水溶性量子点荧光探针的制备及其分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水溶性量子点具有良好的生物应用前景,近年来受到了广泛的关注。与合成油溶性量子点相比,制备水溶性量子点具有试剂价廉、反应条件温和、无需手套箱等特殊反应装置的优点。因此,水相合成量子点已经发展成为量子点合成领域一种重要的方法。为了进一步提高产物质量,简化反应步骤,发展更加便捷的水相量子点合成新方法是目前量子点合成领域的研究热点之一。利用制备的高发光效率水溶性量子点,发展动物重大传染病(猪传染性胸膜肺炎和禽流感)标志物的检测新方法,对控制疾病的传播、减少经济损失、维护我国公共卫生安全具有重要的意思。除此之外,水溶性量子点的化学发光和电化学发光性质研究较少,利用水溶性量子点高灵敏的化学发光和电化学发光性质发展重金属离子和过氧化氢的分析新方法,对控制农业土壤环境污染和水中活性氧的检查具有重要的意义。本论文的主要工作是发展水相量子点的合成新方法;针对猪传染性胸膜肺炎和禽流感两种动物重大传染病,发展更加快速、灵敏的检测新方法;研究水溶性量子点的化学发光和电化学发光性质及其发展重金属离子和过氧化氢的分析新方法。论文主要工作如下:
     (1)采用超声辅助法,制备了一种小尺寸、水溶性CdSe量子点;通过紫外-可见吸收光谱、高分辨透射电子显微镜、X射线粉末衍射对合成产物的光学性质、尺寸、形貌和晶体结构进行了表征,探讨了可能的反应机理。这些研究为CdSe量子点的合成提供了一种新的思路,也为其他量子点的合成提供了一种可借鉴的新方法。
     (2)以亚碲酸钠为碲源,谷胱甘肽为表面修饰试剂,通过简便的一步合成法在水溶液中制备了高发光效率的、低毒的、生物相容性较好的水溶性CdTe量子点;通过紫外-可见吸收光谱、荧光光谱、X射线粉末衍射、X射线光电子能谱、高分辨透射电子显微镜对合成产物的发光性质、晶体结构、尺寸和形貌就行了表征。在最优化的合成条件下,制备的CdTe量子点最高荧光量子产率达到84%。细胞成像和电化学发光实验表明,产物具有良好的荧光和电化学发光活性。
     (3)利用量子点荧光猝灭法,结合纳米金放大效应(溶解纳米金释放大量的金离子),发展了一种高灵敏、高通量检测猪传染性胸膜肺炎的新方法。在最优化的实验条件下,其线性范围为:1:8-1:512标准阳性血清稀释倍数;灵敏度为:1100倍标准阳性血清稀释倍数。与间接血凝实验(128倍标准阳性血清稀释倍数)和酶联免疫吸附法(320倍标准阳性血清稀释倍数)相比,本方法具有更高的灵敏度。对30份临床血清的检测结果表明,本方法与酶联免疫吸附法具有很高的符合率(90.0%)、敏感度(87.5%)和特异性(92.9%)。这为控制该病的传播提供了一种新的、更加灵敏的检测方法。同时,也为其他动物重大疾病标志物的检测提供了一种可以借鉴新思路。
     (4)利用免疫层析试纸条作为分离和免疫反应平台,结合纳米金放大效应,构建了一种基于量子点荧光猝灭的高灵敏检测禽流感病毒的新方法。在最优化的条件下,其相对荧光强度与病毒的浓度在2.7×10-11-1.2×10-9 g/mL呈良好的性线关系良好,检出限为9.0×10-11g/mL。与文献报道的方法相比,本方法具有更高的灵敏度。对20份临床血清检测结果表明,本方法和病毒分离法的符合率为90%,敏感性为100%,特异性为88.2%,假阳性为11.8%,假阴性为0,说明该方法具有很强的实际应用价值。
     (5)研究了巯基乙酸包裹的CdTe量子点的直接氧化化学发光,发现了尺寸决定的化学发光性质;研究了15种金属离子在量子点-双氧水化学发光体系中的行为及其反应机理;发展了一种基于量子点化学发光分别检测汞、铜、银离子的新方法。其灵敏度分别为3.0×10-8 mol/L(Ag+)、4.0×10-8 mol/L (Cu2+)、6.7×10-8 mol/L (Hg2+)。
     (6)研究了巯基包裹的CdTe量子点的直接电化学发光性质,探讨了影响电化学发光强度的各种因素,包括量子点浓度、扫描速率、溶解氧的量,发展了一种基于量子点直接电化学发光检测过氧化氢的新方法。在最优化条件下,其线性范围为:2.0×10-7~1.0×10-5mol/L;灵敏度为:6.0×10-8mol/L。:对浓度为1×10.6 mol/L过氧化氢测定10次,其相对标准偏差是4.82%。与其他伏安生物传感器检测检测过氧化氢的方法相比,本方法具有更高的灵敏度。最后探讨了可能的反应机理。
Due to the potential application in biology, water-soluble quantum dots (QDs) have been attracted much attention in recent years. Compared with the synthesis of TOPO-capped QDs, direct preparation of QDs in aqueous solution has several advantages, such as simple, rapid, efficient and low-cost. Up to date, aqueous-phase synthesis of QDs has been developed an important method. In order to improve the quality of QDs and simplify the reaction process, development of a facile method for the synthesis of QDs is also important in the further. Based on the excellent luminescence properties of QDs, development of QDs-based fluorescence immunoassay for the detection of disease of animals is extremely suitable for detecting, preventing, or controlling animal-borne disease outbreaks.In addition, the chemiluminescence (CL) and electrogenerated chemiluminescence (ECL) properties of QDs were seldom investigated. Therefore, development of QDs-based CL and ECL methods for the analysis of heavy metal ions and hydrogen peroxide with high sensitivity are very important in soil environment protection field and active oxygen detection. The main results were as follows:
     (1)A novel method for the preparation of water-soluble and small-particle size CdSe QDs has been proposed under high-intensity ultrasonic irradiation. The as-prepared products have been characterized by Ultraviolet-visible (UV-vis) absorption spectra, X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM).A possible reaction mechanism was also investigated.
