内循环多级喷动流态化烟气脱硫技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“十五”期间,我国二氧化硫(SO2)排放量不但没有完成削减10%的控制目标,反而增加了27%。为此,国务院要求到2010年末,全国SO2排放总量要比“十五”末减少10%。这个目标能否实现,占全国二氧化硫排放总量一半以上的火电厂,能否脱硫成为问题的焦点。循环流化床烟气脱硫技术,具有造价低、脱硫效率适中、适合机组改造、用水量少,不产生二次废水等优点,已经成为我国优先推广使用的烟气脱硫技术之一。但是,该技术在实际应用中普遍存在脱硫剂利用率较低,脱硫塔塔体负荷适应性不强等问题。为了解决上述问题,本文提出了新型内循环多级喷动脱硫塔结构,通过变化的塔体横截面积和新型塔体内部构件,实现了强化脱硫剂、脱硫灰塔内稳定、均匀循环的目的,进而提高了脱硫剂的有效利用率。多级喷动塔内,一级塔体流速高、二级塔体流速低,使得在负荷降低时一级塔体速度降低值明显小于普通塔体。脱硫塔自身的负荷适应性得到增强。
     变化的塔体截面形成了下部塔体颗粒浓度稀疏,上部塔体颗粒浓度稠密的分布特点。依据该特点,提出了结合塔体级数,分段实施脱硫的工艺方案。即在一级塔体内部进行以气液传质反应为主的脱硫过程;二级塔体进行以气体和含湿颗粒传质反应为主的脱硫过程。
     本文首先在冷态试验台上进行了气固两相PDA试验和床层塌陷试验,研究了塔内气固流动和颗粒浓度分布规律。试验发现在文丘里入口和两级塔体连接处以及塔顶出口附近存在三个气固流动紊乱区域,这三个区域的流场复杂。多级喷动塔内形成稳定、均匀的颗粒内部循环,颗粒浓度整体分布上部稠密、下部稀疏,两级塔体平均颗粒浓度比可以达到4倍以上;截面变化有利于增加气固两相间的滑移速度;塔顶距离水平出口高度,有利于气固分离,从而提高塔内颗粒浓度。雨披导流装置能够强化颗粒内部循环。一级塔体壁面附近存在颗粒轴向脉动速度局部峰值区域。壁面附近颗粒脉动剧烈,有利于一级塔体颗粒高速冲刷塔体壁面,从而减小一级塔体壁面,因湿壁导致结垢等问题出现的可能。
     为了研究多级喷动脱硫塔内SO2脱除过程,优化其运行参数及方案,建立了热态试验台系统。采用在线测量SO2浓度装置和自行研制的夹层抽气式热电偶,研究了浆液雾化时SO2脱除过程和塔内温度场分布特性以及不同气液比、喷浆级数、不同雾化喷嘴结构等因素对脱硫过程的影响。以粉煤灰模拟脱硫灰,研究了入口灰浓度、两级喷浆量比例、不同喷嘴安装位置等对整体脱硫效率的影响,给出了优化后的运行参数及方案。
     应用Syamlal-Obrien-Symmetric(S-O-S)颗粒作用力模型和气固两相双流体(Two-Flow-Model,TFM)模型,对试验台内气固两相双组分流动进行了数值模拟。分析了时间步长、颗粒弹性恢复系数对模拟结果的影响。结果表明:两级塔体内大小颗粒速度变化对比趋势刚好相反,不同粒径颗粒的速度大小,呈现此消彼长的势头。在文丘里加速段、一级塔体、二级塔体三个区间,两种颗粒速度大小比较的规律为:小颗粒速度为高-低-高,大颗粒为低-高-低。不同粒径颗粒速度的交替变化有利于提高塔内颗粒脉动速度和气固滑移速度,进而强化传质过程。数值模拟结果与PDA测试结果吻合较好。
     建立了两段含湿颗粒干燥模型,该模型同时考虑了蒸汽二次换热和脱硫产物摩尔质量增加对干燥过程的影响。将该干燥模型与分段SO2传质模型及气固两相双流体模型耦合,编制了求解程序。应用该程序通过“UDF”接口,对“FLUENT”计算软件进行了二次开发。结果表明,该方法可对脱硫塔内SO2脱除过程进行较好的模拟。
     为一台20t/h燃煤链条锅炉应用该技术进行了工艺和控制方案设计。针对该示范工程所需的附属设备进行了设计计算和设备选型。给出了工业设计时需参照的标准,分析了脱硫系统运行的特点,并针对其特点给出了附属主要设备选用依据。在控制方案的设计上,重点考虑了系统运行中可能出现的问题并提出了相应的解决措施。应用本文部分研究结果对示范工程的脱硫效果进行了数值模拟预测,在模拟工况下,当Ca/S摩尔比1.2时,脱硫效率为83%,脱硫剂利用率为69.2%。上述工作为示范工程的顺利实施和该技术的进一步推广奠定了基础。
Air pollution is an increasingly important issue throughout the word。The SO2 emission can’t measure up to standard that percentage composition SO2 of air pollution from coal combustion is decreasing 10% planed at the during of the fifteen plan,while the number is larger 27% than the original. Our country request that the SO2 emission is 10% less than the standard number required by the fifteen plan at the end of 2010。It is crucial to control the SO2 emission, and fifty percent of the total emission quantity is produced by the thermal power units. The circulating fluidized bed flue gas desulfurization technique (CFB-FGD)has drawn increasing interest and popularized in our country. The CFB- FGD technique is projected to have lower capital and operating costing than the conventional wet FGD techniques. Further more, the waste products hasn’t secondary drain water. Due to the advantage of moderate SO2 removal efficiency, the technique has been widely used for boilers. With these factors in mind, current technologies of CFB-FGD are reviewed while focus on the removal efficiency and utilization of calcium-based sorbents. In order to resolve the problem of the poor sorbents utilization, removal efficiency and the tower maladjustment, one new style internally circulating multistage spouting tower is presented in this paper. The process features the variable cross-section area and internal structural unit. The advantages include