烟气循环流化床半干法脱硫复合增湿特性及相关问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增湿是实现烟气循环流化床半干法高效脱硫的前提与关键,增湿方式对塔内脱硫反应过程的组织、脱硫剂利用率以及塔内粘壁等问题有重要影响,而现有的单一增湿方式难以在有效减轻粘壁的同时,实现高效的脱硫反应过程及脱硫剂利用率。以此为背景,本文提出一种新型的复合增湿方式,对复合增湿方式下塔内气-液-固三相的分布特性以及所涉及的循环脱硫灰增湿活化、液滴碰撞捕集脱硫剂颗粒活化等问题进行了研究,并提出了协同性的概念,对不同增湿方式下气-液-固三相的协同性进行了评价。
     本文首先研究了直流流化方式下采用复合增湿对脱硫塔内气-液-固三相分布特性的影响,并与塔内增湿进行对比。试验结果表明:直流流化方式下,与塔内增湿方式相比,采用复合增湿方式整体上并未改变气-液-固三相的分布规律,但能够降低塔内液滴的颗粒浓度与液滴粒径,合适的内外增湿配比在7/2-5.5/3.5之间(内增湿水量占总增湿水量的61-78%),此时,脱硫主反应区内最易粘壁处中心区域的液滴颗粒平均浓度降低幅度最高不超过10%,而壁面区域液滴颗粒平均浓度降低27%-37%,从而能在保证塔中心主反应区域液滴浓度变化较小的同时,有效减轻粘壁问题。
     为进一步提高脱硫剂的利用率,采用本所研制的一种旋/直流流化结构,研究了旋/直流流化方式下,采用复合增湿对塔内气-液-固三相分布特性的影响。结果表明:采用旋/直流流化结构后,旋流的加入增加了塔内固相颗粒的浓度,提高了塔内尤其是中下部区域三相的切向扰动,促进了传热传质的进行,有利于脱硫剂利用率及脱硫效率的进一步提高。旋/直流流化方式下采用复合增湿,塔内液滴的浓度及粒径分布整体上仍呈中心区域高、壁面区域低的趋势,但在脱硫主反应区域,与无旋流时各对应工况相比,液滴浓度普遍降低,液滴粒径则普遍升高;随着外增湿水量的增加,液滴颗粒浓度呈进一步下降趋势。由于复合增湿与旋流流化方式的共同作用,塔内液滴浓度降低很快,为兼顾有效减轻粘壁并保持塔内适当的液滴浓度,建议复合增湿配比在7/2(内增湿水量占总水量的78%)左右为宜。
     提出了脱硫塔内气-液-固三相协同性的概念;良好的协同性不仅要求塔内气-液-固三相在浓度分布上具有趋同性,更要保证塔内脱硫反应过程的优化,并尽量避免塔内粘壁等问题。在合适的增湿配比范围内,相对于塔内增湿方式,采用复合增湿能够提高塔内气-液-固三相的浓度分布协同性,优化组织脱硫反应过程,对提高脱硫剂的利用率有利,而且能在保持塔内高效离子液相脱硫反应的同时有效减轻粘壁问题,具有较好的协同性;在旋/直流流化方式下采用复合增湿,还能够充分利用脱硫塔下部因旋流的加入引起的强烈扰动和快速传热传质作用,使塔下部入口及壁面区域高浓度的脱硫剂尽可能参与反应,而且此时中心区域的液滴质量浓度降低幅度较小,仍能保持以离子液相脱硫反应为主,有利于脱硫反应的高效全面进行;另外,由于旋流自身对粘壁有一定的减轻作用,与复合增湿方式结合后,其对壁面液滴的干燥程度有了进一步的提高,因此更有利于解决塔内粘壁问题。
     以复合增湿方式的使用,以及增湿循环脱硫灰与飞灰/Ca(OH)_2水合系统成分的异同为切入点,本文首次系统研究了不同增湿水合条件下,CaSO_3在飞灰/Ca(OH)_2系统中对水合产物的物性及脱硫活性的影响规律。结果表明:在飞灰/Ca(OH)_2系统中,CaSO_3的存在能够增加水合产物中所含的矿物相种类,进一步增大水合产物的比表面积,提高水合产物的中小孔容,从而提高水合产物吸附SO_2的能力及Ca(OH)_2的利用率,而且CaSO_3所起的有利作用随着CaSO_3含量的增加而增大。另外,本文提出了用半干法烟气脱硫灰通过水合直接制备高活性脱硫剂的新思路并分析了其可行性,对实际应用中存在的问题以及复合增湿方式对脱硫灰的直接增湿活化效果也进行了分析。
     液滴与固相脱硫剂颗粒碰撞并活化形成碱性浆滴,是脱硫塔内进行快速离子液相脱硫反应的前提,因此必须提高液滴与固相颗粒的整体碰撞捕集效率。本文在已有的直流流化方式下液滴碰撞捕集颗粒模型的基础上,引入均匀切变场,建立了旋/直流流化方式下液滴碰撞捕集固相颗粒模型,以旋/直流流化方式下试验所得气-液-固三相参数的变化情况为依据,研究了不同因素对液滴捕集固相颗粒效率的影响。结果表明,在计算范围内,随着液滴粒径、固相颗粒粒径及喷水量的增加,颗粒的捕集效率均呈先降低后增加的变化趋势;随着液滴速度的增加,捕集效率呈增加趋势,但是当速度大于10m/s后,其变化不再明显;加入旋流后,并不影响捕集效率的整体变化趋势,但捕集效率获得一定程度的提高。脱硫塔内的沿程捕集效率可分为局部高效捕集区、平稳捕集区和低效捕集区三个区域,其中平稳捕集区域是液滴捕集颗粒最为重要的一个区域,也是离子液相脱硫反应进行的主要区域。适当的复合增湿配比对塔中心主反应区域内的捕集效率影响很小,而且还能优化脱硫反应过程,从整体上提高脱硫效率,并有效减轻粘壁问题。喷水增湿对塔内的飞灰颗粒团聚也有一定影响,通过比较喷水增湿前后飞灰颗粒粒径的变化,发现塔底灰颗粒粒径较大,循环灰粒径要明显大于除尘器排灰粒径,而除尘器排灰和入口灰样粒径分布相差不大。增湿后颗粒的粒径有明显增大趋势,颗粒团聚比较明显,其团聚形式主要包括三种:超细颗粒团聚体、较大颗粒为载体的团聚体和包衣结构体。
     本文最后建立了直流流化方式下烟气循环流化床半干法脱硫复合增湿模型,模拟了不同增湿工况下塔内温、湿度场的变化情况。结果表明:该模型模拟的塔内温度、水分及液滴浓度的分布趋势与试验所得趋势基本一致,而且能够比较精确地模拟脱硫塔出口区域平均温度和平均空气含湿量,因此,该模型对试验数据及结论分析提供了一定的补充及验证,对复合增湿试验及工业应用有一定指导作用。
Humidification is the precondition and key factor of achieving high desulfurization efficiency in semi-dry CFB-FGD technology. Humidification has a significant effect on the organization of desulfurization process, desulfurizer utilization efficiency and wall deposition in tower. The existing single humidification way can't achieve high efficient desulfurization process and high desulfurizer utilization efficiency as well as decreasing wall deposition effectively. A new composite humidification way is proposed in this paper. The distribution character of gas-liquid-solid phases was investigated under the condition of composite humidification way, the hydration activation of circulating desulfurization residues humidification and water droplets collision capture solid desulfurizer particles was also investigated in this paper. The concept of cooperativity was proposed and the cooperativity of gas-liquid-solid phases was also estimated under different humidification way.