     (2) A simple, rapid, cost-efficient and convenient method has been developed for synthesis of water-soluble CdTe QDs in ambient atmospheric conditions.Using this method, the preparation of Te precursor and growth of CdTe QDs were achieved with one-step synthesis route. Under the optimal conditions, the as-prepared CdTe QDs possessed a high photoluminescence quantum yield (84%), a narrow size distribution (full width at half maximum=30 ran), small particle size (2.6nm) and low cytotoxicity. The photoluminescence and ECL behaviors of as-prepared CdTe QDs show their potential application in cell imaging and ECL biosensing with high sensitivity.
     (3)We detected the antibody of Actinobacillus Pleuropneumoniae (APP) using a QDs-based indirect fluroimmunoassay. Under the optimal conditions, the linear range for the dilution coefficient of the ApxIV antibody (standard positive serum) was in the dilution range of 1:8-1:512.The limits of detection (LOD)for the assay was 1100 times dilution of standard positive serum. Compared with the LOD of ApxⅣ-ELISA (320 times dilution) and IHA(128 times dilution), the proposed method had a higher sensitivity for the determination of ApxⅣantibody of APP.This is the first investigation for measuring the ApxIV antibody via the quenching effect of AuCl4- to QDs, and it showed great potential for numerous applications in immunoassays. We believe that the proposed method is extremely suitable for detecting, preventing, or controlling animal-borne disease outbreaks.
     (4) We have developed QDs-AuCl4--based immunochromatographic strip biosensor for the simple, rapid and sensitive detection of avian influenza (AI) virus.Under the optimal conditions, the linear range for the concentration of AI virus was in the range of 2.7×10-9-3.2×10-8 g/mL. The LOD for the assay was 9.0×10-10g/mL. This sensor has the benefits of conventional GITS and high sensitivity of QDs probe, and shows potential application in animal-borne disease. Compared with previously reported methods, the proposed method had high sensitivity for the detection of AI virus. In combination with multiplex GITS,this sensor will allow multiplexed detection of viruses and will make a portable device possible for point-of-care applications.
     (5) The behaviors of 15 kinds of metal ions in the thiol-capped CdTe QDS-H2O2 CL reaction were investigated in detail. The results showed that Ag+, Cu2+ and Hg2+ could inhibit CdTe QDs and H2O2 CL reaction. A novel CL method for the selective determination of Ag+, Cu2+ and Hg2+ was developed, based on their inhibition of the reaction of CdTe QDs and H2O2. Under the optimal conditions, good linear relationships were realized between the CL intensity and the.logarithm of concentrations of Ag+,Cu2+ and Hg2+.The linear ranges were from 2.0×10 to 5.0×10-8 mol/L for Ag+, from 5.0×10-6 to 7.0×10-8 mol/L for Cu2+ and from 2.0×10-5 to 1.0×10-7 mol/L for Hg2+, respectively. The LOD (S/N=3) were 3.0×10-8,4.0×10-8 and 6.7×10-8 mol/L for Ag+, Cu2+ and Hg2+, respectively. A possible mechanism for the inhibition of CdTe QDs and H2O2 CL reaction was also discussed.
     (6) The ECL from thiol-capped CdTe QDs was investigated.The ECL emission was occurred at-1.1 V and reached a maximum value at-2.4 V when the potential was cycled between 0.0 and-2.5V. The reduced species of CdTe QDs could react with the coreactants to produce the ECL emission. The CdTe QD concentration(6.64×10-7 mol/L)of ECL is lower than that (1.0×10-3 mol/L)of CL. Based on the enhancement of light emission from thiol-capped CdTe QDs by H2O2 in the negative electrode potential, a novel method for the determination of H2O2 was developed. The light intensity was linearly proportional to the concentration of H2O2 between 2.0×10-7 and 1.0×10-5 mol/L with a LOD of 6.0×10-8 mol/L.Compared with most of previous reports, the proposed method has higher sensitivity for the determination of H2O2. In addition, the ECL spectrum of thiol-capped CdTe QDs exhibited a peak at around 620 nm, which was substantially red shifted from the FL spectrum, suggesting the surface states play an important role in this ECL process.
引文
1.Aldeek F, Balan L, Medjahdi G,Roques-Carmes T, Malval J P, Mustin C, Ghanbaja J, Schneider R. Enhanced Optical Properties of Core/Shell/Shell CdTe/CdS/ZnO Quantum Dots Prepared in Aqueous Solution. J Phys Chem C,2009,113: 19458-19467.
    2.Alivisatos A P. Semiconductor clusters, nanocrystals and quantum dots. Science, 1996,271:933-937.
    3.Authier L, Grossiord C,Brossier P. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem,2001,73:4450-4456.
    4. Bae Y, Myung N, Bard A J. Electrochemistry and Electrogenerated Chemiluminescence of CdTe Nanoparticles.Nano Lett,2004,4:1153-1161.
    5.Bae Y, Lee D C, Rhogojina E V,Jurbergs D C, Korgel B A, Bard A J. Electrochemistry and Electrogenerated Chemiluminescence of Films of Silicon Nanoparticles in Aqueous Solution. Nanotechnology,2006,17:3791-3797.
    6.Bailey R E, Nie S M. Alloyed semiconductor quantum dots:tuning the optical properties without changing the particle size. J Am Chem Soc,2003,125: 7100-7106.