rapid mixing of sorbent, as well as very high heat- and mass-transfer rates between the gas and sorbent. And the technique is the stable flow field and improving the sorbents utilization. Due to the variable cross-section area in tower, the operating flue gas velocity in the level one tower exceeds the value in the second-order. The variable amplitude is lower than single-stage tower on the operating flue gas velocity when load is changed. The capability of adequate variability is improving.
     The variable cross-section area has an influence on the concentration distribution in different tower. The results show that the particle concentrations are low in the level one tower and high in the level two tower. According to the characters of multistage spouted tower, the paper has adopted to sector SO2 removal. The gas-liquid contacting and mass-transfer transport processes mainly occur in the level one tower, while reaction in the second-order is between the flue gas and aqueous particles. Firstly, this paper is devoted to understanding the heterogeneity gas-solid two-phase flow in tower by means of the phase doppler particle analyzer (PDA) measurements and bed collapse test. Cross-sectional profiles of mean and fluctuation particle velocities in axial and lateral directions, particle number density, particle size and its distribution, as well as the local temporal evolutions of particle velocity and particle size are measured by PDA. The heterogeneous flow structures in gas-particle flows are obvious in the venturi inlet and at joints two-level tower and tower outlet. The particle internal recycling is stable and homogeneous in multistage spouted tower, and particle concentrations are dilute in lower and dense in upper. The ratio of concentration level two to level one is 4 or larger than 4. Varity of cross-section has good effect on improving the slip velocity between gas and particle. The distance between the top tower and the level outlet is favorable to gas-solid separation and improve particle concentration. The rain cape guide device can reinforce internal particle circulation. Particle fluctuate velocities in axial direction exists peak value in local zone near the wall of level one tower. The more the particle fluctuate is large near the wall, the more particle flushing the tower wall is intense. The probability of deposition is decreasing because of the mass-transfer reaction of gas-liquid in the level one tower.
     A hot-state experiment study has been performed. The influence of operation parameters on SO2 removal has been investigated. Its key component-atomizer has been researched in detail. The facts effected SO2 removal efficiency that the distribution characteristic of droplet size in space at different deepness of lime slurry and the quality rate of gas and liquid have been studied. The distributions of concentration and velocity and temperature of particle and SO2 have been measured by the on-line admeasurement devices and home-made thermojunction of sandwich structure thermocouple with air pump. The influence of powder concentration inlet and the quantity of lime slurry in the different tower level and components-atomizer installation position are investigated.