     Firstly, the effect of composite humidification way on gas-liquid-solid phases distribution character was investigated under the conditions of straight flow fluidized way. The results show that, compared with in-tower humidification way, the distribution trend of gas-liquid-solid phases wasn't changed basically, but water droplet particle concentration and diameter were decreased in tower. The appropriate humidification water quality ratio of in-tower and out-tower was between 7/2 and 5.5/3.5 (the ratio of in-tower humidification water quality to total humidification water quality was between 61% and 78%). In the ratios mentioned previously, the average concentration of water droplets decrease less than 10% in the center area of tower and between 27% and 37% in the area near the wall respectively. Therefore it can decrease the possibility of wall deposition while ensure less change of water droplet concentration in main desulfurization reaction area in tower.
     In order to enhance desulfurizer utilization efficiency further, a kind of swirling-straight flow fluidization structure was adopted, and the effect of composite humidification way on gas-liquid-solid phases distribution character was investigated under swirling-straight flow fluidized way. Compared with straight flow fluidization way, the inner solid particle concentration was increased and tangential disturbance was enhanced in middle-lower part of tower under swirling-straight flow fluidization way, which is beneficial to accelerate heat and mass transfer and enhance desulfurizer utilization ratio and desulfurization efficiency. The impact of composite humidification way on water droplet particle concentration and diameter distribution rule was small. The distribution trend was still higher in center area of tower and lower in areas near the wall under the swirling-straight flow fluidization way. But compared with corresponding humidification condition of irrotational flow, the water droplet particle concentration was decreased and the water droplet particle diameter was increased in main desulfurization reaction area. The water droplet particle concentration was decreased further with the increase of out-tower humidification water quantity. Due to the cooperation of composite humidification way and swirling-straight flow fluidization way, the droplet concentration decreased very quickly in tower. Both the less possibility of wall deposition and higher water droplet concentration in tower were taken into consideration, an appropriate humidification water ratio of in-tower and out-tower as 7/2 (the ratio of in-tower humidification water to total humidification water is 78%) is proposed.