    7.Bakalova R, Zhelev Z, Ohba H, Baba Y.Quantum Dot-Conjugated Hybridization Probes for Preliminary Screening of siRNA Sequences.J Am Chem Soc,2005,127: 11328-11335.
    8.Bao H B,Gong Y J, Li Z, Gao M Y. Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals:Toward Highly Fluorescent CdTe/CdS Core-Shell Structure.Chem Mater,2004,16:3853-3859.
    9. Bao H F, Wang E, Dong S J. One-Pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent CdTe-Cystine Nanocomposites. Small,2006,2:476-480.
    10.Blackall P J, Klaasen H L B M, Bosch H V D, Kuhnert P, Frey J. Proposal of a new serovar of Actinobacillus pleuropneumoniae:serovar 15.Vet Microbiol,2002,84: 47-52
    11.Borchert H, Talapin D V, Gaponik N, Ginley C M, Adam S,Lobo A, Moller T, Weller H. Relations between the Photoluminescence Efficiency of CdTe Nanocrystals and Their Surface Properties Revealed by Synchrotron XPS.J Phys Chem B,2003,107:9662-9668.
    12.Bruchez M J, Moronne M, Gin P, Weiss S, Alivisatos A P. Semiconductor nanocrystals as fluorescent biological labels.Science,1998,281:2013-2015
    13.Byrne S J, Corr S A, Rakovich T Y, Gun'ko Y K, Rakovich Y P, Donegan J F, Mitchellc S,Volkovc Y.Optimisation of the synthesis and modification of CdTe quantum dots for enhanced live cell imaging. J Mater Chem,2006,16:2896-2902.
    14. Chan W C W, Nie S.Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281:2016-2018.
    15.Chan W C W, Maxwell D J, Gao X H, Bailey R E, Han M Y, Nie S M. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotech, 2002,13:40-46.
    16.Chang E, Thekkek N, Yu W W, Colvin V L, Drezek R. Evaluation of Qdot cytotoxicity based on intracellular uptake.Small,2006,2:1412-1417.
    17. Chemseddine A, Weller H. Highly Monodisperse Quantum Sized CdS Particles by Size Selective Precipitation. Ber Bunsen-Ges Phys Chem,1993,97:636-637.
    18.Chen Y F, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes. Anal Chem,2002,74:5132-5138.
    19.Chen S J, Chang H T. Red-Adsorbed Gold Nanoparticles for Selective Determination of Thiols Based on Energy Transfer and Aggregation. Anal Chem,2004,76: 3727-3734.
    20.Chen J F, Jin M L, Yu Z J, Dan H B, Zhang A D, Song Y F, Chen H C.A latex agglutination test for the rapid detection of avian influenza virus subtype H5N1 and its clinical application. J Vet Diagn Invest,2007,19:155-160.
    21.Chen L P, Sheng Z H, Zhang A D, Guo X B, Li J K,Han H Y, Jin M L. Quantum-dots-based fluoroimmunoassay for the rapid and sensitive detection of avian influenza virus subtype H5N1.Luminescence,2010, DOI 10.1002/bio.1167.
    22.Choi C, Kwon D, Min K, Chae C. Detection and localization of ApxⅠ,-Ⅱ, and-Ⅲ genes of Actinobacillus pleuropneumoniae in natural porcine pleuropneumonia by in situ hybridization. Vet Pathol,2001,38:390-395.
    23.Choi H S,Liu W,Misra P, Tanaka E, Zimmer J P, Itty Ipe B,Bawendi M G, Frangioni J V.Renal clearance of quantum dots. Nat Biotechnol,2007,25: 1165-1170.
    24.Clapp A R, Medintz I L, Mattoussi H. Forster Resonance Energy Transfer Investigations Using Quantum Dot Fluorophores.Chem Phys Chem,2006,7:47-57.
    25.Claudia T, Alessandra Q, Angela T, Liberato M, Roberto C, Teresa P. Synthesis and Biological Assay of GSH Functionalized Fluorescent Quantum Dots for Staining Hydra vulgaris. Bioconjugate Chem,2007,18:829-835.
    26.Dabbousi B O,Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G.(CdSe)ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites.J Phys Chem B,1997,101:9463-9475.
    27. Dequaire M, Degrand C, Limoges B.Electrochemical metalloimmunoassay based on a colloidal gold label.Anal Chem,2000,72:5521-5528.
    28.Deng Z t, Yan H, Liu Y.Band Gap Engineering of Quaternary-Alloyed ZnCdSSe Quantum Dots via a Facile Phosphine-Free Colloidal Method. J Am Chem Soc,2009, 131:17744-17745.
    29.Dhas N A, Suslick K S.Sonochemical Preparation of Hollow Nanospheres and Hollow Nanocrystals. J Am Chem Soc,2005,127:2368-2369.
    30.Ding Z F, Quinn B M, Haram S K, Pell L E,Korgel B A, Bard A J. Electrochemistry and electrogenerated chemilumines-cence from silicon nanocrystal quantum dots. Science,2002,296:1293-1297.
    31.Eastman P S,Ruan W M, Doctolero M, Nuttall R, Feo G,Park J S,Chu J S F, Cooke P, Gray J W, Li S, Chen F F. Qdot Nanobarcodes for Multiplexed Gene Expression Analysis.Nano Lett,2006,6:1059-1064.
    32.Efros A L.Interband absorption of light in a semiconductor sphere. Sov Phys Semicond,1982,16:772-775.
    33.Ekimov A I, Onushchenko A A. Quantum size effect in the optical-spectra of semiconductor micro-crystals.Sov Phys Semicond,1982,16:775-778.
    34.Ellis T M, Bousfield R B, Bissett L A, Dyrting K C, Luk G S M, Tsim S T, Sturm-Ramirez K, Webster R G, Guan Y, Peiris J S M. Investigation of outbreaks of highly pathogenic H5N1 avian influenza in waterfowl and wild birds in Hong Kong in late 2002.Avian Pathology,2004,33:492-505.