     The dynamic behavior of gas-solid flow is predicted based on the theory of gas-solid two-phase flow and the kinetic theory of granular flows and considered the interaction particle and particle. The effects of the time step and coefficient of restitution on the fluidization in tower are investigated. Simulation results show that the ratio of large particle velocity and small particle is different in the two-level tower. The results can be obtained small size particle velocity is high in the acceleration zone venturi inlet and in level two tower, and is low in the level one tower. The velocity distribution of large size particle is different from the small size particle and contrary completely. It is improving to gas-solid mass-transfer rate because the strengh particle fluctuate velocity and slip velocity between different size particles.The time-averaged particle concentration and velocities reflect heterogeneous flow structure in agreement with experiment measurement were predicted by PDA.
     Aqueous particle drying model is presented in two-stage tower considered the effect of heat transfer vapor and the product mole. The mechanisms responsible for improvements in performance with the use of additives were investigated and discussed. The paper has compiled program coupled with drying model and gas-solid two phase flow model by compiler interface. Simulation results show that the method is to allow predictions of the mass transfer coefficients and to model the SO2 removal.
     On the basis of experimental and simulated study, the internally circulating and multistage spouting fluidized desulfurization has been applied to a 20t/h grate-fired boiler. Control and processing schemes were designed, the governing standards were also given. Auxiliary equipments design calculation and Selection for he demonstration plant were carried out. The potential problems and treatment process were considered particularly. It was forecasted that SO2 removal of 83% and sorbents utilization of 69.2% were achieved at the condition of Ca/S=1.2, by the condition of numerical simulation work condition.
引文
1 郝吉明,王书肖.燃煤 SO2 控制技术手册.化学工业出版社,2001:10~11
    2 赵鹏高,严晨敏,潘超.二氧化硫排放总量控制若干问题的思考.电力环境保护.2006,22(4):1~3
    3 杨飏.二氧化硫减排技术与烟气脱硫工程.冶金工业出版社,2004.
    4 邱琼.绿色 GDP 核算研究综述.中国统计.2006,(9):8~9
    5 John Talberth, Alok K. Bohara. Economic Openness and Green GDP. Ecological Economics, 2006, 58(4):743~758
    6 王志轩,潘荔,彭俊.电力行业二氧化硫排放控制现状费用及对策分析.环境科学研究.2005,18(4):11~20
    7 火电厂大气污染物排放标准.国家标准:GB13223-2003
    8 李光.火电厂 SO2 排放污染损失估算与排污交易的研究.华北电力大学硕士学文论文.2005:24~25
    9 曾华廷.湿法烟气脱硫系统的安全性及优化.中国电力出版社,2005:168~17
    10 Anna J. Microbial Desulfurization of Coal with Thiobacillus Ferrooxidans Bacteria. Fuel. 1995, 74(5): 725-728
    11 舒新前,徐旭常.微生物浸滤法脱除煤中的黄铁矿.煤炭转化.1996, 19(4):6~10
    12 唐跃刚.中国煤中有机硫赋存状态、地质成因的研究.山东科技大学学报(自然科学版).2002,21(4):1~4
    13 陈鹏.中国煤中硫的赋存特征及脱硫.煤炭转化.1994,17(2):1~9
    14 李守信,纪立国,于军玲等.石灰石-石膏湿法烟气脱硫工艺原理.华北电力大学学报.2002, 29(4):91~94
    15 严峻.海水烟气脱硫.华东电力.2001,29(4):42~44