     The concept of gas-liquid-solid phases cooperativity was proposed. Good cooperativity was defined as having better tendency of gas-liquid-solid phases concentration distribution, better desulsurization reaction process and less possibility of wall deposition, among which the last two factors was more important. Compared with in-tower humidification way, the gas-liquid-solid phases concentration distribution cooperativity can be enhanced, the desulfurization reaction process can be rationally organized, high efficiency ion liquid phase desulfurization reaction and less possibility of wall deposition can be achieved simultaneously in appropriate humidification water quality ratio range of in-tower and out-tower; the better three phases cooperativity can be achieved under the condition of composite humidification way. Applying composite humidification way can make the best intensity disturbance, heat and mass transfer in middle-lower part of tower under swirling-straight flow fluidization way, which can make the desulfurizer of high concentration in the area of tower inlet and near the wall, and the ion reaction in liquid phase was still high efficiency because of less water droplet quality decrease in tower center area. All these were beneficial to high efficiency and complete desulfurization reaction process. In addition, the presence of swirling flow was beneficial to decrease wall deposition, and the water droplet evaporation can be enhanced further because of the combination with humidification way in the area of near tower wall, so the problem of wall deposition can be resolved obviously.
     Taking composite humidification way and the similarities and differences between circulation desulfurization residues composition and fly/Ca(OH)_2 hydration system as starting point, the effect of CaSO_3 on physical properties and desulfurization activity of hydration products in the fly ash/Ca(OH)_2 system is systematically investigated under different hydration conditions in this paper. The results indicates that the mineral species, BET SSA and middle-small pore volume of hydration products can be increased; the ability of SO_2 adsorption and Ca(OH)_2 utilization of hydration products can be enhanced if CaSO_3 is added to fly ash/Ca(OH)_2 system. According to these results, a new utilization way of using semi-dry FGD residues to prepare high activation desulfurizer directly was proposed and the feasibility was analyzed. The problems of this utilization way and the practicle humidification activation effect of composite humidification way on circulation FGD residues were also analyzed.
     The formation of alkaline slurry drops through water droplets collision to capture solid desulfurizer particles is the premise of high efficient ion desulfurization reaction in liquid phase. So the whole efficiency of water droplets capture solid particles must be enhanced in FGD tower. Based on water droplets collision and capture solid particles under straight flow fluidization way, the model of water droplets collided and capture solid particles under swirling-straight flow fluidization way was built. According to the related gas-liquid-solid phases parameters under swirling-straight flow fluidization way, the effect of different factors on capture efficiency was investigated. The results indicated that the capture efficiency was decreased at the beginning and then increased with the increase of water droplet diameter, solid particle diameter and water spray quantity. The capture efficiency was also increased with the increase of water droplet velocity, but the increase degree was not obvious when the water droplet velocity was faster than 10m/s. The general change trend of capture efficiency wasn't changed but capture efficiency was enhanced under swirling-straight flow fluidization way. The capture efficiency along the tower can be divided into three areas including high efficiency capture area, stable capture area and low efficiency capture area. The stable capture area was the most important area of water droplets capturing solid particles, and this area was also the main area for the defulfurization reaction in ion liquid phase. The effect of composite humidification way on water droplets collision and capture solid particles efficiency was small in the main defulfurization reaction area under the appropriate in-tower and out-tower humidification water quantity ratio. The whole desulfurization efficiency can be enhanced and the possibility of walldeposition can be decreased by means of rational organization of reaction process and water distribution. The effect of water spray on fly ash agglomeration was also investigated in this paper. By comparing solid particle diameter change of pre and post water spray, the diameter of ash particle at the bottom of the tower is the larger; the diameter of circulation ash particle is larger than that of ashes in dust collector, the distribution of ash particle diameter in dust collector was similar to that of the ashes in tower inlet. The solid particle diameter was significant enlarged and the phenomena of solid particle agglomeration was obvious after water spray humidification. The particle agglomeration types include superfine particle agglomerates, agglomerates carried by lager particle and coated body structure.
     Finally, a model to simulate the composite humidification way in semi-dry CFB-FGD system under straight flow fluidization way was built. Different conditions of temperature and humidity fields were simulated in this model. The results indicates that the simulated distribution trend of temperature, moisture concentration and water droplet concentration are very similar with the experimental results, and the average tower outlet temperature and average air humidity content also agree with the experimental measurement data. So this model can be used as a supplementary and a testifying method to the analysis of experimental data, which acts as a guide to the experiment and industrial application of composite humidification way.
引文
[1]冉莹,张运洲.我国的能源结构与电力规划[J].中国电力,1996,29(11):33-39.