    35.Evans S A G,Elliott J M, Andrews L M, Bartlett P N, Doyle P J, Denuault G. Detection of hydrogen peroxide at mesoporous platinum microelectrodes.Anal Chem,2002,6:1322-1326.
    36.Fahnrich K A, Pravda M, Guilbault G G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta,2001,54:531-540.
    37. Fan A P, Lau C, Lu J Z. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label.Anal Chem,2005,77:3238-3242.
    38.Fenwick B W, Henry S.Porcine pleuropneumonia. J Am Vet Med Assoc,1994,204: 1334-1340.
    39. Fu A H, Micheel C M, Cha J, Chang H, Yang H, Alivisatos A P. Discrete nanostructures of quantum dots/Au with DNA. J Am Chem Soc,2004,126: 10832-10833.
    40.Gao X, Cui Y, Levenson R M, Chung L W, Nie S M. In vivo cancer targeting and imaging with semiconductor quantum dots.Nat Biotechnol,2004,22:969-976.
    41.Gaponik N, Talapin D. V, Rogach A. L, Hoppe K, Shevchenko E. V, Kornowski A, Eychmuller A, Weller H. Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes. JPhys Chem B,2002,106:7177-7185.
    42.Gattas-Asfura K M, Leblanc R M.Peptide-coated CdS quantum dots for the optical detection of copper(Ⅱ) and silver(Ⅰ).Chem Commun,2003,21:2684-2685.
    43.Ge J, Li Y, Yang G. Mechanism of aqueous ultrasonic reaction:controlled synthesis, luminescence properties of amorphous cluster and nanocrystaline CdSe. Chem Commun,2002,17:1826-1827.
    44.Ge C W, Xu M, Liu J, Lei J P, Ju H X. Facile synthesis and application of highly luminescent CdTe quantum dots with an electrogenerated precursor. Chem Commun, 2008,4:450-452.
    45.Gerion D, Chen F Q, Kannan B, Fu A H, Parak W J,Chen D J, Majumdar A, Alivisatos A P. Room-Temperature Single-Nucleotide Polymorphism and Multiallele DNA Detection Using Fluorescent Nanocrystals and Microarrays. Anal Chem,2003, 75:4766-4772.
    46.Georges J, Arnaud N, Parise L. Limitations arising from optical saturation in fluorescence and thermal lens spectrometries using pulsed laser excitation: application to the determination of the fluorescence quantum yield of rhodamine 6G. Appl Spectrosc,1996,50:1505-1511.
    47.Gill R, Zayats M, Willner I.Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed,2008,47:7602-7625.
    48.Goldman E R, Anderson G P, Tran P T, Mattoussi H, Charles P T, Mauro J M. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem,2002a, 74:841-847.
    49. Goldman E R, Balighian E D, Mattoussi H, Kuno M K, Mauro J M, Tran P T, Anderson G P. Avidin:A natural bridge for quantum dot-antibody conjugates. J Am Chem Soc,2002b,124:6378-6382.
    50.Goldman E R, Clapp A R, Anderson G P, Uyeda H T, Mauro J M, Medintz I L, Mattoussi H.Multiplexed toxin analysis using four colors of quantum dot fluororeagents.Anal Chem,2004,76:684-688.
    51.Guarise C, Pasquato L, Filippis V D, Scrimin P. Gold nanoparticles-based protease assay. Proc Natl Acad Sci U S A,2006,103:3978-3982.
    52. Guo J, Yang W L, Wang C C. Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions.J Phys Chem B,2005,109:17467-17473.
    53.Haesebrouck F, Chiers K, Overbeke I V, Ducatelle R. Actinobacillus pleuropneumoniae infections in pigs:the role of virulence factors in pathogenesis and protection. Vet Microbiol.,1997,58:239-249.
    54.Han M, Gao X, Su J Z, Nie S.Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol,2001,19:631-635.
    55.Han H Y, You Z H, Liang J G,Sheng Z H. Electrogenerated Chemiluminescence of CdSe Quantum Dots Dispersed in Aqueous Solution. Front Biosci,2007a,12: 2352-2357.
    56.Han H Y, Sheng Z H, Liang J G.Electrogenerated chemiluminescence from thiol-capped CdTe quantum dots and its sensing application in aqueous solution. Anal Chim Acta,2007b,596:73-78.
    57.Harrison M T, Kershaw S V, Rogach A L, Kornowski A, Eychmuller A, Weller H. Wet chemical synthesis of highly lumiscent HgTe/CdS core/shell nanocrystal.Adv Mater, 2000,12:123-125.
    58.He Y Q, Liu S P, Kong L, Liu Z F. A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim Acta Part A,2005,61:2861-2866.
    59. He Y, Lu H T, Sai L M, Lai W Y, Fan Q L, Wang L H, Huang W. Microwave-Assisted Growth and Characterization of Water-Dispersed CdTe/CdS Core-Shell Nanocrystals with High Photoluminescence.J Phys Chem B,2006,110: 13370-13374.
    60.He Q, Velumani S, Du Q, Lim C W,Ng F K, Donis R, Kwang J. Detection of H5 avian influenza viruses by antigen-capture enzyme-linked immunosorbent assay using H5-specific monoclonal antibody. Clin Vaccine Immunol,2007a,14:617-623.
    61.He Y, Sai L M, Lu H T, Hu M, Lai W Y, Fan Q L, Wang L H, Huang W. Microwave-Assisted Synthesis of Water-Dispersed CdTe Nanocrystals with High Luminescent Efficiency and Narrow Size Distribution. Chem Mater,2007b,19: 359-365.