    16 Josefa Fernandez, Jose’Luis Rico, Hipo’lito Garcl’a, et al. Development of Sorbents for SO2 Capture Prepared by Hydration of Fly Ash and Hydrated Lime in Seawater. Ind. Eng. Chem. Res. 2006, (45): 856~862
    17 罗绍强,蔡振云.燃煤电厂烟气脱硫技术进展.浙江化工.2007,38(2):13~17
    18 张明,徐光.电子束深度氧化烟气净化技术.环境污染治理技术与设备.2004,5(5):72~74
    19 潘朝群.喷雾干燥法烟气脱硫工艺评述.重庆环境科学,2003,25(8):43~46
    20 朱元龙.中国大型燃煤电站烟气脱硫技术应用及比较性研究.清华大学工程硕士学位论文.2004,94
    21 管菊根.烟气循环流化床脱硫技术.电力环境保护.1999,15(4):55~58
    22 薛建明,马果骏.欧洲三种烟气循环流化床脱硫技术及经济分析.国外科技.2003,1:36~38
    23 Graf,R,Riley,J.D. Dry/Semi-dry Flue Gas Desulfurization Using The LURGI Circulating Fluid Bed Absorption Process. Lecture at The EPA/EPRJ Tenth Symposium on Flue Gas Desulfurization. November 18~21,1986, Atlanta, Georgia, USA
    24 Graf,R. 50,000 Hours of Commercial Operating Experience with Advanced-Design Reflux Circulating Fluid Bed as Reference for The World Largest Dry/semidry Flue Gas Desulfurization Unit(300MWe) Equivalent Boiler Capacity)to Be Built by WULLF Power-Gen Conference, June 26~28, 1996, Budapest, Hungary
    25 R. E. Graf. 10000 Hours Commerical Operating Experience with Advanced Design Reflux Circulating Fluid Bed Scrubbing Employing Slaked Lime Reagent EPRI/EPA/DOE SO2 Control Symposium. Miami, Florida, USA. 1995:28~31
    26 程云驰,张经武,张春玲.排烟循环流化床脱硫技术综述.东北电力技术.1998.1:23~27
    27 U.S. Department of Energy, AirPol. Inc. SO2 Removal Using Gas Suspension Absorption Technology. Clean Coal Technology. Topical Report Number 4. 1995
    28 AirPol. Inc. 10-MWe Demonstration of the Gas Suspension Absorption Final Design Report. Report No. DOE/PC/90542-T10. 1995
    29 AirPol. Inc. 10-Mwe Demonstration of the Gas Suspension Absorption. DOE/FE-0198P. 1990
    30 杨柳春.半干法烟气脱硫技术在我国的应用.江西能源.2005,3:24~26
    31 赵旭东.双循环流化床烟气悬浮脱硫技术工业化试验及机理研究.哈尔滨工业大学博士学文论文.2002
    32 董勇.烟气脱硫循环流化床内物料分离循环的研究.哈尔滨工业大学博士学文论文.2004
    33 马春元,董勇,徐夕仁等.双循环流化床半干法烟气悬浮脱硫技术研究与工程实践.环境工程.2002,20(6):27~31
    34 王晓芳,佟会玲,李定凯等.循环流化床常温半干法烟气脱硫技术的工程示范研究.动力工程.2004,24(3):421~425
    35 滕斌.半干法烟气脱硫的实验及机理研究.浙江大学博士学位论文.2004
    36 张凡,王红梅,林军.Ca/S 比小于 1 条件下半干半湿法烟气脱硫技术的研究.环境污染治理技术与设备.2004,5(2):31~34
    37 李永华,冯兆兴,董建勋等.排烟循环流化床脱硫试验研究.中国电力.2004,37(12):70~73
    38 张泽,韩宏.复合循环式流态化干法烟气脱硫工艺.中国发明专利.CN1169604C.2004
    39 李雄浩,张颉,张泽等.分层回料的循环流态化干法烟气脱硫工艺.中国发明专利.CN1491739A.2004
    40 张颉,张泽,李雄浩等.一种 W 型循环流态化的干法烟气脱硫方法.中国发明专利.CN1488428A.2004
    41 林冲,张泽,李雄浩.一种采用混合进料方式的循环流态化干法烟气脱硫工艺.中国发明专利.2006
    42 J. Klingspor. A Kinetic Study of the Dry SO2-limestone Raction at Low Temperature.Chem.Eng.Commun.1983, 22: 81~103
    43 M.R. Stouffer. Development of The Advanced Desulfurization Process, 9th Pittsburgh Coal Conference. Pittsburgh,1992
    44 J.R. Ahlbeck. On Sorbent Activation in Coolside Desulfurization, J.Air Waste Manage. Assoc.,1990,40(3):345~351
    45 高继慧,吴少华,马春元等.3000m3/h 排烟循环流化床脱硫工艺中试实验研究.化学工程.2002,30(3):39~42
    46 赵旭东,吴少华,马春元等.循环流化床烟气悬浮脱硫技术中试研究及机理分析.环境科学.2002,23(2):109~112
    47 Griffith A. E., Louge, M. Y. the Scaling of Cluster Velocity at The Wall of Circulating Fluidized Bed Risers. Chemical Engineering Science. 1998, 53:2475~2477.
