Lampinen, M. A. Vicente, C. A. Costa, L. M. Madeira, Experimental design to optimize the oxidation of orangeⅡ dye solution using a clay-based Fenton-like catalyst, Ind. Eng. Chem. Res.47(2008) 284-294.
    [14]Montgomery, C. Design and Analysis of Experiments,6th ed.; John Wiley & Sons:New York,2005,1-643.
    [15]F. Ay, E.C. Catalkaya, F. Kargi, A statistical experiment design approach for advanced oxidation of Direct Red azo-dye by photo-Fenton treatment, J. Hazard. Mater.162 (2009) 230-236.
    [16]Q. Beg, V. Sahai, R. Gupta, Statistical media optimization and alkaline protease production fromBacillus mojavensis in a bioreactor, Process Biochem.39 (2003) 203-209.
    [17]R.L. Mason, R.F. Gunst, J.L. Hess, Statistical Design and Analysis of Experiments,Eighth Applications to Engineering and Science, second ed., Wiley, New York,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700