    62.He Y, Lu H T, Sai L M, Su Y Y, Hu M, Fan C H, Huang W,Wang L H. Microwave Synthesis of Water-Dispersed CdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with Excellent Photostability and Biocompatibility. Adv Mater,2008,9999:1-6.
    63.Hines M A, Scholes G D. Colloidal PbS nanocrystals with size-tunable nearinfrared emission:observation of post-synthesis self-narrowing of the particle size distribution. Adv Mater,2003,15:1844-1849.
    64. Hoffmann B, Harder T, Starick E, Depner K, Werner 0, Beer M. Rapid and highly sensitive pathotyping of avian influenza A H5N1 virus by using real-time reverse transcription-PCR. JClin Microbiol,2007,45:600-603.
    65.Hu D H, Han H Y, Zhou R, Dong F, Bei W C, Jia F, Chen H C.Gold(Ⅲ) enhanced chemiluminescence immunoassay for detection of antibody against ApxIV of Actinobacillus pleuropneumoniae.Analyst,2008,133:768-773.
    66.Hua L J, Han H Y, Zhang X J. Size-dependent electrochemiluminescence behavior of water-soluble CdTe quantum dots and selective sensing of 1-cysteine.Talanta,2009a, 77:1654-1659.
    67.Hua L J, Han H Y, Chen H B.Enhanced electrochemiluminescence of CdTe quantum dots with carbon nanotube film and its sensing of methimazole. Electrochimica Acta, 2009b,54:1389-1394.
    68.Hua L J, Zhou J J, Han H Y.Direct electrochemiluminescence of CdTe quantum dots based on room temperature ionic liquid film and high sensitivity sensing of gossypol. Electrochimica Acta,2010,55:1265-1271.
    69.Huang H L, Zhou R, Fan H Y, Dan H B, Chen M L, Yan L, Bei W C, Chen H C. Generation of monoclonal antibodies and epitope mapping of ApxIVA of Actinobacillus pleuropneumoniae. Mol Immunol,2006,43:2130-2134.
    70.Huang S,Xiao Q, He Z K, Liu Y, Tinnefeld P, Su X R, Peng X N. A high sensitive and specific QDs FRET bioprobe for MNase. Chem Commun,2008,45:5990-5992.
    71.Jaglic Z, Svastova P, Rychlik I,Nedbalcova K, Z. Kucerova, Pavlik I, Bartos M. Differentiation of Actinobacillus pleuropneumoniae by PCR-REA based on sequence variability of the apxIVA gene and by ribotyping. Vet Microbiol,2004,103:63-69.
    72.Jaiswal J K, Mattoussi H, Mauro J M, Simon S M. Long-term multiple color imaging of live cells using quantum dot biocon-jugates. Nat Biotechnol,2003,21:47-51.
    73.Jiang Q Q, Nie F, Lu J R. Chemiluminescence determination of bromhexine hydrochloride with morin as chemiluminescent reagent. Luminescence,2008,23: 32-36.
    74. Jiang H, Wang X M. Anodic electrochemiluminescence of CdSe nanoparticles coreacted with tertiary amine and halide induced quenching effect. Electrochem Commun,2009,11:1207-1210.
    75.Jie G F, Liu B, Miao J J, Zhu J J. Electrogenerated chemiluminescence from CdS nanotubes and its sensing application in aqueous solution. Talanta,2007,71: 1476-1480.
    76.Jie G F, Huang H P, Sun X L, Zhu J J. Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin. Biosens Bioelectron,2008a,23: 1896-1899.
    77. Jie G F, Zhang J J, Wang D C, Cheng C, Chen H Y, Zhu J J. Electrochemiluminescence Immunosensor Based on CdSe Nanocomposites. Anal Chem,2008b,80:4033-4039.
    78.Jie G F, Li L L, Chen C, Xuan J, Zhu J J. Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosens Bioelectron,2009,24:3352-3358.
    79.Jin W J, Fernandez-Arguelles M T, Costa-Fernandez J M, Pereiro R, Sanz-Medel A. Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chem Commun,2005:883-885.
    80.Juzenas P, Chen W, Sun Y P, Coelho N M A, Generalov R, Generalova N, Christensen I L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Delivery Rev,2008,60:1600-1614.
    81.Klostranec J M, Chan W C W. Quantum dots in biological and and Biomedical research:recent progress and present challenges. Adv Mater,2006,18:1953-1964.
    82.Kawde A N, Wang J. Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanalysis, 2004,16:101-107.
    83.Kim S,Lim Y T, Soltesz E G,DeGrand A M, Lee J, Nakayama A, Parker J A, Mihaljevic T, Laurence R G,Dor D M, Cohn L H, Bawendi M G,Frangioni J V. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol,2004,22:93-97.
    84.King D W, Cooper W J, Rusak S A, Peake B M,Kiddle J J, O'Sullivan D W, Melamed M L, Morgan C R, Theberge S M. Flow Injection Analysis of H2O2 in Natural Waters Using Acridinium Ester Chemiluminescence:Method Development and Optimization Using a Kinetic Model. Anal Chem,2007,79:4169-4176.
    85.Larson D R, Zipfel W R, Williams R M, Clark S W, Bruchez M P, Wise F W, Webb W W.Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science,2003,300:1434-1436.
    86. Law W C, Yong K T, Roy I, Ding H, Hu R, Zhao W W, Prasad P N. Aqueous-Phase Synthesis of Highly Luminescent CdTe/ZnTe Core/Shell Quantum Dots Optimized for Targeted Bioimaging. Small,2009,5:1302-1310.
    87. Lee M S,Chang P C,Shien J H, Cheng M C, Shieh H K.Identification and subtyping of avian influenza viruses by reverse transcription-polymerase chain reaction. J Virol Meth,2001,1997:13-22.