    [2]安玉彬,刘旭东,田永春.二十一世纪中国能源发展的总趋势[J].能源工程,1999,(1):1-4.
    [3]郭予超.我国火电厂烟气脱硫现状及展望[J].华东电力,2001,29(9):1-7,52.
    [4]肖文德,吴志泉.二氧化硫脱除与回收[M].北京:化学工业出版社,2001.
    [5]曹仁江.酸雨的危害及防治措施[J].辽宁城乡环境科技,2003,23(4):6-8.
    [6]叶涛,李军,李宏伟.酸雨及燃煤电厂脱硫[J].中国电力企业管理,2003,(4):52-53.
    [7]刘彬.酸雨的形成、危害及防治对策[J].环境科学与技术,2001,25(4):21-23.
    [8]毛键雄,毛键全,赵树民.煤的清洁燃烧[M].北京:科学出版社,1998.
    [9]赵旭东,高继慧,吴少华,等.干法、半干法(钙基)烟气脱硫技术研究进展及趋势[J].化学工程,2003.31(4):64-67.
    [10]米浩林,马国骏.回流式烟气循环流化床脱硫技术[J].热力发电,1998,(2):57-59,61.
    [11]Graf R.et al.50,000 hours of commercial operating experience with advanced-design,reflux circulating fluid bed as reference for the world largest dry/semidry flue gas desuifurization unit(300MWe equivalent boiler capacity) to be built by WULLF[R].Power-Gen Conference.June 26-28,1996,Budapest,Hungary.
    [12]Graf R.et al.10000 hours commercial operating experience with advanced-design,reflux circulating fluid bed scrubbing employing slaked lime reagent EPRI/EPA/DOE SO_2 control symposium[R].March 28-31,1995,Miami,Florida,USA.
    [13]曹现峰,王增长.浅谈RCFB半干法烟气脱硫技术及其应用[J].山西能源与节能,2008,(4):25-26.
    [14]谢建军,钟秦.循环流化床烟气脱硫研究进展[J].重庆环境科学,2001,23(1):29-31,34.
    [15]冯道显.青山热电厂200MW燃煤机组RCFB烟气脱硫装置的特点[J].电力环境保护,2006,22(5):20-22.
    [16]程云驰,张经武,张春玲.排烟循环流化床脱硫技术综述[J].东北电力技术,1998,(1):23-27.
    [17]U.S.Department of Energy and AirPol.Inc.SO_2 Removal Using Gas Suspension Absorption Technology[R].Clean Coal Technology.Topical Report Number 4.1995.
    [18]杨柳春.半干法烟气脱硫技术在我国的应用[J].江西能源,2005,(3):24-26.
    [19]韩瑞锋,李瑛.引进GSA脱硫技术的分析与研究[J].昆明理工大学学报(理工版).2007,32(6):74-76,102.
    [20]高志平.气体悬浮吸收干法脱硫工艺[J].电力环境保护,2001,17(3):54-56.
    [21]薛建明,马果俊.欧洲三种烟气循环流化床脱硫技术及经济分析[J].中国环保产业,2003,(1):36-38.
    [22]赵旭东,马春元,董勇,等.75 t/h锅炉双循环流化床烟气脱硫装置研制及应用[J].中国电力,2002,35(3):62-65.
    [23]董勇,马春元,秦裕琨,等.双循环流化床烟气悬浮脱硫装置试验研究及工业应用[J].燃烧科学与技术,2003,9(6):525-528.
    [24]董勇,马春元,徐夕仁,等.双循环流化床烟气悬浮脱硫工艺[J].电站系统工程,2002,18(6):9-10.
    [25]董勇,马春元,秦裕琨.循环流化床烟气悬浮脱硫装置脱硫机理研究[J].潍坊学院学报,2002,2(6):57-60.
    [26]郝晓文.循环流化床悬浮脱硫复合流化与分离循环方式的试验研究[D].济南:山东大学硕士学位论文,2004.
    [27]葛介龙,周钓忠,张佩芳,等.NID脱硫除尘一体化技术在200MW机组上的应用[J].电力环境保护,2004,22(2):15-19,36.
    [28]葛介龙,王新龙,李文勇.NID工艺在国内的应用与研究[J].环境工程,2002,20(1):37-39.
    [29]马力,朱利民.NID半干法烟气脱硫技术及工程应用[J].工程建设与设计,2004,(8):17-19.
    [30]陈秋,宋国升,闫维明.NID干法脱硫技术的应用与探讨[J].河北电力技术,2007,26(5):19-20.
    [31]Yoon H,Stouffer M R,Rosenhoover W A,et al.Pilot process variable study of coolside desulfurization[J].Environment Process,1988,7(2):104-111.
    [32]Ueno T,Tsuchiai H,Nakamura H,et al.Flue gas cleaning technology using fly ash derived absorbent[J].Nippon Kagaku Kaishi,1994,(9):763-770.