    48 Noymer P. D., Glicksman, L. R. Cluster Motion and Particle-convective Heat Transfer at The Wall of A Circulating Fluidized Bed. International Journal of Heat and Mass Transfer. 1998, 41:147~158
    49 Noymer P. D., Glicksman, L. R. Near-wall Hydrodynamics in A Scale-model Circulating Fluidized Bed. International Journal of Heat and Mass Transfer. 1999 ,42:138921403
    50 Rhodes M., Mineo ,H., Hirama, T. Particle Motion at The Wall of A Circulating Fluidized Bed. Powder Technology, 1992,70:207~214
    51 颜岩,彭晓峰,王补宣.循环流化床内烟气脱硫模拟分析.中国电机工程学报.2003,23(11):173~177
    52 何大阔,王福利,李振中.循环流化床烟气脱硫效率的研究.动力工程.2005,25(4):582~586
    53 秦裕琨,吴少华,高继慧,高建民,李争起.内循环多级喷动流态化烟气脱硫塔.CN1724121A.2005
    54 刘文铁,阮根健,孙洪宾.锅炉热工测试技术.哈尔滨工业大学出版社,1989:51~53
    55 陈卓如,金朝铭,王成敏等.工程流体力学.高等教育出版社,1992:317~318
    56 Johan Bankel, Erik Olsson. Measurements of Particle Velocity in A Cyclone Separator Using Laser Doppler Anemometer. Proceedings of The 4th Inernational Conterence on CFB. Augustl-5,1993, Pennsylvania, USA:630~635
    57 薛元.细颗粒在流动与温度边界层中的运动规律研究.清华大学工学硕士学位论文.2002:17
    58 李彦,闫德中.三维激光颗粒动态分析仪在多相流测量中应注意的问题.实验技术与管理.2003,20(5):9~12
    59 舒玮.湍流中散射粒子的跟随性.天津大学学报.1980,(1):77~85
    60 张金成,姚强,孙俊民.应用 PDA 测量气固两相流边界层时壁面的选择.流体机械.2001,29(8):11~13
    61 胡金榜,李艳平,李进龙等.循环流化床脱硫器文丘里式入口对流动特性的影响.天津大学学报.2005:38(3):225~228
    62 高翔,李兴华,刘海蛟等.半干法烟气脱硫塔内速度场研究.能源工程.2005:2:26~29
    63 Jozewicz, W. And G.T. Rochelle,“ Model of SO2 Removal by Spray Dryers”Proceedings:First Pittsburgh Coal Conference.1984:663
    64 Neathery J K. Utilization of AFBC waster by-product as A FGD Sorbent for Circulating Dry Scrub-bing. Proc Int Con Fluid Bed Combust, 1995,2(13): 1234~1266
    65 董勇,马春元,王文龙等.烟气脱硫循环流化床内的温度分布与干燥特性.热能动力工程.2005,20(5):492~496
    66 金勇,祝京旭,汪展文等.流态化工程原理.清华大学出版社,2001,364
    67 何鑫,李定凯,邓治国等.向上射流悬浮床内气固两相流场实验研究.燃烧科学与技术.2002,8(2):109~116
    68 董勇,马春元,秦裕琨等.烟气脱硫循环流化床内气固流动的 PDA 试验研究.热能动力工程.2004,19(5):450~453
    69 孙国刚.循环流化床提升管气固流动的非均匀特性.中国科学院化工冶金研究所博士学位论文.1998:38~41
    70 Tung,Y., Kwauk, M. Dynamics of Collapsing Fluidized Beds. In First China Japan Symp. on Fluidizaation, M. Kwauk and D. Kunii(eds.), Science Press, 1982,155~166
    71 Yang, Z., Tung, Y ,and Kwauk, M., Characterizing Fluidization by The Bed Collapsing Method, Chem. Eng. Commun.,1985,39: 217~232
    72 李洪钟,郭慕孙.气固流态化的散式化.化学工业出版社,2002:9
    73 安恩科,谭厚章,李军等.CFB 流化床边壁下降流的试验研究及内循环模型.动力工程.1999,19(1):9~11
    74 吴颖海.循环流化床烟气脱硫模拟中试试验和理论研究.东南大学博士学位论文.2000:25~29
    75 冯斌,李大骥,周志良等.循环流化床烟气脱硫模拟中试试验研究.2001,31(2):72~76
    76 赵旭东,项光明,姚强等.干法烟气脱硫固体颗粒物循环特性及微观机理研究.中国电机工程学报.2006,26(1):70~76
    77 高翔,刘海蛟,滕斌等.循环悬浮式烟气半干法脱硫技术的实验研究.动力工程.2006,26(5):720~725