    88.Li L,Qian H F,Ren J C.Rapid Synthesis of Highly Luminescent CdTe Nanocrystals in Aqueous Phase by Microwave Irradiation with Controllable Temperature. Chem Commun,2005:528-530.
    89. Li J G,Zhao F J, Ju H X. Simultaneous determination of psychotropic drugs in human urine by capillary electrophoresis with electrochemilumines-cence detection. Anal Chim Acta,2006,575:57-61.
    90.Li H B,Zhang Y, Wang X Q, Xiong D J, Bai Y Q.Mater Lett,2007,61:1474-1477.
    91.Liang J G,Ai X P, He Z K, Pang D W. Functionalized CdSe quantum dots as selective silver ion chemodosimeter. Analyst,2004,129:619-622.
    92.Liang R Q,Li W,Li Y,Tan C Y,Li J X,Jin Y X,Ruan K C.An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Research,2005,33:1-8.
    93.Liu X, Jiang H, Lei J P, Ju H X. Anodic Electrochemiluminescence of CdTe Quantum Dots and Its Energy Transfer for Detection of Catechol Derivatives. Anal Chem,2007,79:8055-8060.
    94.Liu X, Ju H X. Coreactant Enhanced Anodic Electrochemiluminescence of CdTe Quantum Dots at Low Potential for Sensitive Biosensing Amplified by Enzymatic Cycle. Anal Chem,2008,80:5377-5382.
    95.Liu G D, Mao X, Phillips J A, Xu H, Tan W H, Zeng L W. Aptamer-Nanoparticle Strip Biosensor for Sensitive Detection of Cancer Cells. Anal Chem,2009a,81: 10013-10018.
    96.Liu X, Guo L, Cheng L X, Ju H X. Determination of nitrite based on its quenching effect on anodic electrochemiluminescence of CdSe quantum dots.Talanta,2009b, 78:691-694.
    97.Liu Y F,Yu J S.Selective synthesis of CdTe and high luminescence CdTe/CdS quantum dots:The effect of ligands. J Colloid Interface Sci,2009c,333:690-698.
    98.Maier E, Reinhard N, Benz R, Frey J. Channel-forning activity and channel size of the RTX toxins Apx Ⅰ,Apx Ⅱ and ApxⅢ of Actinobacillus pleuropneumoniae. Infect Immun,1996,64(11):4415-4423.
    99. Mao, X, Ma Y Q, Zhang A G,Zhang L R, Zeng L W, Liu G D.Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem, 2009,81:1660-1668.
    100. Mekis I,Talapin D V, Kornowski A, Haase M, Weller H. One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and "Greener" Chemical Approaches. J Phys Chem B,2003,107:7454-7462.
    101.Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S,Li J J, Sundaresan G,Wu A M, Gambhir S S,Weiss S.Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science,2005,307:538-544.
    102.Murray C B,Norris D J, Bawendi M G.Synthesis and characterization of nearly monodisperse. CdE (E=S, Se,Te) semiconductor nanocrystallites.J Am Chem Soc, 1993,115:8706-8715.
    103.Myung N, Ding Z F, Bard A J. Electrogenerated chemilumines-cence of CdSe nanocrystals. Nano Lett,2002,2:1315-1319.
    104.Myung N, Bae Y, Bard A J. Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals.Nano Lett,2003,3:1053-1055.
    105.Myung N, Lu X, Johnston K P, Bard A J. Electrogenerated chemiluminescence of Ge nanocrystals. Nano Lett,2004,4:183-185.
    106.Nielsen R, Bosch J F V D, Plambeck T, Surensen V, Nielsen J P. Evaluation of an indirect enzyme-linked immunosorbent assay (ELISA) for detection of antibodies to the Apx toxins of Actinobacillus pleuropneumoniae.Vet Microbiol,2000,71:81-87.
    107.Parak W J, Gerion D, Zanchet D, Woerz A S,Pellegrino T, Michael C,Williams S C, Seitz M, Bruehl R E, Bryant Z, Bustamante C, Bertozzi C R, Alivisatos A P. conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots.Chem Mater,2002,14:2113-2119.
    108.Peng X G,Schlamp M C, Kadavanich A V, Alivisatos A.P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J Am Chem Soc,1997,119:7019-7029.
    109.Peng Z A, Peng X G. Formation of high-quality CdTe, CdSe,and CdS nanocrystals using CdO as. Precursor. J Am Chem Soc,2001,123:183-184.
    110. Peng H, Zhang L J, Soeller C, Travas-Sejdic J. Preparation of water-soluble CdTe/CdS core/shell quantum dots with enhanced photostability. Journal of Luminescence,2007a,127:721-726.
    111.Peng Z F, Chen Z P, Jiang J H, Zhang X B,Shen G L,Yu R Q.A novel immunoassay based on the dissociation of immunocomplex and fluorescence quenching by gold nanoparticles. Anal Chim Acta,2007b,583:40-44.
    112.Peng X G.An essay on synthetic chemistry of colloidal nanocrystals. Nano Research, 2009,2:425-447.
    113.Pietryga J, Schaller R, Werder D, Stewart M, Klimov V, Hollingsworth J.Pushing the band gap envelope:mid-infrared emitting colloidal PbSe quantum dots. J Am Chem Soc,2004,126:11752-11753.
    114.Powe A M, Fletcher K A, StLuce N N, Lowry M, Neal S, McCarroll M E, Oldham P B, McGown L B, Warner I M. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal Chem,2004,76:4614-4634.
    115.Poznyak S K, Talapin D V, Shevchenko V E, Weller H. Quantum dot chemiluminescence. Nano Lett,2004,4:693-698.
    116. Poznyak KS,Osipovich N P, Shavel A, Talapin D V, Gao M, Eychmulller A, Gaponik N. Size-dependent electrochemical behavior of thiol-capped cdTe nanocrystals in aqueous solution. JPhys Chem B,2005,109:1094-1100.