    [33]Cooper J R,Collins R,Massey T H,et al.Sulphur removal from flue gases in the utility sector:practicalities and economics[J].Proceedings of the Institution of Mechanical Engineers.Part A.Journal of power and energy,1997,211(7):11-26.
    [34]Agnihotri R,Shriniwas S C and Mahuli S K.Sorbent/ash reactivation for enhanced SO_2capture using a novel carbonation technique[J].Ind.Eng.Chem.Res.,1999,38(3):812-819.
    [35]Tsuchiar H,Ishizuka T,and Nakamura H.Removal of sulfur dioxide from flue gas by the absorbent prepared from coal ash:effects of nitrogen oxide and water vapor[J].Ind.Eng.Chem.Res.,1996,35(3):851-855.
    [36]Izquierdo J F,Fite C,Cunill F,et al.Kinetic study of the reaction between sulfur dioxide and calcium hydroxide at low temperature in a fixed-bed reactor[J].Journal of Hazardous Materials,2000,B76:113-123.
    [37]Richard W.Rice,Gregory A.Bond.Flue gas desulfurization by in-duct dry scrubbing using calcium hydroxide[J].AIChE J.1990,36(3):473-477.
    [38]Krammer G,Brunner Ch,Khinast J,Staudinger G.Reaction of Ca(OH)_2 with SO_2 at low temperature[J],Ind.Eng.Chem.Res.,1997,36(5):1410-1418.
    [39]Irabien A,Cortabitarte F,Viguri J,Ortiz M I.Kinetics of flue gas desulfurization at low temperatures:nonideal surface adsorption model[J].Chem.Eng.Sci.,1992,47(7):1533-1543.
    [40]Ho C S,Shih S M,Liu C F,et al.Kinetics of the sulfation of Ca(OH)_2 at low temperatures[J].Ind.Eng.Chem.Res.,2002,41(14):3357-3364.
    [41]Liu C F,Shih S M,Lin R B.Kinetics of the reaction of Ca(OH)_2/fly ash sorbent with SO_2 at low temperatures[J].Chemical Engineering Science,2002,57(1):93-104.
    [42]Ruiz-Alsop R,Rochelle G T.Effect of relative humidity and additives on the reaction of sulfur dioxide with calcium hydroxide[R].Report prepared for US Environmental Protection Agency,1987.
    [43]Bhatia S K.Analysis of distributed pore closure in gas solid reaction[J].AICHE.1985,31:642-648.
    [44]Dennis J S,Hayhurst A N.A simplified analytical model for the rate of reaction of SO_2 with limestone particles[J].Chemical Engineering Science,1986,41:25-36.
    [45]刘海波,杨学富,钱枫,等.相对湿度对烟气脱硫效率的影响[J].北京轻工业学院学报,2000,18(1):1-4.
    [46]徐秀清,金茂庐,何榕,等.尾部烟气增湿活化脱硫原理性研究[J].洁净煤技术,1997,3(2):39-42.
    [47]陆永琪,徐瑾,郝吉明,等.提高钙基吸收剂脱硫活性的试验研究[J].环境工程,1998,16(5):30-33.
    [48]Ma X,Kaneko T,Tashimo T,et al.Use of limestone for SO_2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed[J].Chem.Eng.Sci.,2000,55(20):4643-4652.
    [49]Li Y Z,Tong H L,Ma C Y,et al.Analytic study on approach to adiabatic saturation temperature and the control scheme for the amount of water sprayed in the semi-dry FGD process[J].Fuel,2004,83(17/18):2255-2264.
    [50]段建中,孙敬阳,韩锐锋,等.高钙褐煤炉内喷钙脱硫试验研究[J].热力发电,2000,(3):15-16.
    [51]周月桂,章明川,范为东,等.神木煤灰增湿活化脱硫的半工业性台架试验研究[J].中国电机工程学报,2003,23(9):182-185.
    [52]傅昌强,何榕,姚金星,等.脱硫剂再循环悬浮床增湿活化反应器烟气脱硫技术[J].洁净煤技术,1998,4(3):48-50.
    [53]周英彪,郑瑛,史学峰,等.炉内喷钙及尾部增湿活化脱硫的中间试验研究[J].热能动力工程,2000,15(5):492-494.
    [54]张凡,张伟,杨霓云,等.半干半湿法烟气脱硫技术研究[J].环境科学研究,2000,13(1):60-64.
    [55]Gerald H.Newton,John Kramlich and Roy Payne.Modeling the SO_2-slurry droplet reaction.AIChEJ.,1990,36(12):1865-1872.
    [56]Mark R.Stouffer,Heeyoung Yoon and Francis P.Burke.An intevestigation of the mechanisms of flue gas desulfurization by in-duct dry sorent injection.Ind.Eng.Chem.Res.,1989,28(1):20-27.