    78 Galindo.Ignacio, Ivlev. Lev S., Gonzalez Arturo. Airborne Measurements of Particle and Gas Emissions from The December 1994-January 1995 Eruption of Popocat Epetl Volcano (Mexico). Journal of Volcanology and Geothermal Research. August 15, 1998.83 (3-4):197~217
    79 Rassias.G., Metha G. F., McGilvery D. C.. Dispersed Emission from The Lower Vibronic Levels of The AlA2State of Sulfur Dioxide. Journal of Molecular Spectroscopy. January, 1997. 181(1): 78~90
    80 赵宏.基于双频差分法的二氧化硫浓度监测系统的设计与研究.燕山大学硕士学位论文.2005,23~24
    81 刘珍.化验员读本(仪器分析).北京化工大学出版社,2000:14~16
    82 严凤霞,王筱敏.现代光学仪器分析选论.华东师范大学出版社,1992:60~61
    83 王华山.双色光谱法在线测量 SO2 浓度的实验研究.哈尔滨工业大学硕士学位论文.2004,16~17
    84 张云刚.利用光谱学技术监测气体的研究.哈尔滨工业大学硕士学位论文.2004,19~21
    85 张力,李午申,蒲舸.烟气净化双流体喷嘴雾化特性实验.环境工程.2006,24(2):40~43
    86 王乃华,高翔,骆仲泱等.石灰浆液雾化喷嘴及其特性研究.热能动力工程.2001,16(93):247~249
    87 徐祥开.PDA 技术及其在双流体喷嘴雾化的应用.上海交通大学硕士学位论文.2003,61~63
    88 樊保国,项光明,祁海鹰等.常温循环流化床烟气脱硫影响脱硫效率的参数及机理.燃烧科学与技术.2001,7(3):228~232
    89 金国淼.干燥设备.化学工业出版社,2002:192
    90 徐行,郭志辉,顾善建.新型气动雾化喷嘴喷雾特性的实验研究.航空动力学报.1997,12(3):295~298
    91 王洪铭,邹正平,史伟等.气动雾化喷嘴强化湍流扩散的实验研究.气动实验与测量控制.1995,9(4):36~40
    92 韩怀强,蒋挺大.粉煤灰利用技术.化学工业出版社,2001:9~11
    93 G.D. Read, W.T. Davis. Analysis of Coal Fly Ash Properties of Importance to Sulfur Dioxide Reactivity Potential Environ. Sci. Technol. 1984,18(7):548~552
    94 H. Tsuchiai . Removal of Sulfur Dioxide from Flue Gas bye The Absorbent Prepared from Coal Ash:Effects of Nitrogen Oxide and Water Vapor. Ind.Eng.Chem.Res.1996,35:851~855
    95 王福军.计算流体动力学分析.清华大学出版社,2004:1
    96 刘大有.两相流体动力学.高等教育出版社,1992:7~9
    97 王迎慧.磁流化床气固两相流动特性及其应用的研究.东南大学博士学位论文.2004:16
    98 Tsuji Y, Tanka T, Yonemura S., Cluster Paterns in Circulating Fluidized Beds Predicted by Numerical Simulation (Discrete Particle Model Versus Two-fluid Model). Powder Technology. 1998,95:254
    99 岑可法,樊建人,骆仲泱等.循环流化床内颗粒运动得预测与测量.化学反应工程与工艺.1989.5(4):24~34
    100 马银亮.高浓度气固两相流的数值模拟研究.浙江大学博士学位论文.2001:25~26
    101 孙其诚.模拟气固流态化系统的拟颗粒模型.中国科学院化工冶金研究所博士学位论文.1999:15~17
    102 Ishii M., Thermo Fluid Dynamic Theory of Two-phase Flow. Eyrolles, Paris, 1975
    103 盖德.希特斯洛尼.多相流动和传热手册.机械工业出版社,第一章 (Boure, J.^.and Delhaye J. M.), 17~33,第七章(Soo, S. L.),457~471,第八章 (Grace, J. R.),487~517,198
    104 Soo, S. L, Multiphase Fluid Dynamics, Science Press, New York, 1990
    105 Drew, D. A. and Lahey, T. T., Particulate TWo-phase Flow, Butterworth-Heinemann, Boston, 1993
    106 Enwaid, H., Peiran, E. ,Almstedt., A. E., EulerianTwo-phase Flow Theory Applied to Fluidization. Int. J. Multiphase Flow, 1996,22:21~66
    107 Harlow, F H., and Amsden, A.A., Numerical Calculation of Multiphase Fluid Flow, J. Comput. Phys.,1975,17:19~52