    117.Qian H F,Dong C Q,Weng J F,Ren J C.Facile One-Pot Synthesis of Luminescent, Water-Soluble, and Biocompatible Glutathione-Coated CdTe Nanocrystals. Small, 2006a,2:747-751.
    118.Qian H F, Qiu X, Li L, Ren J C.Microwave-Assisted Aqueous Synthesis:A Rapid Approach to Prepare Highly Luminescent ZnSe(S) Alloyed Quantum Dots. J Phys Chem B,2006b,110:9034-9040.
    119. Qian X M, Nie S M. Single-Molecule and Single-Nanoparticle SERS:From Fundamental Mechanisms to Biomedical Applications. Chem Soc Rev,2008,37: 912-920.
    120. Qu L H, X. G.Peng. Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc,2002,124:2049-2055.
    121.Rajh T, Micic O I, Nozik A J. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots. J Phys Chem,1993,97:11999-12003.
    122.Ren T,Xu J Z,Tu Y F,Xua S,Zhu J J. Electrogenerated chemiluminescence of CdS spherical assemblies. Electrochem Commun,2005,7:5-9.
    123.Rogach A L, Katsikas L, Kornowski A, Su D, Eychmuller A, Weller H. Semiconductor Nanocrystal Quantum Dots:Synthesis, Assembly, and Characterization of Thiol-Stabilized CdTe Nanocrystals. Ber Bunsen-Ges Phys Chem, 1996,100:1772-1778.
    124. Rogach A L, Franzl T, Klar T A, Feldmann J, Gaponik N, Lesnyak V, Shavel A, Eychmulller A, Rakovich Y P, Donegan J F. Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals:State-of-the-Art. JPhys Chem C,2007,111:14628-14637.
    125.Rurack K, Kollmannsberger M, Resch-Genger U, Daub J. A selective and sensitive fluoroionophore for HgⅡ, AgⅠ, and CuⅡ with virtually decoupled fluorophore and receptor units. J Am Chem Soc,2000,122:968-969.
    126. Schaller A, Kuhn R, Kuhnert P, Nicolet J, Anderson T J, Maclnnes J I, Segers R P A M, Frey J. Characterization of apxIVA, a new RTX determinant of Actinobacillus pleuropneumoniae. Microbiol,1999,145:2105-2116.
    127. Schmelz 0, Mews A, Basche T, Herrmann A, Mullen K. Supramolecular complexes from CdSe nanocrystals and organic fluorophors.Langmuir,2001,17:2861-2865.
    128.Shen L, Cui X, Qi H, Zhang C.Electrogenerated chemiluminescence of ZnS nanoparticles in alkaline aqueous solution. JPhys Chem C,2007,111:8172-8175.
    129.Sheng Z H, Han H Y, Hu D H, Liang J G, He Q G, Jin M L, Zhou R, Chen H C. Quantum dots-gold(Ⅲ)-based indirect fluorescence immunoassay for high-throughput screening of APP.Chem Comm,2009,18:2559-2561.
    130.Shi W, Ma H M. Rhodamine B thiolactone:a simple chemosensor for Hg2+ in aqueous media. Chem Commun,2008,18:1856-1858.
    131.Shin S J, Bae J L, Cho Y W, Yang M S, Kim D, H. Expression of apxIA of Actinobacillus pleuropneumoniae in Saccharomyces cerevisiae. J Vet Sci,2003,4: 225-228.
    132.Smith A M, Duan H W, Mohs A M, Nie S M. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Advanced Drug Delivery Reviews,2008,60: 1226-1240.
    133.Su Y Y, Wang J, Chen G N. Study on the enhancement of electrochemiluminescence of luminol-H2O2 system by sulphonated cobalt(Ⅱ) phthalocyanine. Anal Chim Acta, 2005,551:79-84.
    134.Su Y Y, He Y, Lu H T, Sai L M, Li Q N, Li W X, Wang L H, Shen P P, Huang Q, Fan C H. The cytotoxicity of cadmium-based, aqueous phasesynthesized, quantum dots and its modulation by surface coating. Biomater,2009,30:19-25.
    135.Sun L F, Bao L, Hyun B R, Bartnik A C, Zhong Y W, Reed J C,Pang D W, Abrun H D, Malliaras G G,Wise F W. Electrogenerated Chemiluminescence from PbS Quantum Dots. Nano Letters,2009,9:789-793.
    136.Talapin D V, Rogach A L, Shevchenko E V, Kornowski A, Haase M, Weller H. Detection of shallow electron traps in quantum-sized CdS particles using dithiolenes. JAm Chem Soc,2002,124:5782-5790.
    137.Wang G Z, Wang Y W, Chem W, Liang C H, Li G H, Zhang L D.A facile synthesis route to CdS nanocrystals at room temperature. Mater Lett,2001,48:269-272.
    138.Wang Z P, Li J, Liu B,Hu J Q, Yao X, Li J H. Chemiluminescence of CdTe Nanoccystals Induced by Direct Chemical Oxidation and Its Size-Dependent and Surfactant-Sensitized Effect. JPhys Chem B,2005,109:23304-23311.
    139.Wang C L, Zhang H, Zhang J H, Li M J, Sun H Z, Yang B.Application of Ultrasonic Irradiation in Aqueous Synthesis of Highly Fluorescent CdTe/CdS Core-Shell Nanocrystals. JPhys Chem C,2007,111:2465-2469.
    140. Wang J, Liu G D, Wu H, Lin Y H. Quantum-Dot-Based Electrochemical Immunoassay for High-Throughput Screening of the Prostate-Specific Antigen. Small,2008,4:82-86.
    141.Wang Z P, Li JP, Liu BP, Li J H. CdTe nanocrystals sensitized chemiluminescence and the analytical application. Talanta,2009,77:1050-1056.