    [57]Karel Svoboda,Weigang Lin,Jens Hannes,et al.Low-temperature flue gas desulfurization by alumina-CaO regenerable sorbent.Fuel,1994,73(7):1144-1150.
    [58]Hartman M and Tmka O.Reactions between calcium oxide and flue gas containing sulfur dioxide at low temperature.AIChE J.,1993,39(4):615-624.
    [59]Klingspor J,et al.A kinetic study of dry SO_2-limestone reaction at low temperature.Chem.Eng.Comm.,1983,22:81-103.
    [60]吴树志,赵长遂,刘现卓.增湿活化脱硫试验研究.热能动力工程,2001,16(5):491-493.
    [61]尹惠明,文云进,王德昌,等.半干半湿法烟气脱硫技术的研究[J].石油化工高等学校校报,1999,12(3):39-42.
    [62]滕斌,高翔,骆仲泱,等.分级喷水增湿对半干法烟气脱硫效率的影响[J].电力环境保护,2006,22(3):22-25.
    [63]高翔,刘海蛟,腾斌,等.多极增湿对半干法烟气脱硫影响的试验研究[J].浙江大学学报:工学版,2007,41(12):2082-2086.
    [64]王红梅,张凡,王凡,等.蒸汽输送在半干半湿法烟气脱硫中的应用[J].环境科学研究,2003,16(1):62-64.
    [65]张凡,王红梅,林军.Ca/S比小于1条件下半干半湿法烟气脱硫技术的研究[J].环境污染治理技术与设备,2004,5(2):31-34.
    [66]王凡,王红梅,张凡,等.半干半湿法烟气脱硫技术的原理及应用研究[J].安全与环境学报,2004,4(1):26-28,55.
    [67]李大冀,冯斌,吴颖海,等.循环流化床烟气脱硫多层喷水的试验研究及其产物分析[J].热能动力工程,2002,17(4):349-352.
    [68]冯斌,李大冀,吴颖海,等.循环流化床烟气脱硫多层喷水技术[J].污染防治技术,2002,15(2):5-8.
    [69]Yoon.Coolside desulfurization reactions and mechanism[J].Am.Chem.Soc.Div.Fuel Chem.Preper,1987,32(4):484.
    [70]Hill F F,Zank J.Flue gas desulrurization by spray dry absorption[J].Chemical Engineering and Processing,2000,39:45-52.
    [71]魏恩宗,程世庆,王乃华,等.半干法烟气脱硫性能试验及机理分析[J].电站系统工程,2003,19(1):49-52.
    [72]王乃华,骆仲泱,岑可法.半干法烟气脱硫喷嘴的雾化特性研究[J].燃料化学学报,2003,32(4):333-337.
    [73]朱金伟,高静,张凡.半干半湿法烟气脱硫装置中喷雾增湿技术的研究[J].环境污染治理技术与设备,2004,5(4):88-90.
    [74]陆永琪,侯栋岐,于荣华,等.钙基吸着剂增湿活化脱硫的试验研究[J].电站系统工程,1998,14(4):297-303.
    [75]杨柳春,张俊丰,杨文奇,等.增湿灰内循环流化床烟气脱硫工艺试验[J].湘潭大学自然科学学报,2006,28(2):84-88.
    [76]Yang H M,Kim S S.Experimental study on the spray characteristics in the spray drying absorber[J].Environ.Sci.Technol,2000,34(21):4582-4586.
    [77]赵旭东,项光明,姚强,等.循环流化床烟气脱硫吸收塔内结垢现象及机理分析[J].化工学报.2006,57(2):397-402.
    [78]赵旭东,吴少华,马春元,等.循环流化床烟气脱硫中过湿现象的实验研究与分析[J].动力工程,2002,22(3):1815-1818.
    [79]石应杰,王凡,王红梅,等.半干半湿法烟气脱硫雾化增湿设计[J].环境工程,2006,24(2):31-33.
    [80]赵旭东,马春元.循环流化床烟气悬浮脱硫技术中试及机理分析[J].环境科学,2002,23(2):109-112.
    [81]周月桂,王冬福,陆云峰,等.前置碱雾发生器内气液固多相流动的测量研究[J].动力工程,2007,27(2):273-277.
    [82]Zhang J,You C F,Chen C H,et al.Effect of near-wall air curtain on the wall deposition of droplets in a semidry flue gas desulfurization reactor[J].Environ.Sci.Technol.2007,41(12):4415-4421.
    [83]刘文铁,阮根健,孙洪宾.锅炉热工测试技术[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [84]Johan Bankel,Erik Olsson.Measurements of Particle Velocity in A Cyclone Separator Using Laser Doppler Anemometer[R].Proceedings of The 4th Inernational Conference on CFB,Augustl-5,1993,Pennsylvania,USA:630-635.