    108 Gidaspow, D., Seo, Y. C.,Ettebadieh, B., Hydrodynamics of Fluidization: Experimental and Theoretical Buble Sizes in A Two-dimensional Bed with A Jet. Chem. Eng. Comm., 1983,22:253~272
    109 Savage, S. B., Jeffrey, D. J., The Stress Tensor in Granular Flow at HighShear Rates. J. Fluid Mech. 1981,110:255~272
    110 Jenkins, J. T., Savage, S. B., A Theory for the Rapid Flow of Identical, Smooth, Nearly Elastic Spherical Particles. J. Fluid Mech.1983,130:187~202
    111 Lun, C. K. K., Savage, F B., Jefrey, D. J., and Chepumiy, N., Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in A General Flow Field. J. Fluid Mech. 1984,140:223~256
    112 Johnson, P C. ,Jackson, R., Frictional-collisionai Constitutive Relations for Granular Materials, with Application to Plane Shearing. J. Fluid Mech., 1987,176:67~93
    113 Campbell, S. C., Wang, D. G, Particle Pressure in Gas-fluidized Beds. J. Fluid Mech., 1991,227:495~508
    114 Ding, J., Gidaspow, D., A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow. AIChE Journal. 1990,36:523~538
    115 Gidaspow, D., Multiphase Flow and Fluldization-Continuum and Kinetic Theory Descriptions. Academic Press, San Diego, 1994
    116 吴春亮.稠密颗粒两相流的理论与数值模拟.中山大学博士学位论文.2004:13~15
    117 Fariborz Taghipour, Naoko Ellis, Clayton Wong. Experimental and Computational Study of Gas–solid Fluidized Bed Hydrodynamics. Chemical Engineering Science. 2005, 60(24):6857~5657
    118 Ranjeet P., Utikar, Vivek V. Ranade. Single Jet Fluidized Beds: Experiments and CFD Simulations with Glass and Polypropylene Particles. Chemical Engineering Science. 2007, 62(1):167~183
    119 Veeraya Jiradilok, Dimitri Gidaspow, Somsak Damronglerd. Kinetic Theory Based CFD Simulation of Turbulent Fluidization of FCC Particles in A Riser. Chemical Engineering Science. 2006, 61(17):5544~5559
    120 Yassir Makkawi, Raffaella Ocone. A model for Gas–solid Flow in A Horizontal Duct with A Smooth Merge of Rapid–intermediate–dense flows. Chemical Engineering Science. 2006,61(13):4271~4281
    121 M.A. van der Hoef, M. Ye, M. van Sint Annaland. Multiscale Modeling of Gas-Fluidized Beds. Advances in Chemical Engineering. 2006, 31:65~149
    122 Guodong Jin, Dayou Liu. Modeling and Simulation of Liquid Pulsed Particulate Fluidized Beds. Powder Technology.2005,154(2-3):138~155
    123 Pedro Arce, Martín Aznar. Modeling the Thermodynamic Behavior of Poly(lactide-co-glycolide) Supercritical Fluid Mixtures with Equations of state. Fluid Phase Equilibria.2006,244(1-5):16~25