    142.Webster R G, Wright S M, Castrucci M R, Bean W J, Kawaoka Y.Influenza a model of an emerging virus disease.Intervirology,1993,35:16-25.
    143.Wilson R. The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev, 2008,37:2028-2045.
    144. Wu X Y, Liu H J, Liu J Q, Haley K N, Treadway J A, Larson J P, Ge N F, Peale F, Bruchez M P.Immunofluorescent labeling of cancer marker Her and other cellular targets with semiconductor quantum dots. Nat Biotechnol,2003,21:41-46.
    145.Wu C L, Cheng X W, He H F, Lv X, Wang J W,Deng R Q, Long Q X, Wang X Z. A multiplex real-time RT-PCR for detection and identification of influenza virus types A and B and subtypes H5 and N1.J Virol Methods,2008,148:81-88.
    146.Xie H Y, Liang J G, Zhang Z L, Liu Y, He Z K, Pang D W. Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe. Spectrochim Acta Part A,2004,60: 2527-2530.
    147. Xing R M, Wang X Y, Yan L L, Zhang C L, Yang Z, Wang X H, Guo Z J. Fabrication of water soluble and biocompatible CdSe nanoparticles in apoferritin with the aid of EDTA.Dalton Trans,2009,10:1710-1713.
    148.Yang L J, Li Y B.Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst,2006, 131:394-401.
    149.Yang P, Li Y X, Wang P, Wang L. A sensitive inhibition chemiluminescence method for the determination of trace tannic acid using the reaction of luminol-hydrogen peroxide catalysed by tetrasulphonated manganese phthalocyanine. Luminescence, 2007,22:46-52.
    150. Yoon J H, Chae W S,Im S J, Kim Y R. Mild synthesis of ultra-small CdSe quantum dots in ethylenediamine solution. Mater Lett,2005,59:1430-1433.
    151.Yu J H, Ju H X. Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor deposition method. Anal Chem,2002,74: 3579-3583.
    152.Yu W W, Qu L H, Guo W Z, Peng X G. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem Mater,2003,15: 2854-2860.
    153.Yuan J P, Guo W W, Wang E K. Utilizing a CdTe Quantum Dots-Enzyme Hybrid System for the Determination of Both Phenolic Compounds and Hydrogen Peroxide. Anal Chem,2008,80:1141-1145.
    154.Zeng Q H, Kong X G,Sun Y J, Zhang Y L, Tu L P, Zhao J L, Zhang H.Synthesis and Optical Properties of Type Ⅱ CdTe/CdS Core/Shell Quantum Dots in Aqueous Solution via Successive Ion Layer Adsorption and Reaction. J Phys Chem C,2008, 112:8587-8593.
    155.Zhang H, Wang L, Xiong H, Hu L, Yang B,Li W. Hydrothermal Synthesis for High-Quality CdTe Nanocrystals.Adv Mater,2003a,15:1712-1715.
    156.Zhang H, Zhou Z, Yang B,Gao MY.The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles. J Phys Chem B,2003b,107:8-13.
    157. Zhang A D, Jin M L, Liu F F, Guo X B, Hu Q Y, Han L, Tan Y D, Chen H C. Development and evaluation of a DAS-ELISA for rapid detection of avian influenza viruses. Avian Dis,2006a,50:325-330.
    158.Zhang H, Wang D, Yang B,Mohwald H. Manipulation of Aqueous Growth of CdTe Nanocrystals To Fabricate Colloidally Stable One-Dimensional Nanostructures.J Am Chem Soc,2006b,128:10171-10180.
    159. Zhang L H,Shang L, Dong S J. Sensitive and selective determination of Cu2+ by electrochemiluminescence of CdTe quantum dots. Electrochem Commun,2008a,10: 1452-1454.
    160.Zhang L H, Zou X Q,Ying E B,Dong S J. Quantum Dot Electrochemiluminescence in Aqueous Solution at Lower Potential and Its Sensing Application. JPhys Chem C, 2008b,112:4451-4454.
    161.Zhang Y, Li Y, Yan X P. Aqueous Layer-by-Layer Epitaxy of Type-II CdTe/CdSe Quantum Dots with Near-Infrared Fluorescence for Bioimaging Applications. Small, 2009,5:185-189.
    162.Zheng Y G, Gao S J, Ying J Y. Synthesis and cell-imaging application of glutathione-capped CdTe quantum dots. Adv Mater,2007a,19:376-380.
    163.Zheng Y G,Yang Z C, Ying J Y. Aqueous synthesis of glutathione-capped ZnSe and Znl-xCdxSe alloyed quan-turn dots. Adv Mater,2007b,19:1475-1479.
    164.Zheng Y G,Z C Yang, Li Y Q, Ying J Y.From Glutathione Capping to Crosslinked, Phytochelatin-Like Coating of Quantum Dots. Adv Mater,2008,20:3410-3415.
    165.Zhu J, Palchik O, Chen S,Gedanken A, Microwave Assisted Preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles. JPhy Chem B,2000,104:7344-7347.
    166.Zhu J J, Xu S,Wang H, Zhu J M, Chen H Y.Sonochemical synthesis of CdSe hollow spherical assemblies via an in-situ template route. Adv Mater,2003,12:156-159.
    167.Zou G,Ju H. Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal Chem,2004,76:6871-6876.
    168.Zou L, Z. Y. Gu, N. Zhang, Y L. Zhang, Z. Fang, W. H. Zhu, X. H. Zhong. Ultrafast synthesis of highly luminescent green-to near infrared-emitting CdTe nanocrystals in aqueous phase. J Mater Chem,2008,18:2807-2815.
    169. Li Y X, Yang P, Wang P, Huang X, Wang L.Nanotechnology 2007,18:1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700