    [85]薛元.细颗粒在流动与温度边界层中的运动规律研究[D].北京:清华大学工学硕士学位论文,2002:17.
    [86]Dual PDA Reference Guide[Z].DANTEC Company.1995:125-150.
    [87]王士军.670t/h褐煤锅炉燃烧器区域流场特性的PDA试验研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,1999:18-20.
    [88]秦裕琨,吴少华,高继慧,等.内循环多级喷动流态化烟气脱硫塔[P].CN1724121A.2005.200510010119.8.
    [89]Yang Y,Jin Y,Yu Z,et al.Local slip behaviour in the circulating fluidized bed[J].AIChE Symp.Ser.,1993,89(286):81-90.
    [90]张力,李午申,蒲舸.烟气净化双流体喷嘴雾化特性实验[J].环境工程,2006,24(2):40-43.
    [91]王乃华,高翔,骆仲泱,等.石灰浆雾化喷嘴及其特性研究[J].热能动力工程,2001,16(93):247-249.
    [92]吴颖海,冯斌,黄震.循环流化床烟气脱硫试验研究及其数学模型[J].热能动力工程,1999,14(4):284-286.
    [93]Patridge G.A mathematical model of sulfur dioxide absorption into a calcium hydroxide slurry in a spray in a spray dryer[J].Chem.Eng.Commu.,1990,(96):97-112.
    [94]樊保国.循环流化床烟气脱硫试验研究[D].北京:清华大学硕士学位论文,1996.
    [95]葛介龙,张佩芳,周钓忠,等.几种半干法脱硫工艺机理的探讨[J].环境工程,2005.8,23(4):49-52.
    [96]郝晓文,马春元,黄盛珠,等.循环流化床脱硫塔直/旋流复合流化下的两相流场试验研究[J].热能动力工程,2005,20(5):497-500.
    [97]郝晓文,马春元,张立强,等.内旋/直流复合流化下循环流化床的脱硫[J].动力工程,2007,27(4):596-600.
    [98]张立强.烟气循环流化床脱硫塔物料内循环特性研究[D].济南:山东大学博士论文,2008.
    [99]Masters K.Spraay drying handbook[M].5~(rd) ed.New York:John Wiley & Sons.Inc.,1991.
    [100]佛明义,马明.喷雾干燥过程中粘壁问题的研究[J].石油化工设备,1989,18(5):36-37,35.
    [101]龚泽儒.CFB-FGD工艺烟气增湿过程温湿度场的试验研究[D].哈尔滨:哈尔滨工业大学硕士论文,2007.
    [102]高继慧,王帅,高建民,等.提升管内熟石灰浆液雾化脱除烟气中SO_2过程的研究[J].中国 电机工程学报,2007,27(29):40-44.
    [103]Paolo Davini.Investigation of the SO_2 adsorption properties of Ca(OH)_2-fly ash systems[J].Fuel,1996,75(6):713-716.
    [104]Lin R B,Shih S M.Characterization of Ca(OH)_2/fly ash sorbents for flue gas desulfurization [J].Powder Technology,2003,131:212-222.
    [105]李晓岩,钱枫.飞灰/石灰脱硫剂制备及其宏观结构研究[J].北京工商大学学报(自然科学版),2007,25(3):18-22.
    [106]Ho C,Shih S.Characteristics and SO_2 capture capacities of sorbents prepared from products of spray-drying flue gas desulfurization[J].Can.J.Chem.Eng.,1993,71(12):934-939.
    [107]Tsuchiai H,ishizuka T,Ueno T,et al.Highly active absorbent for SO_2 removal prepared from coal fly ash[J].Ind.Eng.Chem.Res.,1995,34(4):1404-1411.
    [108]Tsuchiai H,Ishizuka T,Nakamura H,et al.Study of flue gas desulfurization absorbent prepared from coal fly ash:effects of the composition of the absorbent on the activity[J].Ind.Eng.Chem.Res.,1996,35(7):2322-2326.
    [109]Kind K,Wasserman P,Rochelle G.Effects of salts on preparation and use of calcium silicates for flue gas desulfurization[J].Environ.Sci.Technol.,1994,28:277-283.
    [110]Giergiczny Z.Effect of some additives on the reactions in fly ash-Ca(OH)_2 system[J].Journal of Thermal Analysis and Calorimetry,2004,76:747-754.
    [111]Rajeev Agnihotri,Shriniwas S.Chauk,S.K.Mahuli,L.-S.Fan.Sorbent/Ash Reactivation for Enhanced SO_2 Captur Using a Novel Carbonation Technique[J].Ind.Eng.Chem.Res.,1999,38:812-819.