    124 Guodong Jin, Yongsheng Nie and Dayou Liu. Numerical Simulation of Pulsed Liquid Fluidized Bed and It’s Experimental Validation. Powder Technology.2001,119(2-3):153~163
    125 Lun, C. K. K., Savage, S. B., Jeffrey, D.J..Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in General Flow Field. J. Fluid Mech., 1984:140,223~256
    126 G. T. Csanady. Turbulent Diffusion of Heavy Particles in the Atmosphere. J. Atmos. Science, 1963,20:201~208
    127 M. Syamlal. The Particle-Particle Drag Term in a Multiparticle Model of Fluidization. National Technical Information Service.1987. OE/MC/21353-2373, NTIS/DE87006500
    128 邓建中,葛仁杰,程正兴.计算方法.西安交通大学出版社,1996:13~15
    129 王嘉骏,顾雪萍,杨富军等.双流体模型中曳力及恢复系数对气固流动的影响.高校化学工程学报.2006,20(2):164~168
    130 Hoomans B P B, Kuipers J A M, Briels W J, Vanswaaij W P M. Discrete Particle Simulation of Bubble and Slug Formation in a Two-dimension Gas-fluidized Bed: A Hard-sphere Approach.Chem.Eng.Sci. 1996,51(1):99~118
    131 Pita Jorge A, Sankaran Sundaresan. Gas-solid Flow in Vertical Tube. AIChE Journal. 1991,37(7):1009~1017
    132 刘敏,张会强,王希麟等.稠密气固流动中颗粒聚集现象的数值模拟.燃烧科学与技术.2003,9(2):128~134
    133 S.R. Dantuluri. Mathematical Model of Sulfur Dioxide Absorption into A Calcium Hydroxide Slurry in a Spray Dryer, Sep. Sci.Tech., 1990, 25(13-15):1843~1855
    134 Fabrizio Scala a, Michele D’Ascenzo b, Amedeo Lancia. Modeling Flue Gas Desulfurization by Spray-dry Absorption. Separation and Purification Technology. 2004,34:143~153
    135 F.J. Guti′errez, P. Ollero, A. Cabanillas, J. Otero. A Technical Pilot Plant Assessment of Flue Gas Desulfurisation in A Circulating Fluidised Bed. Advances in Environmental Research.2002,(7):73~85
    136 郭宜祜,王喜忠.喷雾干燥.化学工业出版社,1983 年 9 月第一版:226~227, 63~65
    137 K·马斯托思.喷雾干燥手册.黄照柏,冯尔健等译.中国建筑工业出版社,1983:295~298
    138 Godsave, G.A.E.,Nat. Gas Turbine Estab.(England).Rept.1952
    139 Marshall, W.R., Trans. Amer.Soc.Mech.Eng.,1955
    140 王乃华.新型半干法烟气脱硫的实验及机理研究.浙江大学博士学位论文.2001:91~102
    141 S.R. Dantuluri. Mathematical Model of Sulfur Dioxide Absorption into A Calcium Hydroxide in A Spray Dryer. Seperation Science and Technology. 1990,25(13-15):1843~1855
    142 Van Krevelen. Gas-Liquid Reaction. McGraw-Hill: New York,1970:81
    143 Ishida, M.,Wen, C.Y.,1968. Comparison of Kinetic and Diffusional Models for Solid-gas Rections. AICHE. 1968,142:311~317
    144 谢端绶.化工工艺算图.常用物料物性数据.化学工业出版社,1992,71
    145 FLUENT Inc. User's Guidev 6.2. Lebanon, USA: FLUENT Inc, 2002.
    146 杨明珍,陈松林.工业锅炉除尘设备.中国环境科学出版社,1991,11~13
    147 刘向军,徐旭常.排烟脱硫循环流化床内脱硫过程的数值模拟.中国电机工程学报.2004,24(5):184~188

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700