    [112]Fernandez J,Renedo M J,Pesquera A,Irabien J A.Effect of CaSO_4 on the structure and use of Ca(OH)_2/Fly ash sorbents for SO_2 removal[J].Powder Technology,2001,119:201-205.
    [113]Chu P,Rochelle G.Removal of SO_2 and NO(x) from stack gas by reaction with calcium hydroxide solids[J].J.Air Pollut.Control Assoc.,1989,39(2):175-179.
    [114]Joseph R.Peterson and Gary T.Rochelle.Aqueous reaction of fly ash and Ca(OH)_2 to produce calcium silicate absorbent for flue gas desulfurization[J].Environ.Sci.Technol.1988,22:1299-1304.
    [115]John F.Sanders,Tim C.Keener,and Jun Wang.Heated fly ash/hydrated lime slurries for SO_2 removal in spray dryer absorbers[J].Ind.Eng.Chem.Res.,1995,34:302-307.
    [116]Ho C S and Shih S M.Ca(OH)_2/Fly ash sorbents for SO_2 Removal[J].Ind.Eng.Chem.Res.1992,31:1130-1135.
    [117]Fan Y,Yin S,Wen Z and Zhoung J.Activation of fly ash and its effects on cement properties [J].Cement and Concrete Res.,1999,29(4):467-472.
    [118]Karatepe N,Ersoy-Mericboyu A,Demirler U,Kucukbayrak S.Determination of the reactivity of Ca(OH)_2 fly ash sorbents for SO_2 removal from flue gases[J].Thermochim.Acta,1998,319:171-176.
    [119]Lin R B,Shih S M,Liu C F.Structural properties and reactivities of Ca(OH)_2/fly ash sorbents for flue gas desulfurization[J].Ind.Eng.Chem.Res.,2003,42:1350-1356.
    [120]Sanders,et al.Heated fly ash/hydrated lime slurries of importance to sulfur dioxide reactivity potential[J].Environ.Sci.Technol.,1995,18(11):548-552.
    [121]Calvert S.Venturi et al.Atomizing scrubbers efficiency and pressure drop[J].AIChE,1970,16(3):3962-3966.
    [122]魏风.燃煤亚微米颗粒的形成和团聚机制的研究[D].武汉:华中科技大学博士论文,2005.
    [123]陆永琪,郝吉明,周中平,等.脱硫剂颗粒增湿活化过程的数学模拟[J].环境科学学报,2000,20(1):54-58.
    [124]魏风,张军营,郑楚光,等.燃煤超细颗粒团聚模拟研究[J].工程热物理学报,2005,26(3):515-517.
    [125]王雷,章明川,周月桂,等.活化器内液滴捕捉颗粒过程的数值模拟[J].中国电机工程学报,2005,25(11):85-87.
    [126]唐庆,徐旭常.排烟增湿脱硫活化反应器内液滴-脱硫剂颗粒碰撞的数值模拟[J].工程热物理学报,1996,17(3):367-370.
    [127]Tang S,Ma Y,Shiu C.Modelling the mechanical strength of fractal aggregates[J].Colloids and Surfaces,2001,180:7-16.
    [128]Akira Ogawa.Separation of particle from air and gases[M].CRC Press,Inc.Boca Raton,Florida,1984.
    [129]Mao D,Edwards J R,Kuznetsov A V,et al.Amodel for fine particle agglomeration in circulating fluidized bed absorbers[J].Heat and Mass Transfer,2002,38:379-388.
    [130]Kefa C,Jianren F,Zhongyang L.The prediction and measurement of particle behavior in circulating fluidized beds[R].Basu P,Large JF(eds) Circulating Fluidized Bed Technology Ⅱ.1988,213-221.Pergamon,Oxford,UK.
    [131]Neathery J K.Model for Flue-Gas Desulfurization in a Circulating Dry Scrubber[J].AIChE Journal,1996,42(1):259-268.
    [132]Yue W S,Li X L,Liu J F,et al.Characterization of PM2.5 in the ambient air of Shanghai city by analyzing individual particles[J].Science of the Total Environment.2006,(368):916-925.
    [133]Launder B E,Spalding D B.Lectures in mathematical models of turbulence[R].Academic Press,London,1972.
    [134]Shah T H,Liou W W,Shabbir A and Zhu J.A new k-e eddy viscosity model for high Reynolds number turbulent flows model development and validation[J].Computer Fluids,1995,24(3):227-238.
    [135]Yakhot V,Orzag S A.Renormalization group analysis of turbulence:Basic Theory[J].J Scient Comput,1986,1:3-11.
    [136]Morsi S A and Alexander A J.An Investigation of Particle Trajectories in Two-Phase Flow Systems[J].J.Fluid Mech..1972,55(2):193-208.
    [137]Walzel P.Liquid Atomization[J].International Chemical Engineering.1993,33(1):46-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700